Table of Contents Author Guidelines Submit a Manuscript
Neural Plasticity
Volume 2008, Article ID 658323, 12 pages
http://dx.doi.org/10.1155/2008/658323
Review Article

Linking Cellular Mechanisms to Behavior: Entorhinal Persistent Spiking and Membrane Potential Oscillations May Underlie Path Integration, Grid Cell Firing, and Episodic Memory

Center for Memory and Brain, Department of Psychology and Program in Neuroscience, Boston University, 2 Cummington Sreet, Boston, MA 02215, USA

Received 11 January 2008; Accepted 14 May 2008

Academic Editor: Roland S.G. Jones

Copyright © 2008 Michael E. Hasselmo and Mark P. Brandon. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. H.-A. Steffenach, M. Witter, M.-B. Moser, and E. I. Moser, “Spatial memory in the rat requires the dorsolateral band of the entorhinal cortex,” Neuron, vol. 45, no. 2, pp. 301–313, 2005. View at Publisher · View at Google Scholar
  2. T. Otto and H. Eichenbaum, “Complementary roles of the orbital prefrontal cortex and the perirhinal-entorhinal cortices in an odor-guided delayed-nonmatching-to-sample task,” Behavioral Neuroscience, vol. 106, no. 5, pp. 762–775, 1992. View at Publisher · View at Google Scholar
  3. B. W. Leonard, D. G. Amaral, L. R. Squire, and S. Zola-Morgan, “Transient memory impairment in monkeys with bilateral lesions of the entorhinal cortex,” The Journal of Neuroscience, vol. 15, no. 8, pp. 5637–5659, 1995. View at Google Scholar
  4. S. Zola-Morgan, L. R. Squire, and S. J. Ramus, “Severity of memory impairment in monkeys as a function of locus and extent of damage within the medial temporal lobe memory system,” Hippocampus, vol. 4, no. 4, pp. 483–495, 1994. View at Publisher · View at Google Scholar
  5. R. Klink and A. Alonso, “Muscarinic modulation of the oscillatory and repetitive firing properties of entorhinal cortex layer II neurons,” Journal of Neurophysiology, vol. 77, no. 4, pp. 1813–1828, 1997. View at Google Scholar
  6. B. Tahvildari, E. Fransén, A. A. Alonso, and M. E. Hasselmo, “Switching between “On” and “Off” states of persistent activity in lateral entorhinal layer III neurons,” Hippocampus, vol. 17, no. 4, pp. 257–263, 2007. View at Publisher · View at Google Scholar
  7. E. Fransén, B. Tahvildari, A. V. Egorov, M. E. Hasselmo, and A. A. Alonso, “Mechanism of graded persistent cellular activity of entorhinal cortex layer V neurons,” Neuron, vol. 49, no. 5, pp. 735–746, 2006. View at Publisher · View at Google Scholar
  8. A. V. Egorov, B. N. Hamam, E. Fransén, M. E. Hasselmo, and A. A. Alonso, “Graded persistent activity in entorhinal cortex neurons,” Nature, vol. 420, no. 6912, pp. 173–178, 2002. View at Publisher · View at Google Scholar
  9. M. H. Shalinsky, J. Magistretti, L. Ma, and A. A. Alonso, “Muscarinic activation of a cation current and associated current noise in entorhinal-cortex layer-II neurons,” Journal of Neurophysiology, vol. 88, no. 3, pp. 1197–1211, 2002. View at Google Scholar
