Modelling and Simulation in Engineering
 Journal metrics
Acceptance rate22%
Submission to final decision110 days
Acceptance to publication34 days
CiteScore1.600
Impact Factor-

Fuzzy Energy Management Scheme for a Hybrid Power Sources of High-Altitude Pseudosatellite

Read the full article

 Journal profile

Modelling and Simulation in Engineering aims to provide a forum for the discussion of formalisms, methodologies and simulation tools which relate to the modelling and simulation of human-centred engineering systems.

 Editor spotlight

Modelling and Simulation in Engineering maintains an Editorial Board of practicing researchers from around the world, to ensure manuscripts are handled by editors who are experts in the field of study.

 Special Issues

Do you think there is an emerging area of research that really needs to be highlighted? Or an existing research area that has been overlooked or would benefit from deeper investigation? Raise the profile of a research area by leading a Special Issue.

Latest Articles

More articles
Research Article

Internal Combustion Engine Modeling Framework in Simulink: Gas Dynamics Modeling

With advancements in computer-aided design, simulation of internal combustion engines has become a vital tool for product development and design innovation. Among the simulation software packages currently available, MATLAB/Simulink is widely used for automotive system simulations, but does not contain a comprehensive engine modeling toolbox. To leverage MATLAB/Simulink’s capabilities, a Simulink-based 1D flow engine modeling framework has been developed. The framework allows engine component blocks to be connected in a physically representative manner in the Simulink environment, reducing model build time. Each component block, derived from physical laws, interacts with other blocks according to block connection. In this Part 1 of series papers, a comprehensive gas dynamics model is presented and integrated in the engine modeling framework based on MATLAB/Simulink. Then, the gas dynamics model is validated with commercial engine simulation software by conducting a simple 1D flow simulation.

Research Article

Adaptive Control Using Neural Networks and Approximate Models for Nonlinear Dynamic Systems

In this research, a comparative study of two recurrent neural networks, nonlinear autoregressive with exogenous input (NARX) neural network and nonlinear autoregressive moving average (NARMA-L2), and a feedforward neural network (FFNN) is performed for their ability to provide adaptive control of nonlinear systems. Three dynamical nonlinear systems of different complexity are considered. The aim of this work is to make the output of the plant follow the desired reference trajectory. The problem becomes more challenging when the dynamics of the plants are assumed to be unknown, and to tackle this problem, a multilayer neural network-based approximate model is set up which will work in parallel to the plant and the control scheme. The network parameters are updated using the dynamic backpropagation (BP) algorithm.

Research Article

Modified One-Parameter Liu Estimator for the Linear Regression Model

Motivated by the ridge regression (Hoerl and Kennard, 1970) and Liu (1993) estimators, this paper proposes a modified Liu estimator to solve the multicollinearity problem for the linear regression model. This modification places this estimator in the class of the ridge and Liu estimators with a single biasing parameter. Theoretical comparisons, real-life application, and simulation results show that it consistently dominates the usual Liu estimator. Under some conditions, it performs better than the ridge regression estimators in the smaller MSE sense. Two real-life data are analyzed to illustrate the findings of the paper and the performances of the estimators assessed by MSE and the mean squared prediction error. The application result agrees with the theoretical and simulation results.

Research Article

A Graphical Approach for Hybrid Simulation of 3D Diffusion Bio-Models via Coloured Hybrid Petri Nets

Three-dimensional modelling of biological systems is imperative to study the behaviour of dynamic systems that require the analysis of how their components interact in space. However, there are only a few formal tools that offer a convenient modelling of such systems. The traditional approach to construct and simulate 3D models is to build a system of partial differential equations (PDEs). Although this approach may be computationally efficient and has been employed by many researchers over the years, it is not always intuitive since it does not provide a visual depiction of the modelled systems. Indeed, a visual modelling can help to conceive a mental image which eventually contributes to the understanding of the problem under study. Coloured Hybrid Petri Nets () are a high-level representation of classical Petri nets that offer hybrid as well as spatial modelling of biological systems. In addition to their graphical representations, models are also scalable. This paper shows how can be used to construct and simulate systems that require three-dimensional as well as hybrid (stochastic/continuous) modelling. We use calcium diffusion in three dimensions to illustrate our main ideas. More specifically, we show that creating 3D models using can yield more flexible models as the structure can be easily scaled up and down by just modifying a few parameters. This advantage of convenient model configuration facilitates the design of different experiments without the need to alter the model structure.

Research Article

Noniterative Localized and Space-Time Localized RBF Meshless Method to Solve the Ill-Posed and Inverse Problem

In many references, both the ill-posed and inverse boundary value problems are solved iteratively. The iterative procedures are based on firstly converting the problem into a well-posed one by assuming the missing boundary values. Then, the problem is solved by using either a developed numerical algorithm or a conventional optimization scheme. The convergence of the technique is achieved when the approximated solution is well compared to the unused data. In the present paper, we present a different way to solve an ill-posed problem by applying the localized and space-time localized radial basis function collocation method depending on the problem considered and avoiding the iterative procedure. We demonstrate that the solution of certain ill-posed and inverse problems can be accomplished without iterations. Three different problems have been investigated: problems with missing boundary condition and internal data, problems with overspecified boundary condition, and backward heat conduction problem (BHCP). It has been demonstrated that the presented method is efficient and accurate and overcomes the stability analysis that is required in iterative techniques.

Research Article

Service-Life Study of Polycarbonate Outdoors Using Python with Incomplete Data

The deterioration of polycarbonate (PC) depends on various environmental factors. Meanwhile, the complexity of the related weathering processes inhibits the prediction of service life based on the environmental factors. To elucidate the nonlinear correlation between PC weathering and the environmental factors, three-year-long natural weathering tests were conducted at eight experimental stations in China. The relationship between tensile-property data of PC and environmental and pollutant data is analyzed by extra-trees and multilayer perceptron networks implemented in Python. The results indicated that (1) the degradation of PC tensile properties is mainly affected by the experimental period (76.37%), whilst the effect of the environmental or pollutant factors on the degradation is less pronounced (23.63%); (2) the classification accuracy of the trained model on the training set is 91% (91/100), and on the testing set is 72.13% (44/61); and lastly, (3) it is inferred from the error analysis of the classification results that the performance change of polycarbonate in Qionghai and Wuhan is characterized by an initial reduction followed by a slight improvement. Lastly, we show that the proposed method performs well, especially in the case of areas with incomplete data available.

Modelling and Simulation in Engineering
 Journal metrics
Acceptance rate22%
Submission to final decision110 days
Acceptance to publication34 days
CiteScore1.600
Impact Factor-
 Submit

We are committed to sharing findings related to COVID-19 as quickly as possible. We will be providing unlimited waivers of publication charges for accepted research articles as well as case reports and case series related to COVID-19. Review articles are excluded from this waiver policy. Sign up here as a reviewer to help fast-track new submissions.