Neural Plasticity
 Journal metrics
Acceptance rate40%
Submission to final decision70 days
Acceptance to publication38 days
CiteScore3.330
Impact Factor3.591
 Submit

Memory and Cognition-Related Neuroplasticity Enhancement by Transcranial Direct Current Stimulation in Rodents: A Systematic Review

Read the full article

 Journal profile

Neural Plasticity is an interdisciplinary journal dedicated to the publication of articles related to all aspects of neural plasticity, with special emphasis on its functional significance as reflected in behavior and in psychopathology.

 Editor spotlight

Chief Editor, Professor Baudry, is currently University Professor at Western University of Health Sciences in Pomona, CA. His research focuses on understanding the molecular/cellular mechanisms of learning and memory and neurodegeneration.

 Special Issues

We currently have a number of Special Issues open for submission. Special Issues highlight emerging areas of research within a field, or provide a venue for a deeper investigation into an existing research area.

Latest Articles

More articles
Research Article

Electroacupuncture Improved Chronic Cerebral Hypoperfusion-Induced Anxiety-Like Behavior and Memory Impairments in Spontaneously Hypertensive Rats by Downregulating the ACE/Ang II/AT1R Axis and Upregulating the ACE2/Ang-(1-7)/MasR Axis

Electroacupuncture (EA) can effectively alleviate anxiety disorders and memory impairments caused by various neurodegenerative diseases; however, the molecular mechanisms underlying its neuroprotective effects are unclear. Previous studies have shown that the renin-angiotensin system (RAS) comprises of two axes with mutual antagonism: the classical angiotensin converting enzyme/angiotensin II/angiotensin II type 1 receptor (ACE/Ang II/AT1R) axis and the protective angiotensin converting enzyme 2/angiotensin-(1-7)/Mas receptor (ACE2/Ang-(1-7)/MasR) axis. In this study, we observed that chronic cerebral hypoperfusion (CCH) mediated anxiety-like behavior and memory impairments in spontaneously hypertensive rats (SHR) via upregulation of the hippocampal classical axis (ACE/Ang II/AT1R) and the partial hippocampal protective axis (ACE2/Ang-(1-7)). However, Ang II levels were much higher than those of Ang-(1–7), indicating that the ACE/Ang II/AT1R axis plays a dominant role in the comorbidity of CCH and hypertension. Moreover, candesartan cilexetil (Canc) and perindopril (Peril) were used as positive control drugs. We found that EA, Canc, and Peril attenuated CCH-induced anxiety-like behavior and memory impairments in SHR, potentially via downregulation of the hippocampal classical axis (ACE/Ang II/AT1R) and upregulation of the whole hippocampal protective axis (ACE2/Ang-(1-7)/MasR). These results suggest that EA therapy for CCH with hypertension may be mediated by two hippocampal RAS axes.

Review Article

From Evaluation to Prediction: Behavioral Effects and Biological Markers of Cognitive Control Intervention

Although the intervention effectiveness of cognitive control is disputed, some methods, such as single-task training, integrated training, meditation, aerobic exercise, and transcranial stimulation, have been reported to improve cognitive control. This review of recent advances from evaluation to prediction of cognitive control interventions suggests that brain modularity may be an important candidate marker for informing clinical decisions regarding suitable interventions. The intervention effect of cognitive control has been evaluated by behavioral performance, transfer effect, brain structure and function, and brain networks. Brain modularity can predict the benefits of cognitive control interventions based on individual differences and is independent of intervention method, group, age, initial cognitive ability, and education level. The prediction of cognitive control intervention based on brain modularity should extend to task states, combine function and structure networks, and assign different weights to subnetwork modularity.

Research Article

The Long-Term Effects of Acupuncture on Hippocampal Functional Connectivity in aMCI with Hippocampal Atrophy: A Randomized Longitudinal fMRI Study

Background. Acupuncture has been used to treat amnestic mild cognitive impairment (aMCI) for many years in China. However, the long-term effects of continuous acupuncture treatment remained unclear. Objective. We aimed to explore the long-term effects of continuous acupuncture treatment on hippocampal functional connectivity (FC) in aMCI. Methods. Fifty healthy control (HC) participants and 28 aMCI patients were recruited for resting-state functional magnetic resonance imaging (fMRI) at baseline. The 28 aMCI patients were then divided into the aMCI acupuncture group, which received acupuncture treatment for 6 months, and the aMCI control group, which received no intervention. All aMCI patients completed the second resting-state fMRI scanning after 6 months of acupuncture treatment. Analysis based on the region of interest and two-way analysis of covariance were both used to explore the long-term effects of acupuncture on cognition change and hippocampal FC in aMCI. Results. Compared to HC, aMCI showed decreased right hippocampal FC with the right inferior/middle temporal gyrus (ITG/MTG), left amygdala, and the right fusiform and increased FC with bilateral caudates at baseline. After acupuncture treatment, the right hippocampal FC with right ITG/MTG enhanced significantly in the aMCI acupuncture group, but continued to decrease in the aMCI control group. Whole brain FC analysis showed enhanced right hippocampal FC with the right ITG and the left MTG in the aMCI acupuncture group relative to the aMCI control group. Furthermore, FC strength of the right hippocampus with right ITG at baseline was negatively correlated with the changes in memory scores of aMCI acupuncture patients. Conclusion. Acupuncture treatment could alleviate the progression of cognitive decline and could enhance hippocampal FC with ITG and MTG in aMCI that may be associated with resilience to resistant against neurodegeneration. The findings provided a better understanding of the long-term effects of acupuncture treatment and confirmed the therapeutic role of acupuncture in aMCI.