  10. M. Yoshida, E. Fransén, and M. E. Hasselmo, “Cholinergic-independent persistent firing in entorhinal layers III and V neurons,” Society for Neuroscience Abstract, vol. 33, p. 935.9, 2007. View at Google Scholar
  11. A. Alonso and R. R. Llinás, “Subthreshold Na+-dependent theta-like rhythmicity in stellate cells of entorhinal cortex layer II,” Nature, vol. 342, no. 6246, pp. 175–177, 1989. View at Publisher · View at Google Scholar
  12. A. Alonso and R. Klink, “Differential electroresponsiveness of stellate and pyramidal-like cells of medial entorhinal cortex layer II,” Journal of Neurophysiology, vol. 70, no. 1, pp. 128–143, 1993. View at Google Scholar
  13. E. Fransén, A. A. Alonso, C. T. Dickson, J. Magistretti, and M. E. Hasselmo, “Ionic mechanisms in the generation of subthreshold oscillations and action potential clustering in entorhinal layer II stellate neurons,” Hippocampus, vol. 14, no. 3, pp. 368–384, 2004. View at Publisher · View at Google Scholar
  14. C. D. Acker, N. Kopell, and J. A. White, “Synchronization of strongly coupled excitatory neurons: relating network behavior to biophysics,” Journal of Computational Neuroscience, vol. 15, no. 1, pp. 71–90, 2003. View at Publisher · View at Google Scholar
  15. A. Alonso and E. García-Austt, “Neuronal sources of theta rhythm in the entorhinal cortex of the rat. I. Laminar distribution of theta field potentials,” Experimental Brain Research, vol. 67, no. 3, pp. 493–501, 1987. View at Publisher · View at Google Scholar
  16. L. M. Giocomo, E. A. Zilli, E. Fransén, and M. E. Hasselmo, “Temporal frequency of subthreshold oscillations scales with entorhinal grid cell field spacing,” Science, vol. 315, no. 5819, pp. 1719–1722, 2007. View at Publisher · View at Google Scholar
  17. M. E. Hasselmo, L. M. Giocomo, and E. A. Zilli, “Grid cell firing may arise from interference of theta frequency membrane potential oscillations in single neurons,” Hippocampus, vol. 17, no. 12, pp. 1252–1271, 2007. View at Publisher · View at Google Scholar
  18. N. Burgess, C. Barry, and J. O'Keefe, “An oscillatory interference model of grid cell firing,” Hippocampus, vol. 17, no. 9, pp. 801–812, 2007. View at Publisher · View at Google Scholar
  19. N. Burgess, C. Barry, K. J. Jeffery, and J. O'Keefe, “A grid and place cell model of path integration utilizing phase precession versus theta,” in Proceedings of the 1st Annual Computational Cognitive Neuroscience Conference, Washington, DC, USA, April 2005.
  20. C. T. Dickson, J. Magistretti, M. H. Shalinsky, E. Fransén, M. E. Hasselmo, and A. Alonso, “Properties and role of I(h) in the pacing of subthreshold oscillations in entorhinal cortex layer II neurons,” Journal of Neurophysiology, vol. 83, no. 5, pp. 2562–2579, 2000. View at Google Scholar
  21. L. M. Giocomo and M. E. Hasselmo, “Time constant of I(h) differs along dorsal to ventral axis of medial entorhinal cortex,” submitted.
