Table of Contents Author Guidelines Submit a Manuscript
Multiple Sclerosis International
Volume 2011, Article ID 214763, 5 pages
http://dx.doi.org/10.1155/2011/214763
Review Article

Varicella Zoster Virus and Relapsing Remitting Multiple Sclerosis

1Neuroimmunology Unit, National Institute of Neurology and Neurosurgery of Mexico, Insurgentes Sur 3877, Mexico City 14269, Mexico
2Clinical Laboratory of Neurodegenerative Diseases, National Institute of Neurology and Neurosurgery of Mexico, Insurgentes Sur 3877, Mexico City 14269, Mexico

Received 1 October 2010; Revised 4 January 2011; Accepted 2 February 2011

Academic Editor: W. Bruck

Copyright © 2011 Julio Sotelo and Teresa Corona. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. Simmons, “Herpesvirus and multiple sclerosis,” Herpes, vol. 8, no. 3, pp. 60–63, 2001. View at Google Scholar · View at Scopus
  2. D. H. Gilden, “Infectious causes of multiple sclerosis,” Lancet Neurology, vol. 4, no. 3, pp. 195–202, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  3. R. T. Ross, “The varicella-zoster virus and multiple sclerosis,” Journal of Clinical Epidemiology, vol. 51, no. 7, pp. 533–535, 1998. View at Publisher · View at Google Scholar · View at Scopus
  4. J. A. Lenman and T. J. Peters, “Herpes zoster and multiple sclerosis,” British Medical Journal, vol. 2, no. 651, pp. 218–220, 1969. View at Google Scholar · View at Scopus
  5. S. Sriram and I. Steiner, “Experimental allergic encephalomyelitis: a misleading model of multiple sclerosis,” Annals of Neurology, vol. 58, no. 6, pp. 939–945, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  6. L. Steinman and S. S. Zamvil, “How to successfully apply animal studies in experimental allergic encephalomyelitis to research on multiple sclerosis,” Annals of Neurology, vol. 60, no. 1, pp. 12–21, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  7. R. A. Rudick and B. D. Trapp, “Gray-matter injury in multiple sclerosis,” New England Journal of Medicine, vol. 361, no. 15, pp. 1505–1506, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  8. E. M. Frohman, M. K. Racke, and C. S. Raine, “Medical progress: multiple sclerosis—the plaque and its pathogenesis,” New England Journal of Medicine, vol. 354, no. 9, pp. 942–955, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  9. P. Giraudon and A. Bernard, “Chronic viral infections of the central nervous systemml: aspects specific to multiple sclerosis,” Revue Neurologique, vol. 165, no. 10, pp. 789–795, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  10. A. G. Dalgleish, “Viruses and multiple sclerosis,” Acta Neurologica Scandinavica, vol. 95, no. 169, supplement, pp. 8–15, 1997. View at Google Scholar · View at Scopus
  11. R. Álvarez-Lafuente, M. Garcia-Montojo, V. De Las Heras et al., “Herpesviruses and human endogenous retroviral sequences in the cerebrospinal fluid of multiple sclerosis patients,” Multiple Sclerosis, vol. 14, no. 5, pp. 595–601, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  12. H. L. Lipton, Z. Liang, S. Hertzler, and K. N. Son, “A specific viral cause of multiple sclerosis: one virus, one disease,” Annals of Neurology, vol. 61, no. 6, pp. 514–523, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  13. R. Milo and E. Kahana, “Multiple sclerosis: geoepidemiology, genetics and the environment,” Autoimmunity Reviews, vol. 9, no. 5, pp. A387–A394, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  14. C. Jobin, C. Larochelle, H. Parpal, P. K. Coyle, and P. Duquette, “Gender issues in multiple sclerosis: an update,” Women's Health, vol. 6, no. 6, pp. 797–820, 2010. View at Publisher · View at Google Scholar · View at PubMed