Review Article

Role of Astrocytic Dysfunction in the Pathogenesis of Parkinson’s Disease Animal Models from a Molecular Signaling Perspective

Despite the fact that astrocytes are the most abundant glial cells, critical for brain function, few studies have dealt with their possible role in neurodegenerative diseases like Parkinson’s disease (PD). This article explores relevant evidence on the involvement of astrocytes in experimental PD neurodegeneration from a molecular signaling perspective. For a long time, astrocytic proliferation was merely considered a byproduct of neuroinflammation, but by the time being, it is clear that astrocytic dysfunction plays a far more important role in PD pathophysiology. Indeed, ongoing experimental evidence suggests the importance of astrocytes and dopaminergic neurons’ cross-linking signaling pathways. The Wnt-1 (wingless-type MMTV integration site family, member 1) pathway regulates several processes including neuron survival, synapse plasticity, and neurogenesis. In PD animal models, Frizzled (Fzd) neuronal receptors’ activation by the Wnt-1 normally released by astrocytes following injuries leads to β-catenin-dependent gene expression, favoring neuron survival and viability. The transient receptor potential vanilloid 1 (TRPV1) capsaicin receptor also participates in experimental PD genesis. Activation of astrocyte TRPV1 receptors by noxious stimuli results in reduced inflammatory response and increased ciliary neurotrophic factor (CNTF) synthesis, which enhances neuronal survival and differentiation. Another major pathway involves IκB kinase (IKK) downregulation by ARL6ip5 (ADP-ribosylation-like factor 6 interacting protein 5, encoded by the cell differentiation-associated, JWA, gene). Typically, IKK releases the proinflammatory NF-κB (nuclear factor kappa-light-chain-enhancer of activated B cells) molecule from its inhibitor. Therefore, by downregulating NF-κB inhibitor, ARL6ip5 promotes an anti-inflammatory response. The evidence provided by neurotoxin-induced PD animal models guarantees further research on the neuroprotective potential of normalizing astrocyte function in PD.

Clinical Study

Cancer-Related Anemia Is a Risk Factor for Medium-Term Postoperative Cognitive Dysfunction in Laparoscopic Surgery Patients: An Observational Prospective Study

Anemia in the elderly may impair cognitive function. Our primary objective was to determine whether cancer-related anemia was associated with postoperative cognitive dysfunction (POCD) in nonelderly patients. We conducted an observational prospective study of 177 patients scheduled for laparoscopic surgery. Patients aged 18-64 were divided into two groups according to whether they were anemic due to cancer or not. The cognitive function was assessed by the Mini-Mental State Examination (MMSE) 1 day before and 1 week after operation. The cognitive function of the patients was evaluated by using the Telephone Interview for Cognitive Status-Modified (TICS-M) 3 months after operation. The quality of life of patients was evaluated after operation. The hemoglobin level and other clinical data were recorded before operation. Of the 170 patients, 100 without anemia and 70 anemia patients had been evaluated 1 week after operation. POCD was detected in 43 cases (25.3% of 170 cases) at 1 week and 30 cases (19% of 158 cases) at 3 months postoperatively. Anemia was an independent risk factor for 3-month POCD occurrence (). The education level of the patients who had POCD at 1 week and 3 months after operation was lower (, , respectively). Age was independently associated with the incidence of POCD at 3 months (). In general, these findings suggested that anemia may increase the incidence of medium-term POCD in cancer patients undergoing laparoscopic surgery.

Research Article

Acupuncture Induces Reduction in Limbic-Cortical Feedback of a Neuralgia Rat Model: A Dynamic Causal Modeling Study

Background. Neuropathic pain after brachial plexus avulsion remained prevalent and intractable currently. However, the neuroimaging study about neural mechanisms or etiology was limited and blurred. Objective. This study is aimed at investigating the effect of electroacupuncture on effective connectivity and neural response in corticolimbic circuitries during implicit processing of nociceptive stimulus in rats with brachial plexus pain. Methods. An fMRI scan was performed in a total of 16 rats with brachial plexus pain, which was equally distributed into the model group and the electroacupuncture group. The analysis of task-dependent data determined pain-related activation in each group. Based on those results, several regions including AMY, S1, and h were recruited as ROI in dynamic causal modeling (DCM) analysis comparing evidence for different neuronal hypotheses describing the propagation of noxious stimuli in regions of interest and horizontal comparison of effective connections between the model and electroacupuncture groups. Results. In both groups, DCM revealed that noxious stimuli were most likely driven by the somatosensory cortex, with bidirectional propagation with the hypothalamus and amygdala and the interactions in them. Also, the 3-month intervention of acupuncture reduced effective connections of h-S1 and AMY-S1. Conclusions. We showed an evidence that a full connection model within the brain network of brachial plexus pain and electroacupuncture intervention reduces effective connectivity from h and AMY to S1. Our study for the first time explored the relationship of involved brain regions with dynamic causal modeling. It provided novel evidence for the feature of the organization of the cortical-limbic network and the alteration caused by acupuncture.

Neural Plasticity
 Journal metrics
Acceptance rate40%
Submission to final decision70 days
Acceptance to publication38 days
CiteScore3.330
Impact Factor3.591
 Submit