  22. M. Yoshida and A. Alonso, “Cell-type-specific modulation of intrinsic firing properties and subthreshold membrane oscillations by the M(Kv7)-current in neurons of the entorhinal cortex,” Journal of Neurophysiology, vol. 98, no. 5, pp. 2779–2794, 2007. View at Publisher · View at Google Scholar
  23. B. Tahvildari and A. Alonso, “Morphological and electrophysiological properties of lateral entorhinal cortex layers II and III principal neurons,” The Journal of Comparative Neurology, vol. 491, no. 2, pp. 123–140, 2005. View at Publisher · View at Google Scholar
  24. T. Hafting, M. Fyhn, S. Molden, M.-B. Moser, and E. I. Moser, “Microstructure of a spatial map in the entorhinal cortex,” Nature, vol. 436, no. 7052, pp. 801–806, 2005. View at Publisher · View at Google Scholar
  25. F. Sargolini, M. Fyhn, T. Hafting et al., “Conjunctive representation of position, direction, and velocity in entorhinal cortex,” Science, vol. 312, no. 5774, pp. 758–762, 2006. View at Publisher · View at Google Scholar
  26. J. S. Taube, R. U. Muller, and J. B. Ranck Jr., “Head-direction cells recorded from the postsubiculum in freely moving rats. I. Description and quantitative analysis,” The Journal of Neuroscience, vol. 10, no. 2, pp. 420–435, 1990. View at Google Scholar
  27. P. E. Sharp, “Multiple spatial/behavioral correlates for cells in the rat postsubiculumml: multiple regression analysis and comparison to other hippocampal areas,” Cerebral Cortex, vol. 6, no. 2, pp. 238–259, 1996. View at Publisher · View at Google Scholar
  28. H. T. Blair and P. E. Sharp, “Anticipatory head direction signals in anterior thalamus: evidence for a thalamocortical circuit that integrates angular head motion to compute head direction,” The Journal of Neuroscience, vol. 15, no. 9, pp. 6260–6270, 1995. View at Google Scholar
  29. J. S. Taube, “Head direction cells and the neurophysiological basis for a sense of direction,” Progress in Neurobiology, vol. 55, no. 3, pp. 225–256, 1998. View at Publisher · View at Google Scholar
  30. R. U. Muller, J. B. Ranck Jr., and J. S. Taube, “Head direction cells: properties and functional significance,” Current Opinion in Neurobiology, vol. 6, no. 2, pp. 196–206, 1996. View at Publisher · View at Google Scholar
  31. F. Cacucci, C. Lever, T. J. Wills, N. Burgess, and J. O'Keefe, “Theta-modulated place-by-direction cells in the hippocampal formation in the rat,” The Journal of Neuroscience, vol. 24, no. 38, pp. 8265–8277, 2004. View at Publisher · View at Google Scholar
  32. M. Muller and R. Wehner, “Path integration in desert ants, cataglyphis fortis,” Proceedings of the National Academy of Sciences of the United States of America, vol. 85, no. 14, pp. 5287–5290, 1988. View at Publisher · View at Google Scholar
  33. R. Wehner and M. Muller, “The significance of direct sunlight and polarized skylight in the ant's celestial system of navigation,” Proceedings of the National Academy of Sciences of the United States of America, vol. 103, no. 33, pp. 12575–12579, 2006. View at Publisher · View at Google Scholar
  34. A. Cheung, S. Zhang, C. Stricker, and M. V. Srinivasan, “Animal navigation: the difficulty of moving in a straight line,” Biological Cybernetics, vol. 97, no. 1, pp. 47–61, 2007. View at Publisher · View at Google Scholar
  35. R. Wehner, B. Michel, and P. Antonsen, “Visual navigation in insects: coupling of egocentric and geocentric information,” Journal of Experimental Biology, vol. 199, part 1, pp. 129–140, 1996. View at Google Scholar
  36. J. O'Keefe, N. Burgess, J. G. Donnett, K. J. Jeffery, and E. A. Maguire, “Place cells, navigational accuracy, and the human hippocampus,” Philosophical Transactions of the Royal Society B, vol. 353, no. 1373, pp. 1333–1340, 1998. View at Publisher · View at Google Scholar
  37. P. E. Sharp and S. Turner-Williams, “Movement-related correlates of single-cell activity in the medial mammillary nucleus of the rat during a pellet-chasing task,” Journal of Neurophysiology, vol. 94, no. 3, pp. 1920–1927, 2005. View at Publisher · View at Google Scholar
