Table of Contents Author Guidelines Submit a Manuscript
Modelling and Simulation in Engineering
Volume 2012, Article ID 264213, 11 pages
http://dx.doi.org/10.1155/2012/264213
Research Article

Design of Wideband MIMO Car-to-Car Channel Models Based on the Geometrical Street Scattering Model

Faculty of Engineering and Science, University of Agder, P.O. Box 509, 4898 Grimstad, Norway

Received 2 May 2012; Revised 28 August 2012; Accepted 5 September 2012

Academic Editor: Neji Youssef

Copyright © 2012 Nurilla Avazov and Matthias Pätzold. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. F. Qu, F. Y. Wang, and L. Yang, “Intelligent transportation spaces: vehicles, traffic, communications, and beyond,” IEEE Communications Magazine, vol. 48, no. 11, pp. 136–142, 2010. View at Publisher · View at Google Scholar · View at Scopus
  2. http://www.ertico.com/.
  3. http://www.car-to-car.org/.
  4. E. Telatar, “Capacity of multi-antenna Gaussian channels,” European Transactions on Telecommunications, vol. 10, no. 6, pp. 585–595, 1999. View at Google Scholar · View at Scopus
  5. M. Pätzold, B. O. Hogstad, and N. Youssef, “Modeling, analysis, and simulation of MIMO mobile-to-mobile fading channels,” IEEE Transactions on Wireless Communications, vol. 7, no. 2, pp. 510–520, 2008. View at Publisher · View at Google Scholar · View at Scopus
  6. M. Pätzold and B. O. Hogstad, “A wideband MIMO channel model derived from the geometric elliptical scattering model,” Wireless Communications and Mobile Computing, vol. 8, no. 5, pp. 597–605, 2008. View at Publisher · View at Google Scholar · View at Scopus
  7. H. Zhiyi, C. Wei, Z. Wei, M. Pätzold, and A. Chelli, “Modelling of MIMO vehicle-to-vehicle fading channels in T-junction scattering environments,” in Proceedings of the 3rd European Conference on Antennas and Propagation (EuCAP '09), pp. 652–656, Berlin, Germany, March 2009. View at Scopus
  8. A. Chelli and M. Pätzold, “A MIMO mobile-to-mobile channel model derived from a geometric street scattering model,” in Proceedings of the 4th IEEE International Symposium on Wireless Communication Systems (ISWCS '07), pp. 792–797, Trondheim, Norway, October 2007. View at Publisher · View at Google Scholar · View at Scopus
  9. N. Avazov and M. Pätzold, “A geometric street scattering channel model for car-to-car communication systems,” in Proceedings of the International Conference on Advanced Technologies for Communications (ATC '11), pp. 224–230, Da Nang City, Vietnam, August 2011.
  10. A. S. Akki and F. Haber, “A statistical model of mobile-to-mobile land communication channel,” IEEE Transactions on Vehicular Technology, vol. VT-35, no. 1, pp. 2–7, 1986. View at Google Scholar · View at Scopus
  11. A. S. Akki, “Statistical properties of mobile-to-mobile land communication channels,” IEEE Transactions on Vehicular Technology, vol. 43, no. 4, pp. 826–831, 1994. View at Publisher · View at Google Scholar · View at Scopus
  12. R. Wang and D. Cox, “Channel modeling for ad hoc mobile wireless networks,” in Proceedings of the 55th IEEE Vehicular Technology Conference (VTC '02), vol. 1, pp. 21–25, Birmingham, AL, USA, May 2002.
  13. C. S. Patel, G. L. Stüber, and T. G. Pratt, “Simulation of Rayleigh-faded mobile-to-mobile communication channels,” IEEE Transactions on Communications, vol. 53, no. 11, pp. 1876–1884, 2005. View at Publisher · View at Google Scholar · View at Scopus
  14. A. G. Zajić and G. L. Stüber, “Space-time correlated mobile-to-mobile channels: modelling and simulation,” IEEE Transactions on Vehicular Technology, vol. 57, no. 2, pp. 715–726, 2008. View at Publisher · View at Google Scholar · View at Scopus
  15. X. Cheng, C. X. Wang, D. I. Laurenson, H. H. Ghent, and A. V. Vasilakos, “A generic geometrical-based MIMO mobile-to-mobile channel model,” in Proceedings of the International Wireless Communications and Mobile Computing Conference (IWCMC '08), pp. 1000–1005, August 2008. View at Publisher · View at Google Scholar · View at Scopus
  16. “IEEE 802.11p, Part 11: wireless LAN medium access control (MAC) and physical layer (PHY) specifications amendment 6: wireless access in vehicular environments, IEEE standards association,” June 2010.
  17. “Standard specification for telecommunications and information exchange between roadside and vehicle systems—5 GHz band dedicated short range communications (DSRC) medium access control (MAC) and physical layer (PHY) specifications,” ASTM E2213-03, September 2003.
  18. G. Acosta, K. Tokuda, and M. A. Ingram, “Measured joint Doppler-delay power profiles for vehicle-to-vehicle communications at 2.4 GHz,” in Proceedings of IEEE Global Telecommunications Conference (GLOBECOM '04), pp. 3813–3817, Dallas, Tex, USA, December 2004. View at Scopus
  19. P. C. F. Eggers, T. W. C. Brown, K. Olesen, and G. F. Pedersen, “Assessment of capacity support and scattering in experimental high speed vehicle-to-vehicle MIMO links,” in Proceedings of the IEEE 65th Vehicular Technology Conference (VTC ”07), pp. 466–470, April 2007. View at Publisher · View at Google Scholar · View at Scopus
