Table of Contents Author Guidelines Submit a Manuscript
Neural Plasticity
Volume 2011 (2011), Article ID 203462, 11 pages
http://dx.doi.org/10.1155/2011/203462
Review Article

Reactivation, Replay, and Preplay: How It Might All Fit Together

Laure Buhry,1,2 Amir H. Azizi,1,2,3 and Sen Cheng1,2,3

1Mercator Research Group “Structure of Memory”, Ruhr-University Bochum, Universitaetsstraße 150, 44801 Bochum, Germany
2Faculty of Psychology, Ruhr-University Bochum, Universitaetsstraße 150, 44801 Bochum, Germany
3International Graduate School of Neuroscience, Ruhr-University Bochum, Universitaetsstraße 150, 44801 Bochum, Germany

Received 7 April 2011; Revised 13 June 2011; Accepted 15 June 2011

Academic Editor: Christian Leibold

Copyright © 2011 Laure Buhry et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. C. Pavlides and J. Winson, “Influences of hippocampal place cell firing in the awake state on the activity of these cells during subsequent sleep episodes,” Journal of Neuroscience, vol. 9, no. 8, pp. 2907–2918, 1989. View at Google Scholar · View at Scopus
  2. J. O'Keefe and J. Dostrovsky, “The hippocampus as a spatial map: preliminary evidence from unit activity in the freely-moving rat,” Brain Research, vol. 34, no. 1, pp. 171–175, 1971. View at Google Scholar · View at Scopus
  3. M. A. Wilson and B. L. McNaughton, “Reactivation of hippocampal ensemble memories during sleep,” Science, vol. 265, no. 5172, pp. 676–679, 1994. View at Google Scholar · View at Scopus
  4. W. E. Skaggs and B. L. McNaughton, “Replay of neuronal firing sequences in rat hippocampus during sleep following spatial experience,” Science, vol. 271, no. 5257, pp. 1870–1873, 1996. View at Google Scholar · View at Scopus
  5. K. Louie and M. A. Wilson, “Temporally structured replay of awake hippocampal ensemble activity during rapid eye movement sleep,” Neuron, vol. 29, no. 1, pp. 145–156, 2001. View at Publisher · View at Google Scholar · View at Scopus
  6. A. K. Lee and M. A. Wilson, “Memory of sequential experience in the hippocampus during slow wave sleep,” Neuron, vol. 36, no. 6, pp. 1183–1194, 2002. View at Publisher · View at Google Scholar · View at Scopus
  7. G. Buzsáki, L. Leung, and C. Vanderwolf, “Cellular bases of hippocampal EEG in the behaving rat,” Brain Research, vol. 287, no. 2, pp. 139–171, 1983. View at Google Scholar · View at Scopus
  8. G. Buzsáki, “Hippocampal sharp waves: their origin and significance,” Brain Research, vol. 398, no. 2, pp. 242–252, 1986. View at Google Scholar · View at Scopus
  9. G. Buzsáki, Z. Horvát, R. Urioste, J. Hetke, and K. Wise, “High-frequency network oscillation in the hippocampus,” Science, vol. 256, no. 5059, pp. 1025–1027, 1992. View at Google Scholar · View at Scopus
  10. R. G. M. Morris, P. Garrud, J. N. P. Rawlins, and J. O'Keefe, “Place navigation impaired in rats with hippocampal lesions,” Nature, vol. 297, no. 5868, pp. 681–683, 1982. View at Google Scholar · View at Scopus
  11. N. J. Fortin, K. L. Agster, and H. B. Eichenbaum, “Critical role of the hippocampus in memory for sequences of events,” Nature Neuroscience, vol. 5, no. 5, pp. 458–462, 2002. View at Publisher · View at Google Scholar · View at Scopus
  12. J. J. Kim and M. S. Fanselow, “Modality-specific retrograde amnesia of fear,” Science, vol. 256, no. 5057, pp. 675–677, 1992. View at Google Scholar · View at Scopus
  13. G. Buzsáki, “Two-stage model of memory trace formation: a role for “noisy” brain states,” Neuroscience, vol. 31, no. 3, pp. 551–570, 1989. View at Publisher · View at Google Scholar · View at Scopus
