Table of Contents Author Guidelines Submit a Manuscript
Multiple Sclerosis International
Volume 2013, Article ID 924029, 9 pages
http://dx.doi.org/10.1155/2013/924029
Research Article

Infodemiology and Infoveillance of Multiple Sclerosis in Italy

School of Public Health, Department of Health Sciences (DISSAL), University of Genoa, Via Antonio Pastore 1, 16132 Genoa, Italy

Received 10 February 2013; Revised 2 June 2013; Accepted 3 June 2013

Academic Editor: Francesco Patti

Copyright © 2013 Nicola Luigi Bragazzi. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. J. Tullman, “Overview of the epidemiology, diagnosis, and disease progression associated with multiple sclerosis,” American Journal of Managed Care, vol. 19, supplement 2, pp. S15–S20, 2013. View at Google Scholar
  2. I. Bordi, I. R. Umeton, V. A. Ricigliano et al., “A mechanistic, stochastic model helps understand multiple sclerosis course and pathogenesis,” International Journal of Genomics, vol. 2013, Article ID 910321, 10 pages, 2013. View at Publisher · View at Google Scholar
  3. N. L. Bragazzi, “The gap in the current research on the link between health locus of control and multiple sclerosis: lessons and insights from a systematic review,” Multiple Sclerosis International, vol. 2013, Article ID 972471, 8 pages, 2013. View at Publisher · View at Google Scholar
  4. G. Del Puente, A. Mahamid, and N. L. Bragazzi, “Health locus of control and multiple sclerosis: a systematic review,” Journal of Psychology and Psychotherapy, vol. S3, p. 001, 2012. View at Publisher · View at Google Scholar
  5. D. V. Ford, K. H. Jones, R. M. Middleton et al., “The feasibility of collecting information from people with Multiple Sclerosis for the UK MS Register via a web portal: characterising a cohort of people with MS,” BMC Medical Informatics and Decision Making, vol. 12, p. 73, 2012. View at Google Scholar
  6. G. Eysenbach, “Infodemiology and infoveillance: tracking online health information and cyberbehavior for public health,” American Journal of Preventive Medicine, vol. 40, no. 5, pp. S154–S158, 2011. View at Publisher · View at Google Scholar · View at Scopus
  7. G. Eysenbach, “Infodemiology and infoveillance: framework for an emerging set of public health informatics methods to analyze search, communication and publication behavior on the Internet,” Journal of Medical Internet Research, vol. 11, no. 1, p. e11, 2009. View at Publisher · View at Google Scholar · View at Scopus
  8. T. M. Burkow, L. K. Vognild, T. Krogstad et al., “An easy to use and affordable home-based personal eHealth system for chronic disease management based on free open source software,” in Studies in Health Technology and Informatics, vol. 136, pp. 83–88, IOS Press, 2008. View at Google Scholar
  9. D. Giustini, “How Web 2.0 is changing medicine,” British Medical Journal, vol. 333, no. 7582, pp. 1283–1284, 2006. View at Publisher · View at Google Scholar · View at Scopus
  10. B. K. Lee, “Epidemiologic research and Web 2.0-the user-driven Web,” Epidemiology, vol. 21, no. 6, pp. 760–763, 2010. View at Publisher · View at Google Scholar · View at Scopus
  11. N. L. Bragazzi, “From P0 to P6 Medicine, a model of highly participatory, narrative, interactive and “augmented” medicine: some considerations on Salvatore Iaconesi's clinical history,” Patient Preference and Adherence, no. 7, pp. 353–359, 2013. View at Google Scholar
  12. N. L. Bragazzi, “Children, adolescent and young adults participatory medicine: involving them in the health care process as a strategy for facing infertility issue,” American Journal of Bioethics, vol. 13, no. 3, 2013. View at Google Scholar
  13. N. L. Bragazzi and G. Del Puente, “Why P6 medicine needs clinical psychology and a trans-cultural approach,” Health Psychology Research, vol. 1, no. 1, p. e5, 2013. View at Google Scholar
  14. A. Burton, “YouTube-ing your way to neurological knowledge,” The Lancet Neurology, vol. 7, no. 12, pp. 1086–1087, 2008. View at Publisher · View at Google Scholar · View at Scopus
  15. D. Blanch, C. Sciamanna, H. Lawless, and J. Diaz, “Effect of the internet on the doctor-patient relationship: a review of the literature,” Journal on Information Technology in Healthcare, vol. 3, no. 3, pp. 179–201, 2005. View at Google Scholar · View at Scopus
