Table of Contents Author Guidelines Submit a Manuscript
Neural Plasticity
Volume 2011, Article ID 413543, 15 pages
http://dx.doi.org/10.1155/2011/413543
Research Article

Motor Cortical Networks for Skilled Movements Have Dynamic Properties That Are Related to Accurate Reaching

1Neuroscience Statistics Research Laboratory, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
2Department of Brain and Cognitive Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
3Centre for Neuromuscular and Neurological Disorders, University of Western Australia, QEII Medical Centre, Nedlands, WA 6009, Australia
4Neuroscience Statistics Research Laboratory, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, 55 Fruit Street, Boston, MA 02114, USA

Received 15 February 2011; Revised 14 July 2011; Accepted 11 August 2011

Academic Editor: Johannes J. Letzkus

Copyright © 2011 David F. Putrino et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. R. Porter and R. N. Lemon, Corticospinal Function and Voluntary Movement, Clarendon Press, Oxford, UK, 1993.
  2. J. F. Kalaska, “From intention to action: motor cortex and the control of reaching movements,” in Progress in Motor Control: A Multidisciplinary Perspective, D. Sternad, Ed., pp. 139–178, Springer, New York, NY, USA, 2008. View at Google Scholar
  3. I. H. Stevenson, J. M. Rebesco, L. E. Miller, and K. P. Körding, “Inferring functional connections between neurons,” Current Opinion in Neurobiology, vol. 18, no. 6, pp. 582–588, 2008. View at Publisher · View at Google Scholar · View at Scopus
  4. R. P. Erickson, “The evolution and implications of population and modular neural coding ideas,” in Progress in Brain Research, M. A. Nicholelis, Ed., vol. 130 of Advances in Neural Population Coding, pp. 9–29, Elsevier, Amsterdam, The Netherlands, 2001. View at Google Scholar
  5. E. E. Fetz, K. Toyama, and W. S. Smith, “Synaptic interactions between cortical neurons,” in Cerebral Cortex, A. Peters, Ed., vol. 9, pp. 1–47, Plenum, New York, NY, USA, 1991. View at Google Scholar
  6. P. Konig and A. K. Engel, “Correlated firing in sensory-motor systems,” Current Opinion in Neurobiology, vol. 5, no. 4, pp. 511–519, 1995. View at Publisher · View at Google Scholar · View at Scopus
  7. S. Ghosh, D. Putrino, B. Burro, and A. Ring, “Patterns of spatio-temporal correlations in the neural activity of the cat motor cortex during trained forelimb movements,” Somatosensory and Motor Research, vol. 26, no. 2-3, pp. 31–49, 2009. View at Publisher · View at Google Scholar · View at Scopus
  8. D. Putrino, F. L. Mastaglia, and S. Ghosh, “Neural integration of reaching and posture: interhemispheric spike correlations in cat motor cortex,” Experimental Brain Research, vol. 202, no. 4, pp. 765–777, 2010. View at Publisher · View at Google Scholar · View at Scopus
  9. E. Vaadia, I. Haalman, M. Abeles et al., “Dynamics of neuronal interactions in monkey cortex in relation to behavioural events,” Nature, vol. 373, no. 6514, pp. 515–518, 1995. View at Google Scholar · View at Scopus
  10. D. Putrino, E. N. Brown, F. L. Mastaglia, and S. Ghosh, “Differential involvement of excitatory and inhibitory neurons of cat motor cortex in coincident spike activity related to behavioral context,” Journal of Neuroscience, vol. 30, no. 23, pp. 8048–8056, 2010. View at Publisher · View at Google Scholar · View at Scopus
  11. Y. Isomura, R. Harukuni, T. Takekawa, H. Aizawa, and T. Fukai, “Microcircuitry coordination of cortical motor information in self-initiation of voluntary movements,” Nature Neuroscience, vol. 12, no. 12, pp. 1586–1593, 2009. View at Publisher · View at Google Scholar · View at Scopus
  12. H. Merchant, T. Naselaris, and A. P. Georgopoulos, “Dynamic sculpting of directional tuning in the primate motor cortex during three-dimensional reaching,” Journal of Neuroscience, vol. 28, no. 37, pp. 9164–9172, 2008. View at Publisher · View at Google Scholar · View at Scopus