  14. J. L. McClelland, B. L. McNaughton, and R. C. O'Reilly, “Why there are complementary learning systems in the hippocampus and neocortex: insights from the successes and failures of connectionist models of learning and memory,” Psychological Review, vol. 102, no. 3, pp. 419–457, 1995. View at Google Scholar · View at Scopus
  15. A. S. Gupta, M. A. A. van der Meer, D. S. Touretzky, and A. D. Redish, “Hippocampal replay is not a simple function of experience,” Neuron, vol. 65, no. 5, pp. 695–705, 2010. View at Publisher · View at Google Scholar · View at Scopus
  16. G. Dragoi and S. Tonegawa, “Preplay of future place cell sequences by hippocampal cellular assemblies,” Nature, vol. 469, pp. 397–401, 2010. View at Publisher · View at Google Scholar · View at Scopus
  17. S. Diekelmann and J. Born, “The memory function of sleep,” Nature Reviews Neuroscience, vol. 11, no. 2, pp. 114–126, 2010. View at Publisher · View at Google Scholar · View at Scopus
  18. D. Marr, “Simple memory: a theory for archicortex,” Philosophical Transactions of the Royal Society of London, Series B, vol. 262, no. 841, pp. 23–81, 1971. View at Google Scholar · View at Scopus
  19. F. Crick and G. Mitchison, “The function of dream sleep,” Nature, vol. 304, no. 5922, pp. 111–114, 1983. View at Google Scholar · View at Scopus
  20. N. Axmacher, C. E. Elger, and J. Fell, “Ripples in the medial temporal lobe are relevant for human memory consolidation,” Brain, vol. 131, part 7, pp. 1806–1817, 2008. View at Publisher · View at Google Scholar · View at Scopus
  21. D. Dupret, J. O'Neill, B. Pleydell-Bouverie, and J. Csicsvari, “The reorganization and reactivation of hippocampal maps predict spatial memory performance,” Nature Neuroscience, vol. 13, no. 8, pp. 995–1002, 2010. View at Publisher · View at Google Scholar · View at Scopus
  22. G. Girardeau, K. Benchenane, S. I. Wiener, G. Buzsáki, and M. B. Zugaro, “Selective suppression of hippocampal ripples impairs spatial memory,” Nature Neuroscience, vol. 12, no. 10, pp. 1222–1223, 2009. View at Publisher · View at Google Scholar · View at Scopus
  23. V. Ego-Stengel and M. A. Wilson, “Disruption of ripple-associated hippocampal activity during rest impairs spatial learning in the rat,” Hippocampus, vol. 20, no. 1, pp. 1–10, 2010. View at Publisher · View at Google Scholar · View at Scopus
  24. D. J. Foster and M. A. Wilson, “Reverse replay of behavioural sequences in hippocampal place cells during the awake state,” Nature, vol. 440, no. 7084, pp. 680–683, 2006. View at Publisher · View at Google Scholar · View at Scopus
  25. J. C. Jackson, A. Johnson, and A. D. Redish, “Hippocampal sharp waves and reactivation during awake states depend on repeated sequential experience,” Journal of Neuroscience, vol. 26, no. 48, pp. 12415–12426, 2006. View at Publisher · View at Google Scholar · View at Scopus
  26. J. O'Neill, T. J. Senior, K. Allen, J. R. Huxter, and J. Csicsvari, “Reactivation of experience-dependent cell assembly patterns in the hippocampus,” Nature Neuroscience, vol. 11, no. 2, pp. 209–215, 2008. View at Publisher · View at Google Scholar · View at Scopus
  27. T. V. P. Bliss and T. Lomo, “Long lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path,” Journal of Physiology, vol. 232, no. 2, pp. 331–356, 1973. View at Google Scholar · View at Scopus
