Table of Contents Author Guidelines Submit a Manuscript
Modelling and Simulation in Engineering
Volume 2012, Article ID 468029, 11 pages
http://dx.doi.org/10.1155/2012/468029
Research Article

Prediction of Ship Unsteady Maneuvering in Calm Water by a Fully Nonlinear Ship Motion Model

Hydromechanics Department, David Taylor Model Basin, NSWCCD, 9500 MacArthur Boulevard, West Bethesda, MD 20817-5700, USA

Received 25 August 2011; Accepted 5 December 2011

Academic Editor: Ahmed Rachid

Copyright © 2012 Ray-Qing Lin et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. R. Q. Lin, M. Hughes, and T. Smith, “Prediction of ship steering capabilities with a fully nonlinear ship motion model. Part 1: maneuvering in calm water,” Journal of Marine Science and Technology, vol. 15, no. 2, pp. 131–142, 2010. View at Publisher · View at Google Scholar · View at Scopus
  2. R.-Q. Lin and W. Kuang, “A fully nonlinear, dynamically consistent numerical model for ship maneuvering in a seaway,” Modeling and Simulation in Engineer, vol. 2011, Article ID 356741, 10 pages, 2011. View at Publisher · View at Google Scholar
  3. S. W. Chau, “Computation of rudder force and moment in uniform flow,” Ship Technology Research, vol. 45, no. 1, pp. 3–13, 1998. View at Google Scholar · View at Scopus
  4. O. M. El Moctar, “Numerical determination of rudder forces,” Euromech 374, Poities, 1998.
  5. J.-T. Lee, “A potential based panel method for the analysis of marine propellers in steady flow,” Tech. Rep. 87-13, Department of Ocean Engineering, MIT, 1988. View at Google Scholar
  6. M. Tamashima, S. Matsui, J. Yang, K. Mori, and R. Yamazaki, “The method for predicting the performance of propeller-rudder system with rudder angles and its application to rudder design,” Transaction of the West-Japan Society of Naval Architects, vol. 86, pp. 53–76, 1993. View at Google Scholar
  7. J. M. Han, D. S. Kong, I. H. Song, and C. S. Lee, “Analysis of the cavitating flow around the horn-type rudder in the race of propeller,” in Proceedings of the 4th International Symposium on Cavitation, pp. 20–23, California Institute of Technology, Pasadena, Calif, USA, June 2001.
  8. S. A. Kinnas, H. Lee, H. Gu, and S. Natarajan, “Prediction of sheet cavitation on a rudder subject to propeller flow,” Journal of Ship Research, vol. 51, no. 1, pp. 65–75, 2007. View at Google Scholar · View at Scopus
  9. J. P. Hacket, C. O. E. Burgh, and W. H. Brewer, “Manufacturing tolerance effects on ship rudder force/cavitation performance,” in Proceedings of the SNAME Marine Technology Conference and Expo and Ship Production Symposium, Houston, Tex, USA, October 2005.
  10. A. C. Hochbaum, F. Stern, K. Agdrup et al., “Final Report and Recommendations to 25th ITTC,” in Proceedings of the 25th International Towing Tank Conference (ITTC '08), vol. I, pp. 143–208, Fukuoka, Japan, September 2008.
  11. H. Söding, “Limits of potential theory in rudder flow predictions,” in Proceedings of the 22nd Symposium on Naval Hydrodynamics, Weinblum Lecture, pp. 622–637, Washington, DC, USA, 1999.
  12. M. Altosloe, M. Figari, and M. Viviani, “6DOF simulation of maneuvering and propulsive performance of waterjet propelled Mega Yacht,” Fast2009, Athens, Greece, 2009.
  13. R. Kimoto, T. Katayama, and Y. Ikeda, “Effects of running attitude on hydrodynamic forces for oblique towed planing craft,” in Proceedings of the 2nd Asia-Pacific Workshop on Hydrodynamics (APHydro '04), pp. 115–122, Busan, Korea, 2004.
  14. T. Katayama, R. Kimoto, and Y. Ikeda, “Effects of running attitudes on maneuvering hydrodynamic forces for planing hull,” in Proceedings of the International Conference on Fast Sea Transportation (FAST '05), Petersburg, Russia, 2005.
  15. T. Katayama, T. Taniguchi, H. Fujii, and Y. Ikeda, “Development of maneuvering simulation method for high speed craft using hydrodynamic forces obtained from model tests,” Fast2009, Athens, Greece, 2009.
  16. R. Q. Lin and W. Kuang, “Modeling nonlinear roll damping with a self-consistent, strongly nonlinear ship motion model,” Journal of Marine Science and Technology, vol. 13, no. 2, pp. 127–137, 2008. View at Publisher · View at Google Scholar · View at Scopus
  17. L. D. Landau and E. M. Lifshitz, Fluid Mechanics, Pergamon Press, Oxford, UK, 1987.
  18. R. Q. Lin, W. Kuang, and A. M. Reed, “Numerical modeling of nonlinear interactions between ships and surface gravity waves, part 1: Ship waves in calm water,” Journal of Ship Research, vol. 49, no. 1, pp. 1–11, 2005. View at Google Scholar · View at Scopus
  19. R.-Q. Lin and W. Kuang, “A fully nonlinear, dynamically consistent numerical model for solid-body ship motion. I. Ship motion with fixed heading,” Proceeding of Royal Society A, vol. 467, no. 2128, pp. 911–927, 2011. View at Google Scholar
  20. R.-Q. Lin and W. Kuang, “Numerical modeling of nonlinear interactions between ships and surface gravity waves II: ship boundary condition,” Journal of Ship Research, vol. 50, no. 2, pp. 181–186, 2006. View at Google Scholar