Table of Contents Author Guidelines Submit a Manuscript
Modelling and Simulation in Engineering
Volume 2008, Article ID 358748, 8 pages
http://dx.doi.org/10.1155/2008/358748
Research Article

Inhalation Induced Stresses and Flow Characteristics in Human Airways through Fluid-Structure Interaction Analysis

Department of Mechanical Engineering, Virginia Commonwealth University, Richmond, VA 23284, USA

Received 20 July 2007; Revised 21 April 2008; Accepted 22 May 2008

Academic Editor: Natalio Krasnogor

Copyright © 2008 Kittisak Koombua and Ramana M. Pidaparti. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. D. J. Tschumperlin and J. M. Drazen, “Chronic effects of mechanical force on airways,” Annual Review of Physiology, vol. 68, pp. 563–583, 2006. View at Publisher · View at Google Scholar · View at PubMed
  2. S. Dhanireddy, W. A. Altemeier, G. Matute-Bello et al., “Mechanical ventilation induces inflammation, lung injury, and extra-pulmonary organ dysfunction in experimental pneumonia,” Laboratory Investigation, vol. 86, no. 8, pp. 790–799, 2006. View at Publisher · View at Google Scholar · View at PubMed
  3. V. M. Ranieri, P. M. Suter, C. Tortorella et al., “Effect of mechanical ventilation on inflammatory mediators in patients with acute respiratory distress syndrome: a randomized controlled trial,” The Journal of the American Medical Association, vol. 282, no. 1, pp. 54–61, 1999. View at Publisher · View at Google Scholar
  4. M. M. Choe, P. H. S. Sporn, and M. A. Swartz, “An in vitro airway wall model of remodeling,” American Journal of Physiology, vol. 285, no. 2, pp. L427–L433, 2003. View at Publisher · View at Google Scholar · View at PubMed
  5. M. A. Swartz, D. J. Tschumperlin, R. D. Kamm, and J. M. Drazen, “Mechanical stress is communicated between different cell types to elicit matrix remodeling,” Proceedings of the National Academy of Sciences of the United States of America, vol. 98, no. 11, pp. 6180–6185, 2001. View at Publisher · View at Google Scholar · View at PubMed
  6. X. Guan, R. A. Segal, M. Shearer, and T. B. Martonen, “Mathematical model of airflow in the lungs of children—II: effects of ventilatory parameters,” Journal of Theoretical Medicine, vol. 3, no. 1, pp. 51–62, 2000. View at Google Scholar
  7. C. Kleinstreuer and Z. Zhang, “Targeted drug aerosol deposition analysis for a four-generation lung airway model with hemispherical tumors,” Journal of Biomechanical Engineering, vol. 125, no. 2, pp. 197–206, 2003. View at Publisher · View at Google Scholar
  8. T. B. Martonen and X. Guan, “Effects of tumors on inhaled pharmacologic drugs—I: flow patterns,” Cell Biochemistry and Biophysics, vol. 35, no. 3, pp. 233–243, 2001. View at Publisher · View at Google Scholar · View at PubMed
  9. T. B. Martonen and X. Guan, “Effects of tumors on inhaled pharmacologic drugs—II: particle motion,” Cell Biochemistry and Biophysics, vol. 35, no. 3, pp. 245–253, 2001. View at Publisher · View at Google Scholar · View at PubMed
  10. R. A. Segal, X. Guan, M. Shearer, and T. B. Martonen, “Mathematical model of airflow in the lungs of children—I: effects of tumor sizes and locations,” Computational and Mathematical Methods in Medicine, vol. 2, no. 3, pp. 199–213, 2000. View at Publisher · View at Google Scholar
  11. P. W. Longest, S. Vinchurkar, and T. Martonen, “Transport and deposition of respiratory aerosols in models of childhood asthma,” Journal of Aerosol Science, vol. 37, no. 10, pp. 1234–1257, 2006. View at Publisher · View at Google Scholar
  12. X. L. Yang, Y. Liu, and H. Y. Luo, “Respiratory flow in obstructed airways,” Journal of Biomechanics, vol. 39, no. 15, pp. 2743–2751, 2006. View at Publisher · View at Google Scholar · View at PubMed