  28. W. Gerstner, R. Kempter, J. L. van Hemmen, and H. Wagner, “A neuronal learning rule for sub-millisecond temporal coding,” Nature, vol. 383, no. 6595, pp. 76–78, 1996. View at Publisher · View at Google Scholar · View at Scopus
  29. H. Markram, J. Lübke, M. Frotscher, and B. Sakmann, “Regulation of synaptic efficacy by coincidence of postsynaptic APs and EPSPs,” Science, vol. 275, no. 5297, pp. 213–215, 1997. View at Publisher · View at Google Scholar · View at Scopus
  30. J. C. Magee and D. Johnston, “A synaptically controlled, associative signal for Hebbian plasticity in hippocampal neurons,” Science, vol. 275, no. 5297, pp. 209–213, 1997. View at Publisher · View at Google Scholar · View at Scopus
  31. Z. Nadasdy, H. Hirase, A. Czurko, J. Csicsvari, and G. Buzsáki, “Replay and time compression of recurring spike sequences in the hippocampus,” Journal of Neuroscience, vol. 19, no. 21, pp. 9497–9507, 1999. View at Google Scholar
  32. J. O'Keefe and M. L. Recce, “Phase relationship between hippocampal place units and the EEG theta rhythm,” Hippocampus, vol. 3, no. 3, pp. 317–330, 1993. View at Google Scholar · View at Scopus
  33. R. Schmidt, K. Diba, C. Leibold, D. Schmitz, G. Buzsáki, and R. Kempter, “Single-trial phase precession in the hippocampus,” Journal of Neuroscience, vol. 29, no. 42, pp. 13232–13241, 2009. View at Publisher · View at Google Scholar · View at Scopus
  34. Y. L. Qin, B. L. McNaughton, W. E. Skaggs, and C. A. Barnes, “Memory reprocessing in corticocortical and hippocampocortical neuronal ensembles,” Philosophical Transactions of the Royal, Society B, vol. 352, no. 1360, pp. 1525–1533, 1997. View at Publisher · View at Google Scholar · View at Scopus
  35. D. Ji and M. A. Wilson, “Coordinated memory replay in the visual cortex and hippocampus during sleep,” Nature Neuroscience, vol. 10, no. 1, pp. 100–107, 2007. View at Publisher · View at Google Scholar · View at Scopus
  36. D. R. Euston, M. Tatsuno, and B. L. McNaughton, “Fast-forward playback of recent memory sequences in prefrontal cortex during sleep,” Science, vol. 318, no. 5853, pp. 1147–1150, 2007. View at Publisher · View at Google Scholar · View at Scopus
  37. A. Peyrache, M. Khamassi, K. Benchenane, S. I. Wiener, and F. P. Battaglia, “Replay of rule-learning related neural patterns in the prefrontal cortex during sleep,” Nature Neuroscience, vol. 12, no. 7, pp. 919–926, 2009. View at Publisher · View at Google Scholar · View at Scopus
  38. C. M. A. Pennartz, E. Lee, J. Verheul, P. Lipa, C. A. Barnes, and B. L. McNaughton, “The ventral striatum in off-line processing: ensemble reactivation during sleep and modulation by hippocampal ripples,” Journal of Neuroscience, vol. 24, no. 29, pp. 6446–6456, 2004. View at Publisher · View at Google Scholar · View at Scopus
  39. C. S. Lansink, P. M. Goltstein, J. V. Lankelma, R. N. J. M. A. Joosten, B. L. McNaughton, and C. M. A. Pennartz, “Preferential reactivation of motivationally relevant information in the ventral striatum,” Journal of Neuroscience, vol. 28, no. 25, pp. 6372–6382, 2008. View at Publisher · View at Google Scholar · View at Scopus
  40. C. S. Lansink, P. M. Goltstein, J. V. Lankelma, B. L. McNaughton, and C. M. A. Pennartz, “Hippocampus leads ventral striatum in replay of place-reward information,” PLoS Biology, vol. 7, no. 8, Article ID e1000173, 2009. View at Publisher · View at Google Scholar · View at Scopus
  41. A. Bragin, J. Engel, C. L. Wilson, I. Fried, and G. Buzsáki, “High-frequency oscillations in human brain,” Hippocampus, vol. 9, no. 2, pp. 137–142, 1999. View at Publisher · View at Google Scholar · View at Scopus