  38. G. Strang, Linear Algebra and Its Applications, Harcourt Brace Jovanovich, San Diego, Calif, USA, 1988.
  39. D. J. Foster and M. A. Wilson, “Reverse replay of behavioural sequences in hippocampal place cells during the awake state,” Nature, vol. 440, no. 7084, pp. 680–683, 2006. View at Publisher · View at Google Scholar
  40. R. A. Koene and M. E. Hasselmo, “Reversed and forward buffering of behavioral spike sequences enables retrospective and prospective retrieval in hippocampal regions CA3 and CA1,” Neural Networks, vol. 21, no. 2-3, pp. 276–288, 2008. View at Publisher · View at Google Scholar
  41. E. J. Markus, Y.-L. Qin, B. Leonard, W. E. Skaggs, B. L. McNaughton, and C. A. Barnes, “Interactions between location and task affect the spatial and directional firing of hippocampal neurons,” The Journal of Neuroscience, vol. 15, no. 11, pp. 7079–7094, 1995. View at Google Scholar
  42. D. Derdikman, M. Fyhn, T. Hafting, M. B. Moser, and E. I. Moser, “Breaking up the entorhinal grid in a hairpin maze,” Society for Neuroscience Abstract, vol. 33, p. 68.10, 2006. View at Google Scholar
  43. M. Fyhn, T. Hafting, A. Treves, M.-B. Moser, and E. I. Moser, “Hippocampal remapping and grid realignment in entorhinal cortex,” Nature, vol. 446, no. 7132, pp. 190–194, 2007. View at Publisher · View at Google Scholar
  44. C. Barry, R. Hayman, N. Burgess, and K. J. Jeffery, “Experience-dependent rescaling of entorhinal grids,” Nature Neuroscience, vol. 10, no. 6, pp. 682–684, 2007. View at Publisher · View at Google Scholar
  45. T. Solstad, E. I. Moser, and G. T. Einevoll, “From grid cells to place cells: a mathematical model,” Hippocampus, vol. 16, no. 12, pp. 1026–1031, 2006. View at Publisher · View at Google Scholar
  46. C. P. Heesy, “On the relationship between orbit orientation and binocular visual field overlap in mammals,” The Anatomical Record. Part A, vol. 281, no. 1, pp. 1104–1110, 2004. View at Publisher · View at Google Scholar
  47. J. O'Keefe and N. Burgess, “Dual phase and rate coding in hippocampal place cells: theoretical significance and relationship to entorhinal grid cells,” Hippocampus, vol. 15, no. 7, pp. 853–866, 2005. View at Publisher · View at Google Scholar
  48. T. Hafting, M. Fyhn, M.-B. Moser, and E. I. Moser, “Phase precession and phase locking in entorhinal grid cells,” Society for Neuroscience Abstract, vol. 32, p. 68.8, 2006. View at Google Scholar
  49. J. O'Keefe and M. L. Recce, “Phase relationship between hippocampal place units and the EEG theta rhythm,” Hippocampus, vol. 3, no. 3, pp. 317–330, 1993. View at Publisher · View at Google Scholar
  50. W. E. Skaggs, B. L. McNaughton, M. A. Wilson, and C. A. Barnes, “Theta phase precession in hippocampal neuronal populations and the compression of temporal sequences,” Hippocampus, vol. 6, no. 2, pp. 149–172, 1996. View at Publisher · View at Google Scholar
  51. A. P. Maurer, S. R. VanRhoads, G. R. Sutherland, P. Lipa, and B. L. McNaughton, “Self-motion and the origin of differential spatial scaling along the septo-temporal axis of the hippocampus,” Hippocampus, vol. 15, no. 7, pp. 841–852, 2005. View at Publisher · View at Google Scholar
  52. M. Lengyel, Z. Szatmáry, and P. Érdi, “Dynamically detuned oscillations account for the coupled rate and temporal code of place cell firing,” Hippocampus, vol. 13, no. 6, pp. 700–714, 2003. View at Publisher · View at Google Scholar
  53. M. V. Tsodyks, W. E. Skaggs, T. J. Sejnowski, and B. L. McNaughton, “Population dynamics and theta rhythm phase precession of hippocampal place cell firing: a spiking neuron model,” Hippocampus, vol. 6, no. 3, pp. 271–280, 1996. View at Publisher · View at Google Scholar
