Table of Contents Author Guidelines Submit a Manuscript
Modelling and Simulation in Engineering
Volume 2012 (2012), Article ID 687961, 10 pages
http://dx.doi.org/10.1155/2012/687961
Research Article

Numerical Simulations of the Impact and Spreading of a Particulate Drop on a Solid Substrate

1School of Mechanical Engineering, Research Center for Aircraft Parts Technology (ReCAPT), Gyeongsang National University, Gajwa-dong 900, Jinju 660-701, Republic of Korea
2Department of Chemical and Biological Engineering and Applied Rheology Center, Korea University, Seoul 136-713, Republic of Korea

Received 27 April 2012; Revised 27 September 2012; Accepted 27 September 2012

Academic Editor: Jing-song Hong

Copyright © 2012 Hyun Jun Jeong et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. H. J. Jeong, W. R. Hwang, C. Kim, and S. J. Kim, “Numerical simulations of capillary spreading of a particle-laden droplet on a solid surface,” Journal of Materials Processing Technology, vol. 210, no. 2, pp. 297–305, 2010. View at Publisher · View at Google Scholar · View at Scopus
  2. J. Fukai, Z. Zhao, D. Poulikakos, C. M. Megaridis, and O. Miyatake, “Modeling of the deformation of a liquid droplet impinging upon a flat surface,” Physics of Fluids A, vol. 5, no. 11, pp. 2588–2599, 1992. View at Google Scholar · View at Scopus
  3. J. Fukai, Y. Shiiba, T. Yamamoto et al., “Wetting effects on the spreading of a liquid droplet colliding with a flat surface: experiment and modeling,” Physics of Fluids, vol. 7, no. 2, pp. 236–247, 1995. View at Google Scholar · View at Scopus
  4. S. Šikalo, M. Marengo, C. Tropea, and E. N. Ganić, “Analysis of impact of droplets on horizontal surfaces,” Experimental Thermal and Fluid Science, vol. 25, no. 7, pp. 503–510, 2002. View at Publisher · View at Google Scholar · View at Scopus
  5. H. Park, W. W. Carr, J. Zhu, and J. F. Morris, “Single drop impaction on a solid surface,” AIChE Journal, vol. 49, no. 10, pp. 2461–2471, 2003. View at Publisher · View at Google Scholar · View at Scopus
  6. M. Pasandideh-Fard, S. Chandra, and J. Mostaghimi, “A three-dimensional model of droplet impact and solidification,” International Journal of Heat and Mass Transfer, vol. 45, no. 11, pp. 2229–2242, 2002. View at Publisher · View at Google Scholar · View at Scopus
  7. P. R. Gunjal, V. V. Ranade, and R. V. Chaudhari, “Dynamics of drop impact on solid surface: Experiments and VOF simulations,” AIChE Journal, vol. 51, no. 1, pp. 59–78, 2005. View at Publisher · View at Google Scholar · View at Scopus
  8. V. Khatavkar, Capillary and low inertia spreading of a microdroplet on a solid surface [Ph.D. thesis], Eindhoven University of Technology, 2005.
  9. V. V. Khatavkar, P. D. Anderson, and H. E. H. Meijer, “Capillary spreading of a droplet in the partially wetting regime using a diffuse-interface model,” Journal of Fluid Mechanics, vol. 572, pp. 367–387, 2007. View at Publisher · View at Google Scholar · View at Scopus
  10. W. Lee and G. Son, “Numerical study of droplet impact and coalescence in a microline patterning process,” Computers and Fluids, vol. 42, no. 1, pp. 26–36, 2011. View at Publisher · View at Google Scholar · View at Scopus
  11. R. J. Furbank and J. F. Morris, “An experimental study of particle effects on drop formation,” Physics of Fluids, vol. 16, no. 5, pp. 1777–1790, 2004. View at Publisher · View at Google Scholar · View at Scopus
  12. M. Nicolas, “Spreading of a drop of neutrally buoyant suspension,” Journal of Fluid Mechanics, vol. 545, pp. 271–280, 2005. View at Publisher · View at Google Scholar · View at Scopus
  13. W. R. Hwang, M. A. Hulsen, and H. E. H. Meijer, “Direct simulation of particle suspensions in sliding bi-periodic frames,” Journal of Computational Physics, vol. 194, no. 2, pp. 742–772, 2004. View at Publisher · View at Google Scholar · View at Scopus
  14. R. Glowinski, T.-W. Pan, T. I. Hesla, and D. D. Joseph, “A distributed Lagrange multiplier/fictitious domain method for particulate flows,” International Journal of Multiphase Flow, vol. 25, no. 5, pp. 755–794, 1999. View at Publisher · View at Google Scholar · View at Scopus
  15. J. U. Brackbill, D. B. Kothe, and C. Zemach, “A continuum method for modeling surface tension,” Journal of Computational Physics, vol. 100, no. 2, pp. 335–354, 1992. View at Publisher · View at Google Scholar · View at Scopus
  16. G. A. A. V. Haagh and F. N. Van De Vosse, “Simulation of three-dimensional polymer mould filling processes using a pseudo-concentration method,” International Journal for Numerical Methods in Fluids, vol. 28, no. 9, pp. 1355–1369, 1998. View at Publisher · View at Google Scholar · View at Scopus
  17. S. J. Kim and W. R. Hwang, “Direct numerical simulations of droplet emulsions in sliding bi-periodic frames using the level-set method,” Journal of Computational Physics, vol. 225, no. 1, pp. 615–634, 2007. View at Publisher · View at Google Scholar · View at Scopus
  18. B. Lafaurie, C. Nardone, R. Scardovelli, S. Zaleski, and G. Zanetti, “Modelling merging and fragmentation in multiphase flows with SURFER,” Journal of Computational Physics, vol. 113, no. 1, pp. 134–147, 1994. View at Publisher · View at Google Scholar · View at Scopus
  19. M. Bellet, “Implementation of surface tension with wall adhesion effects in a three-dimensional finite element model for fluid flow,” Communications in Numerical Methods in Engineering, vol. 17, no. 8, pp. 563–579, 2001. View at Publisher · View at Google Scholar · View at Scopus
  20. J. Kim and P. Moin, “Application of a fractional-step method to incompressible Navier-Stokes equations,” Journal of Computational Physics, vol. 59, no. 2, pp. 308–323, 1985. View at Google Scholar · View at Scopus
  21. C. W. Shu and S. Osher, “Efficient implementation of essentially non-oscillatory shock-capturing schemes,” Journal of Computational Physics, vol. 77, no. 2, pp. 439–471, 1988. View at Google Scholar · View at Scopus