  42. F. Grenier, I. Timofeev, and M. Steriade, “Focal synchronization of ripples (80–200 Hz) in neocortex and their neuronal correlates,” Journal of Neurophysiology, vol. 86, no. 4, pp. 1884–1898, 2001. View at Google Scholar · View at Scopus
  43. A. Siapas and M. Wilson, “Coordinated interactions between hippocampal ripples and cortical spindles during slow-wave sleep,” Neuron, vol. 21, no. 5, pp. 1123–1128, 1998. View at Publisher · View at Google Scholar · View at Scopus
  44. M. Steriade, A. Nunez, and F. Amzica, “Intracellular analysis of relations between the slow (<1 Hz) neocortical oscillation and other sleep rhythms of the electroencephalogram,” Journal of Neuroscience, vol. 13, no. 8, pp. 3266–3283, 1993. View at Google Scholar · View at Scopus
  45. R. L. Cowan and C. J. Wilson, “Spontaneous firing patterns and axonal projections of single corticostriatal neurons in the rat medial agranular cortex,” Journal of Neurophysiology, vol. 71, no. 1, pp. 17–32, 1994. View at Google Scholar · View at Scopus
  46. A. Sirota, J. Csicsvari, D. Buhl, and G. Buzsáki, “Communication between neocortex and hippocampus during sleep in rodents,” Proceedings of the National Academy of Sciences of the United States of America, vol. 100, no. 4, pp. 2065–2069, 2003. View at Publisher · View at Google Scholar · View at Scopus
  47. F. P. Battaglia, G. R. Sutherland, and B. L. McNaughton, “Hippocampal sharp wave bursts coincide with neocortical “up-state” transitions,” Learning and Memory, vol. 11, no. 6, pp. 697–704, 2004. View at Publisher · View at Google Scholar · View at Scopus
  48. M. Mölle, O. Yeshenko, L. Marshall, S. J. Sara, and J. Born, “Hippocampal sharp wave-ripples linked to slow oscillations in rat slow-wave sleep,” Journal of Neurophysiology, vol. 96, no. 1, pp. 62–70, 2006. View at Publisher · View at Google Scholar · View at Scopus
  49. T. T. G. Hahn, B. Sakmann, and M. R. Mehta, “Phase-locking of hippocampal interneurons' membrane potential to neocortical up-down states,” Nature Neuroscience, vol. 9, no. 11, pp. 1359–1361, 2006. View at Publisher · View at Google Scholar · View at Scopus
  50. Y. Isomura, A. Sirota, S. Özen et al., “Integration and segregation of activity in entorhinal-hippocampal subregions by neocortical slow oscillations,” Neuron, vol. 52, no. 5, pp. 871–882, 2006. View at Publisher · View at Google Scholar · View at Scopus
  51. M. Volgushev, S. Chauvette, M. Mukovski, and I. Timofeev, “Precise long-range synchronization of activity and silence in neocortical neurons during slow-wave sleep,” Journal of Neuroscience, vol. 26, no. 21, pp. 5665–5672, 2006. View at Publisher · View at Google Scholar · View at Scopus
  52. C. M. Wierzynski, E. V. Lubenov, M. Gu, and A. G. Siapas, “State-dependent spike-timing relationships between hippocampal and prefrontal circuits during sleep,” Neuron, vol. 61, no. 4, pp. 587–596, 2009. View at Publisher · View at Google Scholar · View at Scopus
  53. H. Groenewegen, E. Derzee, A. Tekortschot, and M. Witter, “Organization of the projections from the subiculum to the ventral striatum in the rat: a study using anterograde transport of Phaseolus vulgaris leucoagglutinin,” Neuroscience, vol. 23, no. 1, pp. 103–120, 1987. View at Google Scholar · View at Scopus
  54. K. L. Hoffman and B. L. McNaughton, “Coordinated reactivation of distributed memory traces in primate neocortex,” Science, vol. 297, no. 5589, pp. 2070–2073, 2002. View at Publisher · View at Google Scholar · View at Scopus