  13. M. Brouns, S. T. Jayaraju, C. Lacor et al., “Tracheal stenosis: a flow dynamics study,” Journal of Applied Physiology, vol. 102, no. 3, pp. 1178–1184, 2007. View at Publisher · View at Google Scholar · View at PubMed
  14. H. Y. Luo, Y. Liu, and X. L. Yang, “Particle deposition in obstructed airways,” Journal of Biomechanics, vol. 40, no. 14, pp. 3096–3104, 2007. View at Publisher · View at Google Scholar · View at PubMed
  15. T. B. Martonen, Y. Yang, and Z. Q. Xue, “Effects of carinal ridge shapes on lung airstreams,” Aerosol Science and Technology, vol. 21, no. 2, pp. 119–136, 1994. View at Publisher · View at Google Scholar
  16. Y. Zhang and W. H. Finlay, “Measurement of the effect of cartilaginous rings on particle deposition in a proximal lung bifurcation model,” Aerosol Science and Technology, vol. 39, no. 5, pp. 394–399, 2005. View at Publisher · View at Google Scholar
  17. A. B. Lumb, Nunn's Applied Respiratory Physiology, Butterworth-Heinemann, Oxford, UK, 2005.
  18. P. W. Longest and C. Kleinstreuer, “Computational models for simulating multicomponent aerosol evaporation in the upper respiratory airways,” Aerosol Science and Technology, vol. 39, no. 2, pp. 124–138, 2005. View at Publisher · View at Google Scholar
  19. J. N. Reddy, An Introduction to the Finite Element Method, McGraw-Hill, New York, NY, USA, 1993.
  20. ANSYS, ANSYS 10.0 User Guide, ANSYS Inc, Canonsburg, Pa, USA, 2005.
  21. M. P. Hlastala and A. J. Berger, Physiology of Respiration, Oxford University Press, New York, NY, USA, 2001.
  22. ICRP, Human Respiratory Tract Model for Radiological Protection, Elsevier, New York, NY, USA, 1994.
  23. R. H. Habib, R. B. Chalker, B. Suki, and A. C. Jackson, “Airway geometry and wall mechanical properties estimated from subglottal input impedance in humans,” Journal of Applied Physiology, vol. 77, no. 1, pp. 441–451, 1994. View at Google Scholar
  24. K. Horsfield and G. Cumming, “Angles of branching and diameters of branches in the human bronchial tree,” Bulletin of Mathematical Biology, vol. 29, no. 2, pp. 245–259, 1967. View at Publisher · View at Google Scholar
  25. T. Heistracher and W. Hofmann, “Physiologically realistic models of bronchial airway bifurcations,” Journal of Aerosol Science, vol. 26, no. 3, pp. 497–509, 1995. View at Publisher · View at Google Scholar
  26. P. W. Longest and S. Vinchurkar, “Validating CFD predictions of respiratory aerosol deposition: effects of upstream transition and turbulence,” Journal of Biomechanics, vol. 40, no. 2, pp. 305–316, 2007. View at Publisher · View at Google Scholar · View at PubMed
  27. P. W. Longest and S. Vinchurkar, “Effects of mesh style and grid convergence on particle deposition in bifurcating airway models with comparisons to experimental data,” Medical Engineering & Physics, vol. 29, no. 3, pp. 350–366, 2007. View at Publisher · View at Google Scholar · View at PubMed
  28. S. Vinchurkar and P. W. Longest, “Evaluation of hexahedral, prismatic and hybrid mesh styles for simulating respiratory aerosol dynamics,” Computers & Fluids, vol. 37, no. 3, pp. 317–331, 2008. View at Publisher · View at Google Scholar
  29. Y. Zhao and B. B. Lieber, “Steady inspiratory flow in a model symmetric bifurcation,” Journal of Biomechanical Engineering, vol. 116, no. 4, pp. 488–496, 1994. View at Publisher · View at Google Scholar
  30. K. Koombua, R. M. Pidaparti, P. W. Longest, and K. R. Ward, “Computational analysis of fluid characteristics in rigid and flexible human respiratory airway models,” Engineering Applications of Computational Fluid Mechanics, vol. 2, no. 2, pp. 185–194, 2008. View at Google Scholar