  16. J. Y. Kim, T. M. Gudewicz, A. S. Dighe, and J. R. Gilbertson, “The pathology informatics curriculum wiki: harnessing the power of user-generated content,” Journal of Pathology Informatics, no. 1, p. 10, 2010. View at Google Scholar
  17. L. Bos, A. Marsh, D. Carroll, S. Gupta, and M. Rees, “Patient 2.0 empowerment,” in Proceedings of International Conference on Semantic Web and Web Services (SWWS '08), pp. 164–168, July 2008. View at Scopus
  18. R. Haase, T. Schultheiss, R. Kempcke, K. Thomas, and T. Ziemssen, “Use and acceptance of electronic communication by patients with multiple sclerosis: a multicenter questionnaire study,” Journal of Medical Internet Research, vol. 14, no. 5, article e135, 2012. View at Google Scholar
  19. L. Fernandez-Luque, N. Elahi, and F. J. Grajales III, “An analysis of personal medical information disclosed in youtube videos created by patients with multiple sclerosis,” in Proceedings of the 22nd International Conference on Medical Informatics Europe (MIE '09), pp. 292–296, September 2009. View at Publisher · View at Google Scholar · View at Scopus
  20. P. Wicks, M. Massagli, J. Frost et al., “Sharing health data for better outcomes on patientslikeme,” Journal of Medical Internet Research, vol. 12, no. 2, 2010. View at Publisher · View at Google Scholar · View at Scopus
  21. C. A. Smith and P. J. Wicks, “PatientsLikeMe: consumer health vocabulary as a folksonomy,” AMIA Annual Symposium Proceedings, pp. 682–686, 2008. View at Google Scholar · View at Scopus
  22. A. Atreja, N. Mehta, D. Miller et al., “One size does not fit all: using qualitative methods to inform the development of an Internet portal for multiple sclerosis patients,” AMIA Annual Symposium Proceedings, pp. 16–20, 2005. View at Google Scholar · View at Scopus
  23. M. C. Hay, C. Strathmann, E. Lieber, K. Wick, and B. Giesser, “Why patients go online: multiple sclerosis, the internet, and physician-patient communication,” Neurologist, vol. 14, no. 6, pp. 374–381, 2008. View at Publisher · View at Google Scholar · View at Scopus
  24. E. Murray, B. Lo, L. Pollack et al., “The impact of health information on the Internet on health care and the physician-patient relationship: National U.S. survey among 1.050 U.S. Physicians,” Journal of Medical Internet Research, vol. 5, no. 3, article e17, pp. 38–53, 2003. View at Publisher · View at Google Scholar · View at Scopus
  25. I. Lejbkowicz, T. Paperna, N. Stein, S. Dishon, and A. Miller, “Internet usage by patients with multiple sclerosis: implications to participatory medicine and personalized healthcare,” Multiple Sclerosis International, vol. 2010, Article ID 640749, 7 pages, 2010. View at Publisher · View at Google Scholar
  26. R. A. Marrie, A. R. Salter, T. Tyry, R. J. Fox, and G. R. Cutter, “Preferred sources of health information in persons with multiple sclerosis: degree of trust and information sought,” Journal of Medical Internet Research, vol. 15, no. 4, article e67, 2013. View at Google Scholar
  27. J. Wollin, H. Dale, N. Spencer, and A. Walsh, “The informational needs of the newly diagnosed person with multiple sclerosis and their family,” International Journal of MS Care, vol. 2, no. 3, pp. 1–12, 2000. View at Google Scholar
  28. http://www.google.com/trends/.
  29. A. S. Khan, A. Fleischauer, J. Casani, and S. L. Groseclose, “The next public health revolution: public health information fusion and social networks,” American Journal of Public Health, vol. 100, no. 7, pp. 1237–1242, 2010. View at Publisher · View at Google Scholar · View at Scopus
  30. M. Kang, H. Zhong, J. He et al., “Using Google trends for influenza surveillance in South China,” PLoS ONE, vol. 8, no. 1, Article ID e55205, 2013. View at Google Scholar
  31. F. Pervaiz, M. Pervaiz, N. Abdur Rehman, and U. Saif, “FluBreaks: early epidemic detection from Google flu trends,” Journal of Medical Internet Research, vol. 14, no. 5, article e125, 2012. View at Google Scholar
  32. S. Cook, C. Conrad, A. L. Fowlkes, and M. H. Mohebbi, “Assessing Google flu trends performance in the United States during the 2009 influenza virus A (H1N1) pandemic,” PLoS ONE, vol. 6, no. 8, Article ID e23610, 2011. View at Google Scholar
