Table of Contents Author Guidelines Submit a Manuscript
Neural Plasticity
Volume 2011, Article ID 649325, 25 pages
http://dx.doi.org/10.1155/2011/649325
Review Article

Genetics and Function of Neocortical GABAergic Interneurons in Neurodevelopmental Disorders

1Department of Pediatrics, Neurology, Sainte-Justine Hospital and Research Center, 3175 Chemin de la Côte Sainte-Catherine, Montreal, QC, Canada H3T 1C5
2Department of Pediatrics, Brain Disease Research Group, Sainte-Justine Hospital and Research Center, 3175 Chemin de la Côte Sainte-Catherine, Montreal, QC, Canada H3T 1C5

Received 28 February 2011; Accepted 4 May 2011

Academic Editor: Graziella Di Cristo

Copyright © 2011 E. Rossignol. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. N. Tamamaki, Y. Yanagawa, R. Tomioka, J. I. Miyazaki, K. Obata, and T. Kaneko, “Green fluorescent protein expression and colocalization with calretinin, parvalbumin, and somatostatin in the GAD67-GFP knock-in mouse,” Journal of Comparative Neurology, vol. 467, no. 1, pp. 60–79, 2003. View at Publisher · View at Google Scholar · View at Scopus
  2. C. J. McBain and A. Fisahn, “Interneurons unbound,” Nature Reviews Neuroscience, vol. 2, no. 1, pp. 11–23, 2001. View at Publisher · View at Google Scholar · View at Scopus
  3. F. Pouille and M. Scanziani, “Enforcement of temporal fidelity in pyramidal cells by somatic feed-forward inhibition,” Science, vol. 293, no. 5532, pp. 1159–1163, 2001. View at Publisher · View at Google Scholar · View at Scopus
  4. M. Wehr and A. M. Zador, “Balanced inhibition underlies tuning and sharpens spike timing in auditory cortex,” Nature, vol. 426, no. 6965, pp. 442–446, 2003. View at Publisher · View at Google Scholar · View at Scopus
  5. H. Markram, M. Toledo-Rodriguez, Y. Wang, A. Gupta, G. Silberberg, and C. Wu, “Interneurons of the neocortical inhibitory system,” Nature Reviews Neuroscience, vol. 5, no. 10, pp. 793–807, 2004. View at Publisher · View at Google Scholar · View at Scopus
  6. P. Somogyi and T. Klausberger, “Defined types of cortical interneurone structure space and spike timing in the hippocampus,” Journal of Physiology, vol. 562, no. 1, pp. 9–26, 2005. View at Publisher · View at Google Scholar · View at Scopus
  7. T. Klausberger and P. Somogyi, “Neuronal diversity and temporal dynamics: the unity of hippocampal circuit operations,” Science, vol. 321, no. 5885, pp. 53–57, 2008. View at Publisher · View at Google Scholar · View at Scopus
  8. R. Batista-Brito and G. Fishell, “Chapter 3 the developmental integration of cortical interneurons into a functional network,” Current Topics in Developmental Biology, vol. 87, pp. 81–118, 2009. View at Publisher · View at Google Scholar · View at Scopus
  9. B. Rudy, G. Fishell, S. Lee, and J. Hjerling-Leffler, “Three groups of interneurons account for nearly 100% of neocortical GABAergic neurons,” Developmental Neurobiology, vol. 71, no. 1, pp. 45–61, 2010. View at Google Scholar
  10. J. L. Noebels, “The biology of epilepsy genes,” Annual Review of Neuroscience, vol. 26, pp. 599–625, 2003. View at Publisher · View at Google Scholar · View at Scopus
  11. E. M. Powell, D. B. Campbell, G. D. Stanwood, C. Davis, J. L. Noebels, and P. Levitt, “Genetic disruption of cortical interneuron development causes region- and GABA cell type-specific deficits, epilepsy, and behavioral dysfunction,” The Journal of Neuroscience, vol. 23, no. 2, pp. 622–631, 2003. View at Google Scholar · View at Scopus
  12. P. Levitt, K. L. Eagleson, and E. M. Powell, “Regulation of neocortical interneuron development and the implications for neurodevelopmental disorders,” Trends in Neurosciences, vol. 27, no. 7, pp. 400–406, 2004. View at Publisher · View at Google Scholar · View at Scopus