  31. C. L. Lafortuna, A. E. Minetti, and P. Mognoni, “Inspiratory flow pattern in humans,” Journal of Applied Physiology, vol. 57, no. 4, pp. 1111–1119, 1984. View at Google Scholar
  32. D. Elad, A. Shochat, and R. J. Shiner, “Computational model of oscillatory airflow in a bronchial bifurcation,” Respiration Physiology, vol. 112, no. 1, pp. 95–111, 1998. View at Publisher · View at Google Scholar
  33. T. Sera, S. Satoh, H. Horinouchi, K. Kobayashi, and K. Tanishita, “Respiratory flow in a realistic tracheostenosis model,” Journal of Biomechanical Engineering, vol. 125, no. 4, pp. 461–471, 2003. View at Publisher · View at Google Scholar
  34. J. R. Croteau and C. D. Cook, “Volume-pressure and length-tension measurements in human tracheal and bronchial segments,” Journal of Applied Physiology, vol. 16, pp. 170–172, 1961. View at Google Scholar
  35. U. B. S. Prakash and R. E. Hyatt, “Static mechanical properties of bronchi in normal excised human lungs,” Journal of Applied Physiology, vol. 45, no. 1, pp. 45–50, 1978. View at Google Scholar
  36. C. G. Plopper, S. J. Nishio, and E. S. Schelegle, “Tethering tracheobronchial airways within the lungs,” American Journal of Respiratory and Critical Care Medicine, vol. 167, no. 1, pp. 2–3, 2003. View at Publisher · View at Google Scholar · View at PubMed
  37. E. J. Shaughnessy, I. M. Katz, and J. P. Schaffer, Introduction to Fluid Mechanics, Oxford University Press, New York, NY, USA, 2005.
  38. N. E. Dowling, Mechanical Behavior of Materials, Prentice Hall, Upper Saddle River, NJ, USA, 1998.
  39. J. K. Rains, J. L. Bert, C. R. Roberts, and P. D. Paré, “Mechanical properties of human tracheal cartilage,” Journal of Applied Physiology, vol. 72, no. 1, pp. 219–225, 1992. View at Google Scholar
  40. J. J. Fredberg, K. A. Jones, M. Nathan et al., “Friction in airway smooth muscle: mechanism, latch, and implications in asthma,” Journal of Applied Physiology, vol. 81, no. 6, pp. 2703–2712, 1996. View at Google Scholar
  41. J. H. Leung, A. R. Wright, N. Cheshire et al., “Fluid structure interaction of patient specific abdominal aortic aneurisms: a comparison with solid stress models,” BioMedical Engineering Online, vol. 5, article 33, pp. 1–15, 2006. View at Publisher · View at Google Scholar · View at PubMed
  42. R. Torii, M. Oshima, T. Kobayashi, K. Takagi, and T. E. Tezduyar, “Influence of wall elasticity in patient-specific hemodynamic simulations,” Computers & Fluids, vol. 36, no. 1, pp. 160–168, 2007. View at Publisher · View at Google Scholar
  43. C. M. Scotti and E. A. Finol, “Compliant biomechanics of abdominal aortic aneurysms: a fluid-structure interaction study,” Computers & Structures, vol. 85, no. 11–14, pp. 1097–1113, 2007. View at Publisher · View at Google Scholar
  44. K. Horsfield, G. Dart, D. E. Olson, G. F. Filley, and G. Cumming, “Models of the human bronchial tree,” Journal of Applied Physiology, vol. 31, no. 2, pp. 207–217, 1971. View at Google Scholar
  45. S. Ito, A. Majumdar, H. Kume et al., “Viscoelastic and dynamic nonlinear properties of airway smooth muscle tissue: roles of mechanical force and the cytoskeleton,” American Journal of Physiology, vol. 290, no. 6, pp. L1227–L1237, 2006. View at Publisher · View at Google Scholar · View at PubMed
  46. B. A. Smith, B. Tolloczko, J. G. Martin, and P. Grütter, “Probing the viscoelastic behavior of cultured airway smooth muscle cells with atomic force microscopy: stiffening induced by contractile agonist,” Biophysical Journal, vol. 88, no. 4, pp. 2994–3007, 2005. View at Publisher · View at Google Scholar · View at PubMed