  33. J. Ginsberg, M. H. Mohebbi, R. S. Patel, L. Brammer, M. S. Smolinski, and L. Brilliant, “Detecting influenza epidemics using search engine query data,” Nature, vol. 457, no. 7232, pp. 1012–1014, 2009. View at Publisher · View at Google Scholar · View at Scopus
  34. D. L. Heymann and L. Brilliant, “Surveillance in eradication and elimination of infectious diseases: a progression through the years,” Vaccine, vol. 29, no. 4, pp. D141–D144, 2011. View at Publisher · View at Google Scholar · View at Scopus
  35. A. F. Dugas, Y.-H. Hsieh, S. R. Levin et al., “Google flu trends: correlation with emergency department influenza rates and crowding metrics,” Clinical Infectious Diseases, vol. 54, no. 4, pp. 463–469, 2012. View at Publisher · View at Google Scholar · View at Scopus
  36. M. T. Malik, A. Gumel, L. H. Thompson, T. Strome, and S. M. Mahmud, ““Google flu trends” and emergency department triage data predicted the 2009 pandemic H1N1 waves in Manitoba,” Canadian Journal of Public Health, vol. 102, no. 4, pp. 294–297, 2011. View at Google Scholar · View at Scopus
  37. V. M. Dukic, M. Z. David, and D. S. Lauderdale, “Internet queries and methicillin-resistant staphylococcus aureus surveillance,” Emerging Infectious Diseases, vol. 17, no. 6, pp. 1068–1070, 2011. View at Publisher · View at Google Scholar · View at Scopus
  38. X. Zhou, J. Ye, and Y. Feng, “Tuberculosis surveillance by analyzing Google trends,” IEEE Transactions on Bio-medical Engineering, vol. 58, no. 8, pp. 2247–2254, 2011. View at Publisher · View at Google Scholar
  39. J. F. Gunn III and D. Lester, “Using Google searches on the internet to monitor suicidal behavior,” Journal of Affective Disorders, vol. 148, no. 2-3, pp. 411–412, 2013. View at Google Scholar
  40. H. Sueki, “Does the volume of internet searches using suicide-related search terms influence the suicide death rate: data from 2004 to 2009 in Japan,” Psychiatry and Clinical Neurosciences, vol. 65, no. 4, pp. 392–394, 2011. View at Publisher · View at Google Scholar · View at Scopus
  41. A. C. Yang, S.-J. Tsai, N. E. Huang, and C.-K. Peng, “Association of Internet search trends with suicide death in Taipei City, Taiwan, 2004–009,” Journal of Affective Disorders, vol. 132, no. 1-2, pp. 179–184, 2011. View at Publisher · View at Google Scholar · View at Scopus
  42. P. Deluca, Z. Davey, O. Corazza et al., “Identifying emerging trends in recreational drug use; outcomes from the Psychonaut Web Mapping Project,” Progress in Neuro-Psychopharmacology and Biological Psychiatry, vol. 39, no. 2, pp. 221–226, 2012. View at Google Scholar
  43. P. M. Markey and C. N. Markey, “Seasonal variation in internet keyword searches: a proxy assessment of sex mating behaviors,” Archives of Sexual Behavior, vol. 42, no. 4, pp. 515–521, 2013. View at Google Scholar
  44. N. F. Davis, L. G. Smyth, and H. D. Flood, “Detecting internet activity for erectile dysfunction using search engine query data in the Republic of Ireland,” BJU International, vol. 110, no. 11, pp. E939–E942, 2012. View at Google Scholar
  45. S. D. Willard and M. M. Nguyen, “Internet search trends analysis tools can provide real-time data on kidney stone disease in the United States,” Urology, vol. 81, no. 1, pp. 37–42, 2013. View at Publisher · View at Google Scholar · View at Scopus
  46. P. Wessa, “(Partial) Autocorrelation Function (v1.0.11) in Free Statistics Software (v1.1.23-r7),” Office for Research Development and Education, http://www.wessa.net/rwasp_autocorrelation.wasp/.
  47. C. Torrence and G. P. Compo, “A practical guide to wavelet analysis,” Bulletin of the American Meteorological Society, vol. 79, no. 1, pp. 61–78, 1998. View at Google Scholar · View at Scopus
  48. B. T. Grenfell, O. N. Bjørnstad, and J. Kappey, “Travelling waves and spatial hierarchies in measles epidemics,” Nature, vol. 414, no. 6865, pp. 716–723, 2001. View at Publisher · View at Google Scholar · View at Scopus
  49. P. Wessa, “Multiple Regression (v1.0.26) in Free Statistics Software (v1.1.23-r7),” Office for Research Development and Education, http://www.wessa.net/rwasp_multipleregression.wasp/.
  50. P. Wessa, “Pearson Correlation (v1.0.6) in Free Statistics Software (v1.1.23-r7),” Office for Research Development and Education, http://www.wessa.net/rwasp_correlation.wasp/.
