Table of Contents Author Guidelines Submit a Manuscript
Multiple Sclerosis International
Volume 2012, Article ID 240274, 15 pages
http://dx.doi.org/10.1155/2012/240274
Review Article

Treadmill Training in Multiple Sclerosis: Can Body Weight Support or Robot Assistance Provide Added Value? A Systematic Review

1Vakgroep KINE, Faculty of Physical Education and Physiotherapy, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium
2Research Group Advanced Rehabilitation Technology and Science (ARTS), Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium

Received 21 February 2012; Accepted 27 March 2012

Academic Editor: H. P. Hartung

Copyright © 2012 Eva Swinnen et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. H. Carr and R. B. Shepherd, Neurological Rehabilitation, Optimizing Motor Performance, Butterworth Heinemann, 1998.
  2. R. L. Zuvich, J. L. McCauley, M. A. Pericak-Vance, and J. L. Haines, “Genetics and pathogenesis of multiple sclerosis,” Seminars in Immunology, vol. 21, no. 6, pp. 328–333, 2009. View at Publisher · View at Google Scholar · View at Scopus
  3. M. B. Rietberg, D. Brooks, B. M. Uitdehaag, and G. Kwakkel, “Exercise therapy for multiple sclerosis,” Cochrane Database of Systematic Reviews, no. 1, Article ID CD003980, 2005. View at Google Scholar · View at Scopus
  4. P. Thoumie, D. Lamotte, S. Cantalloube, M. Faucher, and G. Amarenco, “Motor determinants of gait in 100 ambulatory patients with multiple sclerosis,” Multiple Sclerosis, vol. 11, no. 4, pp. 485–491, 2005. View at Publisher · View at Google Scholar · View at Scopus
  5. M. G. Benedetti, V. Gasparroni, S. Stecchi, R. Zilioli, S. Straudi, and R. Piperno, “Treadmill exercise in early mutiple sclerosis: a case series study,” European Journal of Physical and Rehabilitation Medicine, vol. 45, no. 1, pp. 53–59, 2009. View at Google Scholar · View at Scopus
  6. D. W. Langdon and A. J. Thompson, “Multiple sclerosis: a preliminary study of selected variables affecting rehabilitation outcome,” Multiple Sclerosis, vol. 5, no. 2, pp. 94–100, 1999. View at Google Scholar · View at Scopus
  7. A. Compston and A. Coles, “Multiple sclerosis,” The Lancet, vol. 372, no. 9648, pp. 1502–1517, 2008. View at Publisher · View at Google Scholar · View at Scopus
  8. O. Stuve and J. Oksenberg, Multiple Sclerosis Overview, 1993.
  9. R. J. Swingler and D. Compston, “The morbidity of multiple sclerosis,” Quarterly Journal of Medicine, vol. 83, no. 300, pp. 325–337, 1992. View at Google Scholar · View at Scopus
  10. S. E. Lord, D. T. Wade, and P. W. Halligan, “A comparison of two physiotherapy treatment approaches to improve walking in multiple sclerosis: a pilot randomized controlled study,” Clinical Rehabilitation, vol. 12, no. 6, pp. 477–486, 1998. View at Google Scholar · View at Scopus
  11. S. J. Crenshaw, T. D. Royer, J. G. Richards, and D. J. Hudson, “Gait variability in people with multiple sclerosis,” Multiple Sclerosis, vol. 12, no. 5, pp. 613–619, 2006. View at Publisher · View at Google Scholar · View at Scopus
  12. C. L. Martin, B. A. Phillips, T. J. Kilpatrick et al., “Gait and balance impairment in early multiple sclerosis in the absence of clinical disability,” Multiple Sclerosis, vol. 12, no. 5, pp. 620–628, 2006. View at Publisher · View at Google Scholar · View at Scopus
  13. D. Cattaneo, C. de Nuzzo, T. Fascia, M. Macalli, I. Pisoni, and R. Cardini, “Risks of falls in subjects with multiple sclerosis,” Archives of Physical Medicine and Rehabilitation, vol. 83, no. 6, pp. 864–867, 2002. View at Publisher · View at Google Scholar · View at Scopus
  14. C. M. Wiles, R. G. Newcombe, K. J. Fuller et al., “Controlled randomised crossover trial of the effects of physiotherapy on mobility in chronic multiple sclerosis,” Journal of Neurology Neurosurgery and Psychiatry, vol. 70, no. 2, pp. 174–179, 2001. View at Publisher · View at Google Scholar · View at Scopus
  15. C. M. Wiles, “Physiotherapy and related activities in multiple sclerosis,” Multiple Sclerosis, vol. 14, no. 7, pp. 863–871, 2008. View at Publisher · View at Google Scholar · View at Scopus
  16. Hocoma. Lokomat, 2011, http://www.hocoma.com/en/products/lokomat/.
  17. G. Colombo, M. Wirz, and V. Dietz, “Driven gait orthosis for improvement of locomotor training in paraplegic patients,” Spinal Cord, vol. 39, no. 5, pp. 252–255, 2001. View at Publisher · View at Google Scholar · View at Scopus
  18. S. Hesse and D. Uhlenbrock, “A mechanized gait trainer for restoration of gait,” Journal of Rehabilitation Research and Development, vol. 37, no. 6, pp. 701–708, 2000. View at Google Scholar · View at Scopus
  19. S. Hesse, “Treadmill training with partial body weight support after stroke: a review,” NeuroRehabilitation, vol. 23, no. 1, pp. 55–65, 2008. View at Google Scholar · View at Scopus
  20. P. Winchester and R. Querry, “Robotic orthoses for body weight-supported treadmill training,” Physical Medicine and Rehabilitation Clinics of North America, vol. 17, no. 1, pp. 159–172, 2006. View at Publisher · View at Google Scholar · View at Scopus
  21. A. M. Moseley, A. Stark, I. D. Cameron, and A. Pollock, “Treadmill training and body weight support for walking after stroke.,” Cochrane Database of Systematic Reviews, no. 4, Article ID CD002840, 2005. View at Google Scholar · View at Scopus
  22. J. Mehrholz, J. Kugler, and M. Pohl, “Locomotor training for walking after spinal cord injury,” Cochrane Database of Systematic Reviews, no. 2, Article ID CD006676, 2008. View at Google Scholar · View at Scopus
  23. H. J. A. van Hedel and V. Dietz, “Rehabilitation of locomotion after spinal cord injury,” Restorative Neurology and Neuroscience, vol. 28, no. 1, pp. 123–134, 2010. View at Publisher · View at Google Scholar · View at Scopus
  24. B. H. Dobkin, “Motor rehabilitation after stroke, traumatic brain, and spinal cord injury: common denominators within recent clinical trials,” Current Opinion in Neurology, vol. 22, no. 6, pp. 563–569, 2009. View at Publisher · View at Google Scholar · View at Scopus
  25. I. Miyai, Y. Fujimoto, H. Yamamoto et al., “Long-term effect of body weight-supported treadmill training in Parkinson's disease: a randomized controlled trial,” Archives of Physical Medicine and Rehabilitation, vol. 83, no. 10, pp. 1370–1373, 2002. View at Publisher · View at Google Scholar · View at Scopus
  26. J. Mehrholz, R. Friis, J. Kugler, S. Twork, A. Storch, and M. Pohl, “Treadmill training for patients with Parkinson's disease,” Cochrane Database of Systematic Reviews, no. 1, Article ID CD007830, 2010. View at Google Scholar · View at Scopus
  27. E. Swinnen, S. Duerinck, J. P. Baeyens, R. Meeusen, and E. Kerckhofs, “Effectiveness of robot-assisted gait training in persons with spinal cord injury: a systematic review,” Journal of Rehabilitation Medicine, vol. 42, no. 6, pp. 520–526, 2010. View at Publisher · View at Google Scholar · View at Scopus
  28. Gezondheidszorg. Kv. Literatuuronderzoek, http://www.cbo.nl/Downloads/661/hoofdstuk5.pdf.
  29. S. Beer, B. Aschbacher, D. Manoglou, E. Gamper, J. Kool, and J. Kesselring, “Robot-assisted gait training in multiple sclerosis: a pilot randomized trial,” Multiple Sclerosis, vol. 14, no. 2, pp. 231–236, 2008. View at Publisher · View at Google Scholar · View at Scopus
  30. C. Vaney, B. Gattlen, V. Lugon-Moulin et al., “Robotic-assisted step training (Lokomat) not superior to equal intensity of over-ground rehabilitation in patients with multiple sclerosis,” Neurorehabilitation and Neural Repair, vol. 26, no. 3, pp. 212–221, 2012. View at Publisher · View at Google Scholar
  31. I. Schwartz, A. Sajin, E. Moreh et al., “Robot-assisted gait training in multiple sclerosis patients: a randomized trial,” Multiple Sclerosis. In press. View at Publisher · View at Google Scholar
  32. A. C. Lo and E. W. Triche, “Improving gait in multiple sclerosis using robot-assisted, body weight supported treadmill training,” Neurorehabilitation and Neural Repair, vol. 22, no. 6, pp. 661–671, 2008. View at Publisher · View at Google Scholar · View at Scopus
  33. M. van den Berg, H. Dawes, D. T. Wade et al., “Treadmill training for individuals with multiple sclerosis: a pilot randomised trial,” Journal of Neurology, Neurosurgery and Psychiatry, vol. 77, no. 4, pp. 531–533, 2006. View at Publisher · View at Google Scholar · View at Scopus
  34. M. A. Newman, H. Dawes, M. van den Berg, D. T. Wade, J. Burridge, and H. Izadi, “Can aerobic treadmill training reduce the effort of walking and fatigue in people with multiple sclerosis: a pilot study,” Multiple Sclerosis, vol. 13, no. 1, pp. 113–119, 2007. View at Publisher · View at Google Scholar · View at Scopus
  35. L. A. Pilutti, D. A. Lelli, J. E. Paulseth et al., “Effects of 12 weeks of supported treadmill training on functional ability and quality of life in progressive multiple sclerosis: a pilot study,” Archives of Physical Medicine and Rehabilitation, vol. 92, no. 1, pp. 31–36, 2011. View at Publisher · View at Google Scholar · View at Scopus
  36. B. Giesser, J. Beres-Jones, A. Budovitch, E. Herlihy, and S. Harkema, “Locomotor training using body weight support on a treadmill improves mobility in persons with multiple sclerosis: a pilot study,” Multiple Sclerosis, vol. 13, no. 2, pp. 224–231, 2007. View at Publisher · View at Google Scholar · View at Scopus
  37. D. Axelrod and R. Hayward, “Non-randomized interventional study designs (quasi-experimental designs),” 2007.
  38. M. Law and J. MacDermid, Eds., vidence-Based Rehabilitation. Appendix M/N: Qualtity of an Intervention Study, SLACK Incorporated, 2008.
  39. S. S. Kuys, S. G. Brauer, and L. Ada, “Test-retest reliability of the GAITRite system in people with stroke undergoing rehabilitation,” Disability and Rehabilitation, vol. 33, no. 19-20, pp. 1848–1853, 2011. View at Publisher · View at Google Scholar
  40. J. Mehrholz, C. Werner, J. Kugler, and M. Pohl, “Electromechanical-assisted training for walking after stroke,” Cochrane Database of Systematic Reviews, no. 4, Article ID CD006185, 2007. View at Google Scholar · View at Scopus
  41. A. Kyvelidou, M. J. Kurz, J. L. Ehlers, and N. Stergiou, “Aging and partial body weight support affects gait variability,” Journal of NeuroEngineering and Rehabilitation, vol. 5, article 22, 2008. View at Publisher · View at Google Scholar · View at Scopus
  42. J. Hidler, W. Wisman, and N. Neckel, “Kinematic trajectories while walking within the Lokomat robotic gait-orthosis,” Clinical Biomechanics, vol. 23, no. 10, pp. 1251–1259, 2008. View at Publisher · View at Google Scholar · View at Scopus
  43. J. R. Watt, J. R. Franz, K. Jackson, J. Dicharry, P. O. Riley, and D. C. Kerrigan, “A three-dimensional kinematic and kinetic comparison of overground and treadmill walking in healthy elderly subjects,” Clinical Biomechanics, vol. 25, no. 5, pp. 444–449, 2010. View at Publisher · View at Google Scholar · View at Scopus
  44. P. O. Riley, G. Paolini, U. Della Croce, K. W. Paylo, and D. C. Kerrigan, “A kinematic and kinetic comparison of overground and treadmill walking in healthy subjects,” Gait and Posture, vol. 26, no. 1, pp. 17–24, 2007. View at Publisher · View at Google Scholar · View at Scopus
  45. L. Finch, H. Barbeau, and B. Arsenault, “Influence of body weight support on normal human gait: development of a gait retraining strategy,” Physical Therapy, vol. 71, no. 11, pp. 842–856, 1991. View at Google Scholar · View at Scopus
  46. A. J. Threlkeld, L. D. Cooper, B. P. Monger, A. N. Craven, and H. G. Haupt, “Temporospatial and kinematic gait alterations during treadmill walking with body weight suspension,” Gait and Posture, vol. 17, no. 3, pp. 235–245, 2003. View at Publisher · View at Google Scholar · View at Scopus
  47. Y. P. Ivanenko, R. Grasso, V. Macellari, and F. Lacquaniti, “Control of foot trajectory in human locomotion: role of ground contact forces in simulated reduced gravity,” Journal of Neurophysiology, vol. 87, no. 6, pp. 3070–3089, 2002. View at Google Scholar · View at Scopus
  48. H. J. A. van Hedel, L. Tomatis, and R. Muller, “Modulation of leg muscle activity and gait kinematics by walking speed and bodyweight unloading,” Gait and Posture, vol. 24, no. 1, pp. 35–45, 2006. View at Publisher · View at Google Scholar · View at Scopus
  49. S. Freivogel, D. Schmalohr, and J. Mehrholz, “Improved walking ability and reduced therapeutic stress with an electromechanical gait device,” Journal of Rehabilitation Medicine, vol. 41, no. 9, pp. 734–739, 2009. View at Publisher · View at Google Scholar · View at Scopus
  50. A. L. Hicks and K. A. Martin Ginis, “Treadmill training after spinal cord injury: it's not just about the walking,” Journal of Rehabilitation Research and Development, vol. 45, no. 2, pp. 241–248, 2008. View at Publisher · View at Google Scholar · View at Scopus
  51. T. W. Effing, N. L. U. van Meeteren, F. W. A. van Asbeck, and A. J. H. Prevo, “Body weight-supported treadmill training in chronic incomplete spinal cord injury: a pilot study evaluating functional health status and quality of life,” Spinal Cord, vol. 44, no. 5, pp. 287–296, 2006. View at Publisher · View at Google Scholar · View at Scopus
  52. R. F. Macko, F. M. Ivey, L. W. Forrester et al., “Treadmill exercise rehabilitation improves ambulatory function and cardiovascular fitness in patients with chronic stroke: a randomized, controlled trial,” Stroke, vol. 36, no. 10, pp. 2206–2211, 2005. View at Publisher · View at Google Scholar · View at Scopus
  53. R. F. Macko, G. V. Smith, C. L. Dobrovolny, J. D. Sorkin, A. P. Goldberg, and K. H. Silver, “Treadmill training improves fitness reserve in chronic stroke patients,” Archives of Physical Medicine and Rehabilitation, vol. 82, no. 7, pp. 879–884, 2001. View at Publisher · View at Google Scholar · View at Scopus