  15. S. E. Baranzini, J. Mudge, J. C. Van Velkinburgh et al., “Genome, epigenome and RNA sequences of monozygotic twins discordant for multiple sclerosis,” Nature, vol. 464, no. 7293, pp. 1351–1356, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  16. S. Sawcer, M. Ban, J. Wason, and F. Dudbridge, “What role for genetics in the prediction of multiple sclerosis?” Annals of Neurology, vol. 67, no. 1, pp. 3–10, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  17. M. Habek, V. V. Brinar, and F. Borovečki, “Genes associated with multiple sclerosis: 15 and counting,” Expert Review of Molecular Diagnostics, vol. 10, pp. 857–861, 2010. View at Google Scholar
  18. L. Collier and J. Oxford, “The alphaherpesviruses: herpes simplex and varicella-zoster,” in Human Virology, pp. 141–148, Oxford University Press, New York, NY, USA, 3rd edition, 2006. View at Google Scholar
  19. C. Ahlgren, K. Torén, A. Odén, and O. Andersen, “A population-based case-control study on viral infections and vaccinations and subsequent multiple sclerosis risk,” European Journal of Epidemiology, vol. 24, no. 9, pp. 541–552, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  20. Y. Mikaeloff, G. Caridade, S. Suissa, and M. Tardieu, “Clinically observed chickenpox and the risk of childhood-onset multiple sclerosis,” American Journal of Epidemiology, vol. 169, no. 10, pp. 1260–1266, 2009. View at Publisher · View at Google Scholar · View at PubMed
  21. R. T. Ross, M. Cheang, G. Landry, L. Klassen, and K. Doerksen, “Herpes zoster and multiple sclerosis,” Canadian Journal of Neurological Sciences, vol. 26, no. 1, pp. 29–32, 1999. View at Google Scholar · View at Scopus
  22. R. A. Marrie and C. Wolfson, “Multiple sclerosis and varicella zoster virus infection: a review,” Epidemiology and Infection, vol. 127, no. 2, pp. 315–325, 2001. View at Google Scholar · View at Scopus
  23. O. Gonzalez and J. Sotelo, “Is the frequency of multiple sclerosis increasing in Mexico?” Journal of Neurology Neurosurgery and Psychiatry, vol. 59, no. 5, pp. 528–530, 1995. View at Google Scholar · View at Scopus
  24. T. Corona and G. C. Román, “Multiple sclerosis in Latin America,” Neuroepidemiology, vol. 26, no. 1, pp. 1–3, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  25. R. Tarrats, G. Ordoñez, C. Rios, and J. Sotelo, “Varicella, ephemeral breastfeeding and eczema as risk factors for multiple sclerosis in Mexicans,” Acta Neurologica Scandinavica, vol. 105, no. 2, pp. 88–94, 2002. View at Publisher · View at Google Scholar · View at Scopus
  26. M. Rodriguez-Violante, G. Ordoñez, J. R. Bermudez, J. Sotelo, and T. Corona, “Association of a history of varicella virus infection with multiple sclerosis,” Clinical Neurology and Neurosurgery, vol. 111, no. 1, pp. 54–56, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  27. J. Cordova, S. Vargas, and J. Sotelo, “Western and Asian features of multiple sclerosis in Mexican Mestizos,” Clinical Neurology and Neurosurgery, vol. 109, no. 2, pp. 146–151, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  28. S. Hambleton, “Chickenpox,” Current Opinion in Infectious Diseases, vol. 18, no. 3, pp. 235–240, 2005. View at Google Scholar · View at Scopus
  29. A. Rodriguez-Castillo, G. Vaughan, J. E. Ramirez-González, E. González-Durán, J. C. Gudiño-Rosales, and A. Escobar-Gutiérrez, “Genetic variation of varicella-zoster virus strains circulating in Mexico City,” Journal of Clinical Virology, vol. 46, no. 4, pp. 349–353, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  30. R. T. Ross and M. Cheang, “Geographic similarities between varicella and multiple sclerosis: an hypothesis on the environmental factor of multiple sclerosis,” Journal of Clinical Epidemiology, vol. 48, no. 6, pp. 731–737, 1995. View at Publisher · View at Google Scholar · View at Scopus