  13. R. Cossart, C. Bernard, and Y. Ben-Ari, “Multiple facets of GABAergic neurons and synapses: multiple fates of GABA signalling in epilepsies,” Trends in Neurosciences, vol. 28, no. 2, pp. 108–115, 2005. View at Publisher · View at Google Scholar · View at Scopus
  14. D. A. Lewis, T. Hashimoto, and D. W. Volk, “Cortical inhibitory neurons and schizophrenia,” Nature Reviews Neuroscience, vol. 6, no. 4, pp. 312–324, 2005. View at Publisher · View at Google Scholar · View at Scopus
  15. S. Akbarian and H. S. Huang, “Molecular and cellular mechanisms of altered GAD1/GAD67 expression in schizophrenia and related disorders,” Brain Research Reviews, vol. 52, no. 2, pp. 293–304, 2006. View at Publisher · View at Google Scholar · View at Scopus
  16. J. DeFelipe, “Neocortical neuronal diversity: chemical heterogeneity revealed by colocalization studies of classic neurotransmitters, neuropeptides, calcium-binding proteins, and cell surface molecules,” Cerebral Cortex, vol. 3, no. 4, pp. 273–289, 1993. View at Google Scholar · View at Scopus
  17. Y. Kawaguchi and Y. Kubota, “Physiological and morphological identification of somatostatin- or vasoactive intestinal polypeptide-containing cells among GABAergic cell subtypes in rat frontal cortex,” The Journal of Neuroscience, vol. 16, no. 8, pp. 2701–2715, 1996. View at Google Scholar · View at Scopus
  18. B. Cauli, E. Audinat, B. Lambolez et al., “Molecular and physiological diversity of cortical nonpyramidal cells,” The Journal of Neuroscience, vol. 17, no. 10, pp. 3894–3906, 1997. View at Google Scholar · View at Scopus
  19. Y. Kawaguchi and Y. Kubota, “GABAergic cell subtypes and their synaptic connections in rat frontal cortex,” Cerebral Cortex, vol. 7, no. 6, pp. 476–486, 1997. View at Publisher · View at Google Scholar · View at Scopus
  20. A. Gupta, Y. Wang, and H. Markram, “Organizing principles for a diversity of GABAergic interneurons and synapses in the neocortex,” Science, vol. 287, no. 5451, pp. 273–278, 2000. View at Publisher · View at Google Scholar · View at Scopus
  21. G. A. Ascoli, L. Alonso-Nanclares, S. A. Anderson et al., “Petilla terminology: nomenclature of features of GABAergic interneurons of the cerebral cortex,” Nature Reviews Neuroscience, vol. 9, no. 7, pp. 557–568, 2008. View at Publisher · View at Google Scholar · View at Scopus
  22. S. J. B. Butt, V. H. Sousa, M. V. Fuccillo et al., “The requirement of Nkx2-1 in the temporal specification of cortical interneuron subtypes,” Neuron, vol. 59, no. 5, pp. 722–732, 2008. View at Publisher · View at Google Scholar · View at Scopus
  23. S. A. Anderson, M. Qiu, A. Bulfone et al., “Mutations of the homeobox genes Dlx-1 and Dlx-2 disrupt the striatal subventricular zone and differentiation of late born striatal neurons,” Neuron, vol. 19, no. 1, pp. 27–37, 1997. View at Publisher · View at Google Scholar · View at Scopus
  24. O. Marín, S. A. Anderson, and J. L. R. Rubenstein, “Origin and molecular specification of striatal interneurons,” The Journal of Neuroscience, vol. 20, no. 16, pp. 6063–6076, 2000. View at Google Scholar · View at Scopus
  25. Q. Xu, I. Cobos, E. D. de La Cruz, J. L. Rubenstein, and S. A. Anderson, “Origins of cortical interneuron subtypes,” The Journal of Neuroscience, vol. 24, no. 11, pp. 2612–2622, 2004. View at Publisher · View at Google Scholar · View at Scopus
  26. T. Du, Q. Xu, P. J. Ocbina, and S. A. Anderson, “NKX2.1 specifies cortical interneuron fate by activating Lhx6,” Development, vol. 135, no. 8, pp. 1559–1567, 2008. View at Publisher · View at Google Scholar · View at Scopus