  55. L. A. Johnson, D. R. Euston, M. Tatsuno, and B. L. McNaughton, “Stored-trace reactivation in rat prefrontal cortex is correlated with down-to-up state fluctuation density,” Journal of Neuroscience, vol. 30, no. 7, pp. 2650–2661, 2010. View at Publisher · View at Google Scholar · View at Scopus
  56. Z. Clemens, M. Mölle, L. Eröss, P. Barsi, P. Halász, and J. Born, “Temporal coupling of parahippocampal ripples, sleep spindles and slow oscillations in humans,” Brain, vol. 130, no. 11, pp. 2868–2878, 2007. View at Publisher · View at Google Scholar · View at Scopus
  57. A. D. Ekstrom, M. J. Kahana, J. B. Caplan et al., “Cellular networks underlying human spatial navigation,” Nature, vol. 425, no. 6954, pp. 184–188, 2003. View at Publisher · View at Google Scholar · View at Scopus
  58. W. E. Skaggs, B. L. McNaughton, M. Permenter et al., “EEG sharp waves and sparse ensemble unit activity in the macaque hippocampus,” Journal of Neurophysiology, vol. 98, no. 2, pp. 898–910, 2007. View at Publisher · View at Google Scholar · View at Scopus
  59. M. S. Nokia, M. Penttonen, and J. Wikgren, “Hippocampal ripple-contingent training accelerates trace eyeblink conditioning and retards extinction in rabbits,” Journal of Neuroscience, vol. 30, no. 34, pp. 11486–11492, 2010. View at Publisher · View at Google Scholar · View at Scopus
  60. A. S. Dave and D. Margoliash, “Song replay during sleep and computational rules for sensorimotor vocal learning,” Science, vol. 290, no. 5492, pp. 812–816, 2000. View at Publisher · View at Google Scholar · View at Scopus
  61. H. S. Kudrimoti, C. A. Barnes, and B. L. McNaughton, “Reactivation of hippocampal cell assemblies: effects of behavioral state, experience, and EEG dynamics,” Journal of Neuroscience, vol. 19, no. 10, pp. 4090–4101, 1999. View at Google Scholar · View at Scopus
  62. J. O'Neill, T. Senior, and J. Csicsvari, “Place-selective firing of CA1 pyramidal cells during sharp wave/ripple network patterns in exploratory behavior,” Neuron, vol. 49, no. 1, pp. 143–155, 2006. View at Publisher · View at Google Scholar · View at Scopus
  63. J. Csicsvari, J. O'Neill, K. Allen, and T. Senior, “Place-selective firing contributes to the reverse-order reactivation of CA1 pyramidal cells during sharp waves in open-field exploration,” European Journal of Neuroscience, vol. 26, no. 3, pp. 704–716, 2007. View at Publisher · View at Google Scholar · View at Scopus
  64. K. Diba and G. Buzsáki, “Forward and reverse hippocampal place-cell sequences during ripples,” Nature Neuroscience, vol. 10, no. 10, pp. 1241–1242, 2007. View at Publisher · View at Google Scholar · View at Scopus
  65. T. J. Davidson, F. Kloosterman, and M. A. Wilson, “Hippocampal replay of extended experience,” Neuron, vol. 63, no. 4, pp. 497–507, 2009. View at Publisher · View at Google Scholar · View at Scopus
  66. M. P. Karlsson and L. M. Frank, “Awake replay of remote experiences in the hippocampus,” Nature Neuroscience, vol. 12, no. 7, pp. 913–918, 2009. View at Publisher · View at Google Scholar · View at Scopus
  67. J. Epsztein, M. Brecht, and A. K. Lee, “Intracellular determinants of hippocampal CA1 place and silent cell activity in a novel environment,” Neuron, vol. 70, no. 1, pp. 109–120, 2011. View at Publisher · View at Google Scholar
  68. C. D. Harvey, F. Collman, D. A. Dombeck, and D. W. Tank, “Intracellular dynamics of hippocampal place cells during virtual navigation,” Nature, vol. 461, no. 7266, pp. 941–946, 2009. View at Publisher · View at Google Scholar · View at Scopus