  13. B. Alstermark, A. Lundberg, L. G. Pettersson, B. Tantisira, and M. Walkowska, “Characteristics of target-reaching in cats. I. Individual differences and intra-individual constancy,” Experimental Brain Research, vol. 94, no. 2, pp. 279–286, 1993. View at Google Scholar · View at Scopus
  14. A. Boczek-Funcke, J. P. Kuhtz-Buschbeck, and M. Illert, “X-ray kinematic analysis of shoulder movements during target reaching and food taking in the cat,” European Journal of Neuroscience, vol. 11, no. 3, pp. 986–996, 1999. View at Publisher · View at Google Scholar · View at Scopus
  15. A. Boczek-Funcke, J. P. Kuhtz-Buschbeck, B. Paschmeyer, and M. Illert, “X-ray kinematic analysis of forelimb movements during target reaching and food taking in the cat,” European Journal of Neuroscience, vol. 12, no. 5, pp. 1817–1826, 2000. View at Publisher · View at Google Scholar · View at Scopus
  16. A. Boczek-Funcke, J. P. Kuhtz-Buschbeck, J. Raethjen, B. Paschmeyer, and M. Illert, “Shaping of the cat paw for food taking and object manipulation: an X-ray analysis,” European Journal of Neuroscience, vol. 10, no. 12, pp. 3885–3897, 1998. View at Publisher · View at Google Scholar · View at Scopus
  17. L. G. Pettersson, S. Perfiliev, E. Zotova, and A. Lundberg, “Role of claws and pads in taking and holding food in cats,” Neuroscience Research, vol. 31, no. 4, pp. 343–346, 1998. View at Publisher · View at Google Scholar · View at Scopus
  18. J. Csicsvari, H. Hirase, A. Czurkó, and G. Buzsáki, “Reliability and state dependence of pyramidal cell-interneuron synapses in the hippocampus: an ensemble approach in the behaving rat,” Neuron, vol. 21, no. 1, pp. 179–189, 1998. View at Publisher · View at Google Scholar · View at Scopus
  19. C. Constantinidis and P. S. Goldman-Rakic, “Correlated discharges among putative pyramidal neurons and interneurons in the primate prefrontal cortex,” Journal of Neurophysiology, vol. 88, no. 6, pp. 3487–3497, 2002. View at Google Scholar · View at Scopus
  20. S. G. Rao, G. V. Williams, and P. S. Goldman-Rakic, “Isodirectional tuning of adjacent interneurons and pyramidal cells during working memory: evidence for microcolumnar organization in PFC,” Journal of Neurophysiology, vol. 81, no. 4, pp. 1903–1916, 1999. View at Google Scholar · View at Scopus
  21. F. A. W. Wilson, S. P. O. Scalaidhe, and P. S. Goldman-Rakic, “Functional synergism between putative γ-aminobutyrate-containing neurons and pyramidal neurons in prefrontal cortex,” Proceedings of the National Academy of Sciences of the United States of America, vol. 91, no. 9, pp. 4009–4013, 1994. View at Google Scholar · View at Scopus
  22. R. Azouz, C. M. Gray, L. G. Nowak, and D. A. McCormick, “Physiological properties of inhibitory interneurons in cat striate cortex,” Cerebral Cortex, vol. 7, no. 6, pp. 534–545, 1997. View at Publisher · View at Google Scholar · View at Scopus
  23. W. Chen, J. J. Zhang, G. Y. Hu, and C. P. Wu, “Electrophysiological and morphological properties of pyramidal and nonpyramidal neurons in the cat motor cortex in vitro,” Neuroscience, vol. 73, no. 1, pp. 39–55, 1996. View at Publisher · View at Google Scholar · View at Scopus
  24. Y. Kawaguchi, “Physiological subgroups of nonpyramidal cells with specific morphological characteristics in layer II/III of rat frontal cortex,” Journal of Neuroscience, vol. 15, no. 4, pp. 2638–2655, 1995. View at Google Scholar · View at Scopus
  25. D. A. McCormick, B. W. Connors, J. W. Lighthall, and D. A. Prince, “Comparative electrophysiology of pyramidal and sparsely spiny stellate neurons of the neocortex,” Journal of Neurophysiology, vol. 54, no. 4, pp. 782–806, 1985. View at Google Scholar · View at Scopus
  26. A. M. H. J. Aertsen and G. L. Gerstein, “Evaluation of neuronal connectivity: sensitivity of cross-correlation,” Brain Research, vol. 340, no. 2, pp. 341–354, 1985. View at Publisher · View at Google Scholar · View at Scopus
  27. G. L. Gerstein and D. H. Perkel, “Simultaneously recorded trains of action potentials: analysis and functional interpretation,” Science, vol. 164, no. 3881, pp. 828–830, 1969. View at Google Scholar · View at Scopus