  51. A. V. Singh and P. Zamboni, “Anomalous venous blood flow and iron deposition in multiple sclerosis,” Journal of Cerebral Blood Flow and Metabolism, vol. 29, no. 12, pp. 1867–1878, 2009. View at Publisher · View at Google Scholar · View at Scopus
  52. C. Vera, A. Herr, K. Mandato, M. Englander, L. Ginsburg, and G. P. Siskin, “Internet-based social networking and its role in the evolution of chronic cerebrospinal venous insufficiency,” Techniques in Vascular and Interventional Radiology, vol. 15, no. 2, pp. 153–157, 2012. View at Google Scholar
  53. L. Machan, K. Murphy, and T. Traboulsee, “Multiple sclerosis and venous abnormalities: medicine in the age of social media,” Canadian Association of Radiologists Journal, vol. 63, pp. S2–S4, 2012. View at Google Scholar
  54. J. W. Ayers, B. M. Althouse, J. P. Allem, J. N. Rosenquist, and D. E. Ford, “Seasonality in seeking mental health information on google,” American Journal of Preventive Medicine, vol. 44, no. 5, pp. 520–525, 2013. View at Google Scholar
  55. M. Puthenparampil, D. Seppi, F. Rinaldi et al., “Increased incidence of multiple sclerosis in the Veneto region, Italy,” Multiple Sclerosis, vol. 19, no. 5, pp. 601–604, 2013. View at Google Scholar
  56. A. Nicoletti, M. L. Lo Bartolo, S. Lo Fermo et al., “Prevelence and incidence of multiple sclerosis in Catania, Sicily,” Neurology, vol. 56, no. 1, pp. 62–66, 2001. View at Google Scholar · View at Scopus
  57. C. Solaro, C. Allemani, M. Messmer Uccelli et al., “The prevalence of multiple sclerosis in the north-west Italian province of Genoa,” Journal of Neurology, vol. 252, no. 4, pp. 436–440, 2005. View at Publisher · View at Google Scholar · View at Scopus
  58. E. Granieri, C. Monaldini, R. De Gennaro et al., “Multiple sclerosis in the Republic of San Marino: a prevalence and incidence study,” Multiple Sclerosis, vol. 14, no. 3, pp. 325–329, 2008. View at Publisher · View at Google Scholar · View at Scopus
  59. F. Ranzato, P. Perini, E. Tzintzeva et al., “Increasing frequency of multiple sclerosis in Padova, Italy: a 30 year epidemiological survey,” Multiple Sclerosis, vol. 9, no. 4, pp. 387–392, 2003. View at Publisher · View at Google Scholar · View at Scopus
  60. M. Trojano, G. Lucchese, G. Graziano et al., “Geographical variations in sex ratio trends over time in multiple sclerosis,” PLoS ONE, vol. 7, no. 10, Article ID e48078, 2012. View at Google Scholar
  61. E. Cocco, C. Sardu, R. Massa et al., “Epidemiology of multiple sclerosis in south-western Sardinia,” Multiple Sclerosis, vol. 17, no. 11, pp. 1282–1289, 2011. View at Publisher · View at Google Scholar · View at Scopus
  62. M. Pugliatti, S. Sotgiu, G. Solinas et al., “Multiple sclerosis epidemiology in Sardinia: evidence for a true increasing risk,” Acta Neurologica Scandinavica, vol. 103, no. 1, pp. 20–26, 2001. View at Publisher · View at Google Scholar · View at Scopus
  63. E. Millefiorini, A. Cortese, S. Di Rezze et al., “The prevalence of multiple sclerosis in central Italy,” Multiple Sclerosis, vol. 16, no. 12, pp. 1432–1436, 2010. View at Publisher · View at Google Scholar · View at Scopus
  64. N. Koch-Henriksen and P. S. Sorensen, “Why does the north-south gradient of incidence of multiple sclerosis seem to have disappeared on the Northern hemisphere?” Journal of the Neurological Sciences, vol. 311, no. 1-2, pp. 58–63, 2011. View at Publisher · View at Google Scholar · View at Scopus
  65. A. Lowe-Strong and P. J. McCullagh, “Monitoring of symptoms and interventions associated with multiple sclerosis,” Studies in Health Technology and Informatics, vol. 117, pp. 223–228, 2005. View at Google Scholar · View at Scopus
  66. L. Wardell, A. M. Laizner, and Y. Lapierre, “Multiple sclerosis patients' interest in and likelihood of using online health-care services,” International Journal of Multiple Sclerosis Care, vol. 11, no. 2, pp. 79–89, 2009. View at Publisher · View at Google Scholar
  67. K. H. Jones, D. V. Ford, P. A. Jones et al., “The physical and psychological impact of multiple sclerosis using the MSIS-29 via the web portal of the UK MS Register,” PLoS ONE, vol. 8, no. 1, Article ID e55422, 2013. View at Publisher · View at Google Scholar
  68. R. E. Boeschoten, J. Dekker, B. M. Uitdehaag et al., “Internet-based self-help treatment for depression in multiple sclerosis: study protocol of a randomized controlled trial,” BMC Psychiatry, vol. 12, p. 137, 2012. View at Publisher · View at Google Scholar