  69. S. Cheng and L. M. Frank, “New experiences enhance coordinated neural activity in the hippocampus,” Neuron, vol. 57, no. 2, pp. 303–313, 2008. View at Publisher · View at Google Scholar · View at Scopus
  70. M. F. Carr, S. P. Jadhav, and L. M. Frank, “Hippocampal replay in the awake state: a potential substrate for memory consolidation and retrieval,” Nature Neuroscience, vol. 14, no. 2, pp. 147–153, 2011. View at Publisher · View at Google Scholar
  71. S. Ribeiro, D. Gervasoni, E. S. Soares et al., “Long-lasting novelty-induced neuronal reverberation during slow-wave sleep in multiple forebrain areas,” PLoS Biology, vol. 2, no. 1, article e24, 2004. View at Publisher · View at Google Scholar · View at Scopus
  72. M. Tatsuno, P. Lipa, and B. L. McNaughton, “Methodological considerations on the use of template matching to study long-lasting memory trace replay,” Journal of Neuroscience, vol. 26, no. 42, pp. 10727–10742, 2006. View at Publisher · View at Google Scholar · View at Scopus
  73. O. Eschenko, W. Ramadan, M. Mölle, J. Born, and S. J. Sara, “Sustained increase in hippocampal sharp-wave ripple activity during slow-wave sleep after learning,” Learning and Memory, vol. 15, no. 4, pp. 222–228, 2008. View at Publisher · View at Google Scholar · View at Scopus
  74. W. Ramadan, O. Eschenko, and S. J. Sara, “Hippocampal sharp wave/ripples during sleep for consolidation of associative memory,” PLoS ONE, vol. 4, no. 8, Article ID e6697, 2009. View at Publisher · View at Google Scholar · View at Scopus
  75. B. F. Skinner, The Science of Learning and the Art of Teaching, Cambridge, Mass, USA, 1954.
  76. G. H. Bower, “Mood and memory,” The American Psychologist, vol. 36, no. 2, pp. 129–148, 1981. View at Publisher · View at Google Scholar · View at Scopus
  77. B. Roozendaal, “Stress and memory: opposing effects of glucocorticoids on memory consolidation and memory retrieval,” Neurobiology of Learning and Memory, vol. 78, no. 3, pp. 578–595, 2002. View at Publisher · View at Google Scholar · View at Scopus
  78. R. C. Grider and K. J. Malmberg, “Discriminating between changes in bias and changes in accuracy for recognition memory of emotional stimuli,” Memory and Cognition, vol. 36, no. 5, pp. 933–946, 2008. View at Publisher · View at Google Scholar · View at Scopus
  79. A. C. Singer and L. M. Frank, “Rewarded outcomes enhance reactivation of experience in the hippocampus,” Neuron, vol. 64, no. 6, pp. 910–921, 2009. View at Publisher · View at Google Scholar · View at Scopus
  80. I. Lee, A. L. Griffin, E. A. Zilli, H. Eichenbaum, and M. E. Hasselmo, “Gradual translocation of spatial correlates of neuronal firing in the hippocampus toward prospective reward locations,” Neuron, vol. 51, no. 5, pp. 639–650, 2006. View at Publisher · View at Google Scholar · View at Scopus
  81. W. Schultz, P. Apicella, E. Scarnati, and T. Ljungberg, “Neuronal activity in monkey ventral striatum related to the expectation of reward,” Journal of Neuroscience, vol. 12, no. 12, pp. 4595–4610, 1992. View at Google Scholar · View at Scopus
  82. J. J. Hopfield, “Neurodynamics of mental exploration,” Proceedings of the National Academy of Sciences of the United States of America, vol. 107, no. 4, pp. 1648–1653, 2010. View at Publisher · View at Google Scholar · View at Scopus
  83. E. C. Tolman, “Cognitive maps in rats and men,” Psychological Review, vol. 55, no. 4, pp. 189–208, 1948. View at Publisher · View at Google Scholar · View at Scopus