  54. G. V. Wallenstein and M. E. Hasselmo, “GABAergic modulation of hippocampal population activity: sequence learning, place field development, and the phase precession effect,” Journal of Neurophysiology, vol. 78, no. 1, pp. 393–408, 1997. View at Google Scholar
  55. O. Jensen and J. E. Lisman, “Hippocampal CA3 region predicts memory sequences: accounting for the phase precession of place cells,” Learning & Memory, vol. 3, no. 2-3, pp. 279–287, 1996. View at Publisher · View at Google Scholar
  56. P. E. Sharp and K. Koester, “Lesions of the mammillary body region severely disrupt the cortical head direction, but not place cell signal,” Hippocampus. In press. View at Publisher · View at Google Scholar
  57. M. E. Hasselmo, “Arc length coding by interference of theta frequency oscillations may underlie context-dependent hippocampal unit data and episodic memory function,” Learning & Memory, vol. 14, no. 11, pp. 782–794, 2007. View at Publisher · View at Google Scholar
  58. T. van Groen and J. M. Wyss, “The postsubicular cortex in the rat: characterization of the fourth region of the subicular cortex and its connections,” Brain Research, vol. 529, no. 1-2, pp. 165–177, 1990. View at Publisher · View at Google Scholar
  59. M. Caballero-Bleda and M. P. Witter, “Regional and laminar organization of projections from the presubiculum and parasubiculum to the entorhinal cortex: an anterograde tracing study in the rat,” The Journal of Comparative Neurology, vol. 328, no. 1, pp. 115–129, 1993. View at Publisher · View at Google Scholar
  60. C. Köhler, “Intrinsic projections of the retrohippocampal region in the rat brain. I. The subicular complex,” The Journal of Comparative Neurology, vol. 236, no. 4, pp. 504–522, 1985. View at Publisher · View at Google Scholar
  61. D. G. Amaral and M. P. Witter, “The 3-dimensional organization of the hippocampal formation: a review of anatomical data,” Neuroscience, vol. 31, no. 3, pp. 571–591, 1989. View at Publisher · View at Google Scholar
  62. M. C. Fuhs and D. S. Touretzky, “A spin glass model of path integration in rat medial entorhinal cortex,” The Journal of Neuroscience, vol. 26, no. 16, pp. 4266–4276, 2006. View at Publisher · View at Google Scholar
  63. E. T. Rolls, S. M. Stringer, and T. Elliot, “Entorhinal cortex grid cells can map to hippocampal place cells by competitive learning,” Network, vol. 17, no. 4, pp. 447–465, 2006. View at Publisher · View at Google Scholar
  64. L. W. Swanson, J. M. Wyss, and W. M. Cowan, “An autoradiographic study of the organization of intrahippocampal association pathways in the rat,” The Journal of Comparative Neurology, vol. 181, no. 4, pp. 681–715, 1978. View at Publisher · View at Google Scholar
  65. P. A. Naber and M. P. Witter, “Subicular efferents are organized mostly as parallel projections: a double-labeling, retrograde-tracing study in the rat,” The Journal of Comparative Neurology, vol. 393, no. 3, pp. 284–297, 1998. View at Publisher · View at Google Scholar
  66. K. Louie and M. A. Wilson, “Temporally structured replay of awake hippocampal ensemble activity during rapid eye movement sleep,” Neuron, vol. 29, no. 1, pp. 145–156, 2001. View at Publisher · View at Google Scholar
  67. M. E. Hasselmo, C. Bodelón, and B. P. Wyble, “A proposed function for hippocampal theta rhythmml: separate phases of encoding and retrieval enhance reversal of prior learning,” Neural Computation, vol. 14, no. 4, pp. 793–817, 2002. View at Publisher · View at Google Scholar