  20. I. Sen and D. W. Matolak, “Vehicle-to-vehicle channel models for the 5-GHz band,” IEEE Transactions on Intelligent Transportation Systems, vol. 9, no. 2, pp. 235–245, 2008. View at Publisher · View at Google Scholar · View at Scopus
  21. Q. Wu, D. W. Matolak, and I. Sen, “5-GHz-band vehicle-to-vehicle channels: models for multiple values of channel bandwidth,” IEEE Transactions on Vehicular Technology, vol. 59, no. 5, pp. 2620–2625, 2010. View at Publisher · View at Google Scholar · View at Scopus
  22. J. Maurer, T. Fügen, and W. Wiesbeck, “Narrow-band measurement and analysis of the inter-vehicle transmission channel at 5.2 GHz,” in Proceedings of the 55th Vehicular Technology Conference (VTC '02), vol. 3, pp. 1274–1278, May 2002. View at Scopus
  23. L. Cheng, B. E. Henty, D. D. Stancil, F. Bai, and P. Mudalige, “Mobile vehicle-to-vehicle narrow-band channel measurement and characterization of the 5.9 GHz dedicated short range communication (DSRC) frequency band,” IEEE Journal on Selected Areas in Communications, vol. 25, no. 8, pp. 1501–1516, 2007. View at Publisher · View at Google Scholar · View at Scopus
  24. A. Paier, J. Karedal, N. Czink, H. Hofstetter, and C. Dumard, “Car-to-car radio channel measurements at 5 GHz: pathloss, power-delay profile, and delay-Doppler spectrum,” in Proceedings of the 4th IEEE International Symposium on Wireless Communication Systems (ISWCS '07), pp. 224–228, Trondheim, Norway, October 2007. View at Publisher · View at Google Scholar · View at Scopus
  25. I. Tan, W. Tang, K. Laberteaux, and A. Bahai, “Measurement and analysis of wireless channel impairments in DSRC vehicular communications,” in Proceedings of IEEE International Conference on Communications (ICC '08), pp. 4882–4888, May 2008. View at Publisher · View at Google Scholar · View at Scopus
  26. J. Kunisch and J. Pamp, “Wideband car-to-car radio channel measurements and model at 5.9 GHz,” in Proceedings of the 68th IEEE Vehicular Technology (VTC '08), pp. 1–5, September 2008. View at Publisher · View at Google Scholar · View at Scopus
  27. O. Renaudin, V. M. Kolmonen, P. Vainikainen, and C. Oestges, “Wideband measurement-based modeling of inter-vehicle channels in the 5 GHz band,” in Proceedings of the 5th European Conference on Antennas and Propagation (EUCAP '11), pp. 2881–2885, April 2011. View at Scopus
  28. A. Chelli and M. Pätzold, “A wideband multiple-cluster MIMO mobile-to-mobile channel model based on the geometrical street model,” in Proceedings of IEEE 19th International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC '08), pp. 1–6, Cannes, France, September 2008. View at Publisher · View at Google Scholar · View at Scopus
  29. A. G. Zajić, G. L. Stüber, T. G. Pratt, and S. T. Nguyen, “Wideband MIMO mobile-to-mobile channels: geometry-based statistical modeling with experimental verification,” IEEE Transactions on Vehicular Technology, vol. 58, no. 2, pp. 517–534, 2009. View at Publisher · View at Google Scholar · View at Scopus
  30. X. Cheng, C. X. Wang, D. I. Laurenson, S. Salous, and A. V. Vasilakos, “An adaptive geometry-based stochastic model for non-isotropic MIMO mobile-to-mobile channels,” IEEE Transactions on Wireless Communications, vol. 8, no. 9, pp. 4824–4835, 2009. View at Publisher · View at Google Scholar · View at Scopus
  31. G. D. Durgin, Space-Time Wireless Channels, Prentice Hall, 2002.
  32. S. H. Kong, “TOA and AOD statistics for down link Gaussian scatterer distribution model,” IEEE Transactions on Wireless Communications, vol. 8, no. 5, pp. 2609–2617, 2009. View at Publisher · View at Google Scholar · View at Scopus
  33. Y. Ma and M. Pätzold, “A wideband one-ring MIMO channel model under non-isotropic scattering conditions,” in Proceedings of IEEE 67th Vehicular Technology Conference (VTC '08), pp. 424–429, Singapore, May 2008. View at Publisher · View at Google Scholar · View at Scopus
  34. F. Vatalaro, “Doppler spectrum in mobile-to-mobile communications in the precense of three-dimensional multipath scattering,” IEEE Transactions on Vehicular Technology, vol. 46, no. 1, pp. 213–219, 1997. View at Google Scholar · View at Scopus
  35. M. Pätzold, Mobile Radio Channels, John Wiley & Sons, Chichester, UK, 2nd edition, 2011.
  36. A. Papoulis and S. U. Pillai, Probability, Random Variables and Stochastic Processes, McGraw-Hill, New York, NY, USA, 4th edition, 2002.
  37. M. Pätzold and B. Talha, “On the statistical properties of sum-of-cisoids-based mobile radio channel simulators,” in Proceedings of the 10th International Symposium on Wireless Personal Multimedia Communications (WPMC '07), pp. 394–400, Jaipur, India, December 2007.
  38. C. A. Gutiérrez and M. Pätzold, “The design of sum-of-cisoids Rayleigh fading channel simulators assuming non-isotropic scattering conditions,” IEEE Transactions on Wireless Communications, vol. 9, no. 4, pp. 1308–1314, 2010. View at Publisher · View at Google Scholar · View at Scopus