  31. C. Perez-Cesari, M. M. Saniger, and J. Sotelo, “Frequent association of multiple sclerosis with varicella and zoster,” Acta Neurologica Scandinavica, vol. 112, no. 6, pp. 417–419, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  32. G. Ordoñez, B. Pineda, R. Garcia-Navarrete, and J. Sotelo, “Brief presence of varicella-zoster viral DNA in mononuclear cells during relapses of multiple sclerosis,” Archives of Neurology, vol. 61, no. 4, pp. 529–532, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  33. J. Sotelo, G. Ordoñez, and B. Pineda, “Varicella-zoster virus at relapses of multiple sclerosis,” Journal of Neurology, vol. 254, no. 4, pp. 493–500, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  34. C. Mainka, B. Fuß, H. Geiger, H. Höfelmayr, and M. H. Wolff, “Characterization of viremia at different stages of Varicella-zoster virus infection,” Journal of Medical Virology, vol. 56, no. 1, pp. 91–98, 1998. View at Publisher · View at Google Scholar · View at Scopus
  35. S. Rdriguez Carnero, C. Martinez-Vśquez, C. Potel Alvarellos et al., “Lack of human herpesvirus type 6 DNA in CSF by nested PCR among patients with multiple sclerosisAusencia de ADN de herpesvirus humano 6 en LCR, mediante técnica de PCR anidada, en pacientes con eesclerosis múltiple,” Revista Clinica Espanola, vol. 202, no. 11, pp. 588–591, 2002. View at Google Scholar · View at Scopus
  36. J. Sotelo, “On the viral hypothesis of multiple sclerosis: participation of varicella-zoster virus,” Journal of the Neurological Sciences, vol. 262, no. 1-2, pp. 113–116, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  37. K. Kakalacheva, C. Münz, and J. D. Lünemann, “Viral triggers of multiple sclerosis,” Biochimica et Biophysica Acta, vol. 1812, no. 2, pp. 132–140, 2011. View at Publisher · View at Google Scholar · View at PubMed
  38. J. Sotelo, A. Martinez-Palomo, G. Ordoñez, and B. Pineda, “Varicella-zoster virus in cerebrospinal fluid at relapses of multiple sclerosis,” Annals of Neurology, vol. 63, no. 3, pp. 303–311, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  39. B. Pineda, M. D. M. Saniger, M. E. Chánez-Cárdenas et al., “Solid-phase assay for the detection of varicella zoster virus,” Future Virology, vol. 4, no. 6, pp. 543–551, 2009. View at Publisher · View at Google Scholar · View at Scopus
  40. J. Sotelo, “Multiple viral pathogenicity: another paradigm in medical research?” Perspectives in Biology and Medicine, vol. 39, no. 4, pp. 507–513, 1996. View at Google Scholar · View at Scopus
  41. J. S. Shapiro, “Does varicella-zoster virus infection of the peripheral ganglia cause Chronic Fatigue Syndrome?” Medical Hypotheses, vol. 73, no. 5, pp. 728–734, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  42. S. V. Ramagopalan, A. D. Sadovnick, G. C. Ebers, and G. Giovannoni, “Effects of infectious mononucleosis and HLA-DRB115 in multiple sclerosis,” Multiple Sclerosis, vol. 16, no. 1, pp. 127–128, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  43. C. Martin, M. Enbom, M. Söderström et al., “Absence of seven human herpesviruses, including HHV-6, by polymerase chain reaction in CSF and blood from patients with multiple sclerosis and optic neuritis,” Acta Neurologica Scandinavica, vol. 95, no. 5, pp. 280–283, 1997. View at Google Scholar · View at Scopus