  84. J. O'Keefe and L. Nadel, The Hippocampus as a Cognitive Map, Clarendon Press, Oxford, UK, 1978.
  85. R. L. Buckner, “The role of the hippocampus in prediction and imagination,” Annual Review of Psychology, vol. 61, no. 1, pp. 27–48, 2010. View at Publisher · View at Google Scholar · View at Scopus
  86. A. Samsonovich and B. L. McNaughton, “Path integration and cognitive mapping in a continuous attractor neural network model,” Journal of Neuroscience, vol. 17, no. 15, pp. 5900–5920, 1997. View at Google Scholar · View at Scopus
  87. A. Johnson and A. D. Redish, “Neural ensembles in CA3 transiently encode paths forward of the animal at a decision point,” Journal of Neuroscience, vol. 27, no. 45, pp. 12176–12189, 2007. View at Publisher · View at Google Scholar · View at Scopus
  88. N. Axmacher, F. Mormann, G. Fernandez, C. E. Elger, and J. Fell, “Memory formation by neuronal synchronization,” Brain Research Reviews, vol. 52, no. 1, pp. 170–182, 2006. View at Publisher · View at Google Scholar · View at Scopus
  89. J. Fell and N. Axmacher, “The role of phase synchronization in memory processes,” Nature Reviews Neuroscience, vol. 12, no. 2, pp. 105–118, 2011. View at Publisher · View at Google Scholar
  90. G. Daoudal and D. Debanne, “Long-term plasticity of intrinsic excitability: learning rules and mechanisms,” Learning and Memory, vol. 10, no. 6, pp. 456–465, 2003. View at Publisher · View at Google Scholar · View at Scopus
  91. N. Axmacher, A. Draguhn, C. E. Elger, and J. Fell, “Memory processes during sleep: beyond the standard consolidation theory,” Cellular and Molecular Life Sciences, vol. 66, no. 14, pp. 2285–2297, 2009. View at Publisher · View at Google Scholar · View at Scopus
  92. S. Káli and P. Dayan, “Off-line replay maintains declarative memories in a model of hippocampal-neocortical interactions,” Nature Neuroscience, vol. 7, no. 3, pp. 286–294, 2004. View at Publisher · View at Google Scholar · View at Scopus
  93. L. Nadel and M. Moscovitch, “Memory consolidation, retrograde amnesia and the hippocampal complex,” Current Opinion in Neurobiology, vol. 7, no. 2, pp. 217–227, 1997. View at Publisher · View at Google Scholar · View at Scopus
  94. B. Rasch and J. Born, “Maintaining memories by reactivation,” Current Opinion in Neurobiology, vol. 17, no. 6, pp. 698–703, 2007. View at Publisher · View at Google Scholar · View at Scopus
  95. M. R. Mehta, “Cortico-hippocampal interaction during up-down states and memory consolidation,” Nature Neuroscience, vol. 10, no. 1, pp. 13–15, 2007. View at Publisher · View at Google Scholar · View at Scopus
  96. L. L. Colgin, D. Kubota, Y. Jia, C. S. Rex, and G. Lynch, “Long-term potentiation is impaired in rat hippocampal slices that produce spontaneous sharp waves,” Journal of Physiology, vol. 558, no. 3, pp. 953–961, 2004. View at Publisher · View at Google Scholar · View at Scopus
  97. G. Tononi and C. Cirelli, “Sleep function and synaptic homeostasis,” Sleep Medicine Reviews, vol. 10, no. 1, pp. 49–62, 2006. View at Publisher · View at Google Scholar · View at Scopus
  98. E. Pastalkova, V. Itskov, A. Amarasingham, and G. Buzsáki, “Internally generated cell assembly sequences in the rat hippocampus,” Science, vol. 321, no. 5894, pp. 1322–1327, 2008. View at Publisher · View at Google Scholar · View at Scopus
  99. H. Gelbard-Sagiv, R. Mukamel, M. Harel, R. Malach, and I. Fried, “Internally generated reactivation of single neurons in human hippocampus during free recall,” Science, vol. 322, no. 5898, pp. 96–101, 2008. View at Publisher · View at Google Scholar · View at Scopus
  100. L. Fuentemilla, W. D. Penny, N. Cashdollar, N. Bunzeck, and E. Düzel, “Theta-coupled periodic replay in working memory,” Current Biology, vol. 20, no. 7, pp. 606–612, 2010. View at Publisher · View at Google Scholar · View at Scopus
  101. S. Cheng and P. N. Sabes, “Modeling sensorimotor learning with linear dynamical systems,” Neural Computation, vol. 18, no. 4, pp. 760–793, 2006. View at Publisher · View at Google Scholar · View at Scopus
  102. S. Cheng and P. N. Sabes, “Calibration of visually guided reaching is driven by error-corrective learning and internal dynamics,” Journal of Neurophysiology, vol. 97, no. 4, pp. 3057–3069, 2007. View at Publisher · View at Google Scholar · View at Scopus