  28. D. H. Perkel, G. L. Gerstein, and G. P. Moore, “Neuronal spike trains and stochastic point processes. II. Simultaneous spike trains,” Biophysical Journal, vol. 7, no. 4, pp. 419–440, 1967. View at Google Scholar · View at Scopus
  29. E. S. Chornoboy, L. P. Schramm, and A. F. Karr, “Maximum likelihood identification of neural point process systems,” Biological Cybernetics, vol. 59, no. 4-5, pp. 265–275, 1988. View at Google Scholar · View at Scopus
  30. W. Truccolo, U. T. Eden, M. R. Fellows, J. P. Donoghue, and E. N. Brown, “A point process framework for relating neural spiking activity to spiking history, neural ensemble, and extrinsic covariate effects,” Journal of Neurophysiology, vol. 93, no. 2, pp. 1074–1089, 2005. View at Publisher · View at Google Scholar · View at Scopus
  31. M. Okatan, M. A. Wilson, and E. N. Brown, “Analyzing functional connectivity using a network likelihood model of ensemble neural spiking activity,” Neural Computation, vol. 17, no. 9, pp. 1927–1961, 2005. View at Publisher · View at Google Scholar · View at Scopus
  32. L. Paninski, “Maximum likelihood estimation of cascade point-process neural encoding models,” Network: Computation in Neural Systems, vol. 15, no. 4, pp. 243–262, 2004. View at Publisher · View at Google Scholar · View at Scopus
  33. J. W. Pillow, J. Shlens, L. Paninski et al., “Spatio-temporal correlations and visual signalling in a complete neuronal population,” Nature, vol. 454, no. 7207, pp. 995–999, 2008. View at Publisher · View at Google Scholar · View at Scopus
  34. E. N. Brown, R. Barbieri, U. T. Eden, and L. M. Frank, “Likelihood methods for neural data analysis,” in Computational Neuroscience: A Comprehensive Approach, J. Feng, Ed., CRC Press, London, UK, 2003. View at Google Scholar
  35. L. Breiman, “Statistical modeling: the two cultures,” Statistical Science, vol. 16, no. 3, pp. 199–231, 2001. View at Google Scholar · View at Scopus
  36. D. J. Daley and D. Vere-Jones, An Introduction to the Theory of Point Processes, Springer, New York, NY, USA, 2nd edition, 2003.
  37. Z. Chen, D. F. Putrino, D. E. Ba, S. Ghosh, R. Barbieri, and E. N. Brown, “A regularized point process generalized linear model for assessing the functional connectivity in the cat motor cortex,” in Proceedings of the 31st Annual International Conference of the IEEE Engineering in Medicine and Biology Society: Engineering the Future of Biomedicine (EMBC '09), pp. 5006–5009, IEEE Press, 2009. View at Publisher · View at Google Scholar · View at Scopus
  38. Y. Pawitan, In All Likelihood: Statistical Modelling and Inference Using Likelihood, Oxford University Press, New York, NY, USA, 2001.
  39. Z. Chen, D. F. Putrino, S. Ghosh, R. Barbieri, and E. N. Brown, “Statistical inference for assessing functional connectivity of neuronal ensembles with sparse spiking data,” IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. 19, no. 2, pp. 121–135, 2011. View at Publisher · View at Google Scholar
  40. S. Ghosh, “Identification of motor areas of the cat cerebral cortex based on studies of cortical stimulation and corticospinal connections,” Journal of Comparative Neurology, vol. 380, no. 2, pp. 191–214, 1997. View at Google Scholar · View at Scopus
  41. S. Ghosh, “Comparison of the cortical connections of areas 4γ and 4δ in the cat cerebral cortex,” Journal of Comparative Neurology, vol. 388, no. 3, pp. 371–396, 1997. View at Google Scholar · View at Scopus
  42. D. S. Vicario, J. H. Martin, and C. Ghez, “Specialized subregions in the cat motor cortex: a single unit analysis in the behaving animal,” Experimental Brain Research, vol. 51, no. 3, pp. 351–367, 1983. View at Google Scholar · View at Scopus
  43. H. Yumiya and C. Ghez, “Specialized subregions in the cat motor cortex: anatomical demonstration of differential projections to rostral and caudal sectors,” Experimental Brain Research, vol. 53, no. 2, pp. 259–276, 1984. View at Google Scholar · View at Scopus
