Neural Plasticity

Neural Plasticity / 2004 / Article
Special Issue

Clinical Pharmacology of Memory

View this Special Issue

Open Access

Volume 11 |Article ID 360813 | 14 pages |

Norepinephrine and Dopamine as Learning Signals


The present review focuses on the hypothesis that norepinephrine (NE) and dopamine (DA) act as learning signals. Both NE and DA are broadly distributed in areas concerned with the representation of the world and with the conjunction of sensory inputs and motor outputs. Both are released at times of novelty and uncertainty, providing plausible signal events for updating representations and associations. These catecholamines activate intracellular machinery postulated to serve as a memory-formation cascade. Yet, despite the plausibility of an NE and DA role in vertebrate learning and memory, most evidence that they provide a learning signal is circumstantial. The major weakness of the data available is the lack of a specific description of how the neural circuit modulated by NE or DA participates in the learning being analyzed. Identifying a conditioned stimuli (CS) representation would facilitate the identification of a learning signal role for NE or DA. Describing how the CS representation comes to relate to learned behavior, either through sensory-sensory associations, in which the CS acquires the motivational significance of reward or punishment, thus driving appropriate behavior, or through direct sensory-motor associations is necessary to identify how NE and DA participate in memory creation. As described here, evidence consistent with a direct learning signal role for NE and DA is seen in the changing of sensory circuits in odor preference learning (NE), defensive conditioning (NE), and auditory cortex remodeling in adult rats (DA). Evidence that NE and DA contribute to normal learning through unspecified mechanisms is extensive, but the details of that support role are lacking.

Copyright © 2004 Hindawi Publishing Corporation. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

More related articles

289 Views | 1368 Downloads | 76 Citations
 PDF  Download Citation  Citation
 Order printed copiesOrder

Related articles

We are committed to sharing findings related to COVID-19 as quickly and safely as possible. Any author submitting a COVID-19 paper should notify us at to ensure their research is fast-tracked and made available on a preprint server as soon as possible. We will be providing unlimited waivers of publication charges for accepted articles related to COVID-19. Sign up here as a reviewer to help fast-track new submissions.