  44. R. Mancuso, S. Delbue, E. Borghi et al., “Increased prevalence of varicella zoster virus DNA in cerebrospinal fluid from patients with multiple sclerosis,” Journal of Medical Virology, vol. 79, no. 2, pp. 192–199, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  45. A. Persson, T. Bergström, M. Lindh, L. Namvar, and M. Studahl, “Varicella-zoster virus CNS disease—viral load, clinical manifestations and sequels,” Journal of Clinical Virology, vol. 46, no. 3, pp. 249–253, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  46. M. P. Burgoon, R. J. Cohrs, J. L. Bennett et al., “Varicella zoster virus is not a disease-relevant antigen in multiple sclerosis,” Annals of Neurology, vol. 65, no. 4, pp. 474–479, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  47. G. Ordoñez, A. Martinez-Palomo, T. Corona et al., “Varicella zoster virus in progressive forms of multiple sclerosis,” Clinical Neurology and Neurosurgery, vol. 112, pp. 653–657, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  48. A. E. Handel, A. J. Williamson, G. Disanto, L. Handunnetthi, G. Giovannoni, and S. V. Ramagopalan, “An updated meta-analysis of risk of multiple sclerosis following infectious mononucleosis,” PLoS ONE, vol. 5, no. 9, article e12496, pp. 1–5, 2010. View at Publisher · View at Google Scholar · View at PubMed
  49. A. Ascherio and K. L. Munger, “Epstein-barr virus infection and multiple sclerosis: a review,” Journal of Neuroimmune Pharmacology, vol. 5, pp. 271–277, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  50. E. Jaquiéry, S. Jilek, M. Schluep et al., “Intrathecal immune responses to EBV in early MS,” European Journal of Immunology, vol. 40, no. 3, pp. 878–887, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  51. M. Comabella, X. Montalban, A. Horga et al., “Antiviral immune response in patients with multiple sclerosis and healthy siblings,” Multiple Sclerosis, vol. 16, no. 3, pp. 355–358, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  52. L. I. Levin, K. L. Munger, E. J. O'Reilly, K. I. Falk, and A. Ascherio, “Primary infection with the Epstein-Barr virus and risk of multiple sclerosis,” Annals of Neurology, vol. 67, no. 6, pp. 824–830, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  53. K. C. Simon, X. Yang, K. L. Munger, and A. Ascherio, “EBNA1 and LMP1 variants in multiple sclerosiscases and controls,” Acta Neurologica Scandinavica. In press.
  54. R. M. Brennan, J. M. Burrows, M. J. Bell et al., “Strains of Epstein-Barr virus infecting multiple sclerosis patients,” Multiple Sclerosis, vol. 16, no. 6, pp. 643–651, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  55. M. Castellazzi, C. Tamborino, A. Cani et al., “Epstein-Barr virus-specific antibody response in cerebrospinal fluid and serum of patients with multiple sclerosis,” Multiple Sclerosis, vol. 16, no. 7, pp. 883–887, 2010. View at Publisher · View at Google Scholar · View at PubMed
  56. D. Pohl, K. Rostasy, C. Jacobi et al., “Intrathecal antibody production against Epstein-Barr and other neurotropic viruses in pediatric and adult onset multiple sclerosis,” Journal of Neurology, vol. 257, no. 2, pp. 212–216, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  57. S. A. Sargsyan, A. J. Shearer, A. M. Ritchie et al., “Absence of Epstein-Barr virus in the brain and CSF of patients with multiple sclerosis,” Neurology, vol. 74, no. 14, pp. 1127–1135, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  58. S. V. Ramagopalan, W. Valdar, D. A. Dyment et al., “Association of infectious mononucleosis with multiple sclerosis,” Neuroepidemiology, vol. 32, no. 4, pp. 257–262, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus