Table of Contents Author Guidelines Submit a Manuscript
Multiple Sclerosis International
Volume 2013, Article ID 838719, 9 pages
http://dx.doi.org/10.1155/2013/838719
Clinical Study

Quantitative MRI Demonstrates Abnormality of the Fornix and Cingulum in Multiple Sclerosis

1Department of Neurology, Johns Hopkins University, School of Medicine, Baltimore, MD 21287, USA
2Translational Neuroradiology Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, 10 Center Drive, MSC 14001, Building 10/5C103, Bethesda, MD 20892, USA

Received 15 July 2012; Revised 18 December 2012; Accepted 1 January 2013

Academic Editor: Iris-Katharina Penner

Copyright © 2013 Stephanie B. Syc et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. S. M. Rao, G. J. Leo, L. Bernardin, and F. Unverzagt, “Cognitive dysfunction in multiple sclerosis. I. Frequency, patterns, and prediction,” Neurology, vol. 41, no. 5, pp. 685–691, 1991. View at Google Scholar · View at Scopus
  2. L. Pelosi, J. M. Geesken, M. Holly, M. Hayward, and L. D. Blumhardt, “Working memory impairment in early multiple sclerosis. Evidence from an event-related potential study of patients with clinically isolated myelopathy,” Brain, vol. 120, no. 11, pp. 2039–2058, 1997. View at Publisher · View at Google Scholar · View at Scopus
  3. M. P. Amato, M. L. Bartolozzi, V. Zipoli et al., “Neocortical volume decrease in relapsing-remitting MS patients with mild cognitive impairment,” Neurology, vol. 63, no. 1, pp. 89–93, 2004. View at Google Scholar · View at Scopus
  4. J. A. Bobholz and S. M. Rao, “Cognitive dysfunction in multiple sclerosis: a review of recent developments,” Current Opinion in Neurology, vol. 16, no. 3, pp. 283–288, 2003. View at Publisher · View at Google Scholar · View at Scopus
  5. N. D. Chiaravalloti and J. DeLuca, “Cognitive impairment in multiple sclerosis,” The Lancet Neurology, vol. 7, no. 12, pp. 1139–1151, 2008. View at Publisher · View at Google Scholar · View at Scopus
  6. S. M. Rao, G. J. Leo, L. Ellington, T. Nauertz, L. Bernardin, and F. Unverzagt, “Cognitive dysfunction in multiple sclerosis. II. Impact on employment and social functioning,” Neurology, vol. 41, no. 5, pp. 692–696, 1991. View at Google Scholar · View at Scopus
  7. R. A. Marrie, G. J. Chelune, D. M. Miller, and J. A. Cohen, “Subjective cognitive complaints relate to mild impairment of cognition in multiple sclerosis,” Multiple Sclerosis, vol. 11, no. 1, pp. 69–75, 2005. View at Publisher · View at Google Scholar · View at Scopus
  8. S. M. Rao, G. J. Leo, V. M. Haughton, P. St. Aubtin-Faubert P., and L. Bernardin, “Correlation of magnetic resonance imaging with neuropsychological testing in multiple sclerosis,” Neurology, vol. 39, no. 2 I, pp. 161–166, 1989. View at Google Scholar · View at Scopus
  9. R. H. B. Benedict, J. M. Bruce, M. G. Dwyer et al., “Neocortical atrophy, third ventricular width, and cognitive dysfunction in multiple sclerosis,” Archives of Neurology, vol. 63, no. 9, pp. 1301–1306, 2006. View at Publisher · View at Google Scholar · View at Scopus
  10. C. Christodoulou, L. B. Krupp, Z. Liang et al., “Cognitive performance and MR markers of cerebral injury in cognitively impaired MS patients,” Neurology, vol. 60, no. 11, pp. 1793–1798, 2003. View at Google Scholar · View at Scopus
  11. M. P. Amato, E. Portaccio, M. L. Stromillo et al., “Cognitive assessment and quantitative magnetic resonance metrics can help to identify benign multiple sclerosis,” Neurology, vol. 71, no. 9, pp. 632–638, 2008. View at Publisher · View at Google Scholar · View at Scopus
  12. M. Rovaris, M. Filippi, M. Falautano et al., “Relation between MR abnormalities and patterns of cognitive impairment in multiple sclerosis,” Neurology, vol. 50, no. 6, pp. 1601–1608, 1998. View at Google Scholar · View at Scopus
  13. A. Tekok-Kilic, R. H. B. Benedict, B. Weinstock-Guttman et al., “Independent contributions of cortical gray matter atrophy and ventricle enlargement for predicting neuropsychological impairment in multiple sclerosis,” NeuroImage, vol. 36, no. 4, pp. 1294–1300, 2007. View at Publisher · View at Google Scholar · View at Scopus
  14. N. Evangelou, D. Konz, M. M. Esiri, S. Smith, J. Palace, and P. M. Matthews, “Regional axonal loss in the corpus callosum correlates with cerebral white matter lesion volume and distribution in multiple sclerosis,” Brain, vol. 123, no. 9, pp. 1845–1849, 2000. View at Google Scholar · View at Scopus
  15. E. B. Larson, D. S. Burnison, and W. S. Brown, “Callosal function in multiple sclerosis: bimanual motor coordination,” Cortex, vol. 38, no. 2, pp. 201–214, 2002. View at Google Scholar · View at Scopus
  16. A. Ozturk et al., “MRI of the corpus callosum in multiple sclerosis: association with disability,” Multiple Sclerosis, vol. 16, pp. 166–177.
  17. J. Sastre-Garriga, G. T. Ingle, D. T. Chard et al., “Grey and white matter volume changes in early primary progressive multiple sclerosis: a longitudinal study,” Brain, vol. 128, no. 6, pp. 1454–1460, 2005. View at Publisher · View at Google Scholar · View at Scopus
  18. M. P. Sanfilipo, R. H. B. Benedict, B. Weinstock-Guttman, and R. Bakshi, “Gray and white matter brain atrophy and neuropsychological impairment in multiple sclerosis,” Neurology, vol. 66, no. 5, pp. 685–692, 2006. View at Publisher · View at Google Scholar · View at Scopus
  19. D. T. Chard, C. M. Griffin, G. J. M. Parker, R. Kapoor, A. J. Thompson, and D. H. Miller, “Brain atrophy in clinically early relapsing-remitting multiple sclerosis,” Brain, vol. 125, no. 2, pp. 327–337, 2002. View at Google Scholar · View at Scopus
  20. M. Quarantelli, A. Ciarmiello, V. B. Morra et al., “Brain tissue volume changes in relapsing-remitting multiple sclerosis: correlation with lesion load,” NeuroImage, vol. 18, no. 2, pp. 360–366, 2003. View at Publisher · View at Google Scholar · View at Scopus
  21. A. Cifelli, M. Arridge, P. Jezzard, M. M. Esiri, J. Palace, and P. M. Matthews, “Thalamic neurodegeneration in multiple sclerosis,” Annals of Neurology, vol. 52, no. 5, pp. 650–653, 2002. View at Publisher · View at Google Scholar · View at Scopus
  22. P. Valsasina, B. Benedetti, M. Rovaris, M. P. Sormani, G. Comi, and M. Filippi, “Evidence for progressive gray matter loss in patients with relapsing-remitting MS,” Neurology, vol. 65, no. 7, pp. 1126–1128, 2005. View at Publisher · View at Google Scholar · View at Scopus
  23. N. L. Sicotte, K. C. Kern, B. S. Giesser et al., “Regional hippocampal atrophy in multiple sclerosis,” Brain, vol. 131, no. 4, pp. 1134–1141, 2008. View at Publisher · View at Google Scholar · View at Scopus
  24. J. J. Geurts, L. Bö, S. D. Roosendaal et al., “Extensive hippocampal demyelination in multiple sclerosis,” Journal of Neuropathology & Experimental Neurology, vol. 66, pp. 819–827, 2007. View at Google Scholar
  25. D. Papadopoulos, S. Dukes, R. Patel, R. Nicholas, A. Vora, and R. Reynolds, “Substantial archaeocortical atrophy and neuronal loss in multiple sclerosis,” Brain Pathology, vol. 19, no. 2, pp. 238–253, 2009. View at Publisher · View at Google Scholar · View at Scopus
  26. S. D. Roosendaal, B. Moraal, H. Vrenken et al., “In vivo MR imaging of hippocampal lesions in multiple sclerosis,” Journal of Magnetic Resonance Imaging, vol. 27, no. 4, pp. 726–731, 2008. View at Publisher · View at Google Scholar · View at Scopus
  27. S. S. Moudgil, M. Azzouz, A. Al-Azzaz, M. Haut, and L. Gutmann, “Amnesia due to fornix infarction,” Stroke, vol. 31, no. 6, pp. 1418–1419, 2000. View at Google Scholar · View at Scopus
  28. J. P. Aggleton, D. McMackin, K. Carpenter et al., “Differential cognitive effects of colloid cysts in the third ventricle that spare or compromise the fornix,” Brain, vol. 123, no. 4, pp. 800–815, 2000. View at Google Scholar · View at Scopus
  29. E. C. Warburton, J. P. Aggleton, and J. L. Muir, “Comparing the effects of selective cingulate cortex lesions and cingulum bundle lesions on water maze performance by rats,” European Journal of Neuroscience, vol. 10, no. 2, pp. 622–634, 1998. View at Publisher · View at Google Scholar · View at Scopus
  30. N. Hirono, E. Mori, K. Ishii et al., “Hypofunction in the posterior cingulate gyrus correlates with disorientation for time and place in Alzheimer's disease,” Journal of Neurology Neurosurgery and Psychiatry, vol. 64, no. 4, pp. 552–554, 1998. View at Google Scholar · View at Scopus
  31. D. M. Small, D. R. Gitelman, M. D. Gregory, A. C. Nobre, T. B. Parrish, and M. M. Mesulam, “The posterior cingulate and medial prefrontal cortex mediate the anticipatory allocation of spatial attention,” NeuroImage, vol. 18, no. 3, pp. 633–641, 2003. View at Publisher · View at Google Scholar · View at Scopus
  32. D. K. Shukla, B. Keehn, and R. A. Müller, “Tract-specific analyses of diffusion tensor imaging show widespread white matter compromise in autism spectrum disorder,” Journal of Child Psychology and Psychiatry and Allied Disciplines, vol. 52, no. 3, pp. 286–295, 2011. View at Publisher · View at Google Scholar · View at Scopus
  33. M. Filippi, M. Cercignani, M. Inglese, M. A. Horsfield, and G. Comi, “Diffusion tensor magnetic resonance imaging in multiple sclerosis,” Neurology, vol. 56, no. 3, pp. 304–311, 2001. View at Google Scholar · View at Scopus
  34. K. M. Zackowski, S. A. Smith, D. S. Reich et al., “Sensorimotor dysfunction in multiple sclerosis and column-specific magnetization transfer-imaging abnormalities in the spinal cord,” Brain, vol. 132, no. 5, pp. 1200–1209, 2009. View at Publisher · View at Google Scholar · View at Scopus
  35. O. Ciccarelli, D. J. Werring, C. A. M. Wheeler-Kingshott et al., “Investigation of MS normal-appearing brain using diffusion tensor MRI with clinical correlations,” Neurology, vol. 56, no. 7, pp. 926–933, 2001. View at Google Scholar · View at Scopus
  36. H. Jiang, P. C. M. Van Zijl, J. Kim, G. D. Pearlson, and S. Mori, “DtiStudio: resource program for diffusion tensor computation and fiber bundle tracking,” Computer Methods and Programs in Biomedicine, vol. 81, no. 2, pp. 106–116, 2006. View at Publisher · View at Google Scholar · View at Scopus
  37. D. S. Reich, A. Ozturk, P. A. Calabresi, and S. Mori, “Automated vs. conventional tractography in multiple sclerosis: variability and correlation with disability,” NeuroImage, vol. 49, no. 4, pp. 3047–3056, 2010. View at Publisher · View at Google Scholar · View at Scopus
  38. J. F. Kurtzke, “Rating neurologic impairment in multiple sclerosis: an expanded disability status scale (EDSS),” Neurology, vol. 33, no. 11, pp. 1444–1452, 1983. View at Google Scholar · View at Scopus
  39. M. P. Amato, V. Zipoli, and E. Portaccio, “Multiple sclerosis-related cognitive changes: a review of cross-sectional and longitudinal studies,” Journal of the Neurological Sciences, vol. 245, pp. 41–46, 2006. View at Google Scholar
  40. M. Calabrese, M. Filippi, and P. Gallo, “Cortical lesions in multiple sclerosis,” Nature Reviews Neurology, vol. 6, pp. 438–444, 2010. View at Google Scholar
  41. R. A. Dineen, J. Vilisaar, J. Hlinka et al., “Disconnection as a mechanism for cognitive dysfunction in multiple sclerosis,” Brain, vol. 132, no. 1, pp. 239–249, 2009. View at Publisher · View at Google Scholar · View at Scopus
  42. R. Dutta, A. Chang, M. K. Doud et al., “Demyelination causes synaptic alterations in hippocampi from multiple sclerosis patients,” Annals of Neurology, vol. 69, no. 3, pp. 445–454, 2011. View at Publisher · View at Google Scholar · View at Scopus
  43. P. Fedio and A. K. Ommaya, “Bilateral cingulum lesions and stimulation in man with lateralized impairment in short-term verbal memory,” Experimental Neurology, vol. 29, no. 1, pp. 84–91, 1970. View at Google Scholar · View at Scopus
  44. L. Angelini, A. Mazzucchi, and F. Picciotto, “Focal lesion of the right cingulum: a case report in a child,” Journal of Neurology Neurosurgery and Psychiatry, vol. 44, no. 4, pp. 355–357, 1981. View at Google Scholar · View at Scopus
  45. J. Zhang, M. Jones, C. A. Deboy et al., “Diffusion tensor magnetic resonance imaging of wallerian degeneration in rat spinal cord after dorsal root axotomy,” Journal of Neuroscience, vol. 29, no. 10, pp. 3160–3171, 2009. View at Publisher · View at Google Scholar · View at Scopus
  46. S. W. Sun, H. F. Liang, A. H. Cross, and S. K. Song, “Evolving Wallerian degeneration after transient retinal ischemia in mice characterized by diffusion tensor imaging,” NeuroImage, vol. 40, no. 1, pp. 1–10, 2008. View at Publisher · View at Google Scholar · View at Scopus
  47. R. T. Naismith, J. Xu, N. T. Tutlam et al., “Disability in optic neuritis correlates with diffusion tensor-derived directional diffusivities,” Neurology, vol. 72, no. 7, pp. 589–594, 2009. View at Publisher · View at Google Scholar · View at Scopus
  48. S. D. Roosendaal, J. J. G. Geurts, H. Vrenken et al., “Regional DTI differences in multiple sclerosis patients,” NeuroImage, vol. 44, no. 4, pp. 1397–1403, 2009. View at Publisher · View at Google Scholar · View at Scopus