  44. P. McCullagh and J. A. Nelder, Generalized Linear Models, Chapman and Hall, London, UK, 2nd edition, 1989.
  45. E. N. Brown and R. E. Kass, “What is statistics? (with discussion),” American Statistician, vol. 63, pp. 105–123, 2009. View at Google Scholar
  46. E. G. Jones, J. D. Coulter, and S. H. C. Hendry, “Intracortical connectivity of architectonic fields in the somatic sensory, motor and parietal cortex of monkeys,” Journal of Comparative Neurology, vol. 181, no. 2, pp. 291–348, 1978. View at Google Scholar · View at Scopus
  47. E. G. Jones, S. P. Wise, and J. D. Coulter, “Differential thalamic relationships of sensory-motor and parietal cortical fields in monkeys,” Journal of Comparative Neurology, vol. 183, no. 4, pp. 833–881, 1979. View at Google Scholar · View at Scopus
  48. A. Riehle, S. Grün, M. Diesmann, and A. Aertsen, “Spike synchronization and rate modulation differentially involved in motor cortical function,” Science, vol. 278, no. 5345, pp. 1950–1953, 1997. View at Publisher · View at Google Scholar · View at Scopus
  49. M. Beierlein, J. R. Gibson, and B. W. Connors, “A network of electrically coupled interneurons drives synchronized inhibition in neocortex,” Nature Neuroscience, vol. 3, no. 9, pp. 904–910, 2000. View at Publisher · View at Google Scholar · View at Scopus
  50. J. R. Gibson, M. Belerlein, and B. W. Connors, “Two networks of electrically coupled inhibitory neurons in neocortex,” Nature, vol. 402, no. 6757, pp. 75–79, 1999. View at Publisher · View at Google Scholar · View at Scopus
  51. L. M. Frank, E. N. Brown, and M. A. Wilson, “A comparison of the firing properties of putative excitatory and inhibitory neurons from CA1 and the entorhinal cortex,” Journal of Neurophysiology, vol. 86, no. 4, pp. 2029–2040, 2001. View at Google Scholar · View at Scopus
  52. P. Barthó, H. Hirase, L. Monconduit, M. Zugaro, K. D. Harris, and G. Buzsáki, “Characterization of neocortical principal cells and interneurons by network interactions and extracellular features,” Journal of Neurophysiology, vol. 92, no. 1, pp. 600–608, 2004. View at Publisher · View at Google Scholar · View at Scopus
  53. C. Van Vreeswijk and H. Sompolinsky, “Chaos in neuronal networks with balanced excitatory and inhibitory activity,” Science, vol. 274, no. 5293, pp. 1724–1726, 1996. View at Publisher · View at Google Scholar · View at Scopus
  54. J. F. Ferron, D. Kroeger, O. Chever, and F. Amzica, “Cortical inhibition during burst suppression induced with isoflurane anesthesia,” Journal of Neuroscience, vol. 29, no. 31, pp. 9850–9860, 2009. View at Publisher · View at Google Scholar · View at Scopus
  55. N. Gogolla, J. J. LeBlanc, K. B. Quast, T.C. Südhof, and M. Fagiolini, “Common circuit defect of excitatory-inhibitory balance in mouse models of autism,” Journal of Neurodevelopmental Disorders, vol. 1, pp. 172–181, 2009. View at Google Scholar
  56. C. Kehrer, N. Maziashvili, T. Dugladze, and T. Gloveli, “Altered excitatory-inhibitory balance in the NMDA-hypofunction model of schizophrenia,” Frontiers in Molecular Neuroscience, vol. 1, pp. 1–7, 2008. View at Google Scholar
  57. W. Singer, “Neuronal synchrony: a versatile code for the definition of relations?” Neuron, vol. 24, no. 1, pp. 49–65, 1999. View at Publisher · View at Google Scholar · View at Scopus