  27. Q. Xu, M. Tam, and S. A. Anderson, “Fate mapping Nkx2.1-lineage cells in the mouse telencephalon,” Journal of Comparative Neurology, vol. 506, no. 1, pp. 16–29, 2008. View at Publisher · View at Google Scholar · View at Scopus
  28. R. Batista-Brito, E. Rossignol, J. Hjerling-Leffler et al., “The cell-intrinsic requirement of Sox6 for cortical interneuron development,” Neuron, vol. 63, no. 4, pp. 466–481, 2009. View at Publisher · View at Google Scholar · View at Scopus
  29. J. Welagen and S. Anderson, “Origins of neocortical interneurons in mice,” Developmental Neurobiology, vol. 71, no. 1, pp. 10–17, 2011. View at Publisher · View at Google Scholar
  30. J. L. Plotkin, N. Wu, M. F. Chesselet, and M. S. Levine, “Functional and molecular development of striatal fast-spiking GABAergic interneurons and their cortical inputs,” European Journal of Neuroscience, vol. 22, no. 5, pp. 1097–1108, 2005. View at Publisher · View at Google Scholar · View at Scopus
  31. M. F. Chesselet, J. L. Plotkin, N. Wu, and M. S. Levine, “Development of striatal fast-spiking GABAergic interneurons,” Progress in Brain Research, vol. 160, pp. 261–272, 2007. View at Publisher · View at Google Scholar · View at Scopus
  32. A. R. Woodruff and P. Sah, “Networks of parvalbumin-positive interneurons in the basolateral amygdala,” The Journal of Neuroscience, vol. 27, no. 3, pp. 553–563, 2007. View at Publisher · View at Google Scholar · View at Scopus
  33. R. Batista-Brito, J. Close, R. Machold, and G. Fishell, “The distinct temporal origins of olfactory bulb interneuron subtypes,” The Journal of Neuroscience, vol. 28, no. 15, pp. 3966–3975, 2008. View at Publisher · View at Google Scholar · View at Scopus
  34. E. Likhtik, D. Popa, J. Apergis-Schoute, G. A. Fidacaro, and D. Paré, “Amygdala intercalated neurons are required for expression of fear extinction,” Nature, vol. 454, no. 7204, pp. 642–645, 2008. View at Publisher · View at Google Scholar · View at Scopus
  35. W. A. Truitt, P. L. Johnson, A. D. Dietrich, S. D. Fitz, and A. Shekhar, “Anxiety-like behavior is modulated by a discrete subpopulation of interneurons in the basolateral amygdala,” Neuroscience, vol. 160, no. 2, pp. 284–294, 2009. View at Publisher · View at Google Scholar · View at Scopus
  36. S. Ciocchi, C. Herry, F. Grenier et al., “Encoding of conditioned fear in central amygdala inhibitory circuits,” Nature, vol. 468, no. 7321, pp. 277–282, 2010. View at Publisher · View at Google Scholar · View at Scopus
  37. L. Tricoire, K. A. Pelkey, M. I. Daw et al., “Common origins of hippocampal ivy and nitric oxide synthase expressing neurogliaform cells,” The Journal of Neuroscience, vol. 30, no. 6, pp. 2165–2176, 2010. View at Publisher · View at Google Scholar · View at Scopus
  38. R. R. Waclaw, L. A. Ehrman, A. Pierani, and K. Campbell, “Developmental origin of the neuronal subtypes that comprise the amygdalar fear circuit in the mouse,” The Journal of Neuroscience, vol. 30, no. 20, pp. 6944–6953, 2010. View at Publisher · View at Google Scholar · View at Scopus
  39. V. Ghiglieri, C. Sgobio, C. Costa, B. Picconi, and P. Calabresi, “Striatum-hippocampus balance: from physiological behavior to interneuronal pathology,” Progress in Neurobiology, vol. 94, no. 2, pp. 102–114, 2011. View at Publisher · View at Google Scholar
  40. J. Spampanato, J. Polepalli, and P. Sah, “Interneurons in the basolateral amygdala,” Neuropharmacology, vol. 60, pp. 765–773, 2010. View at Publisher · View at Google Scholar · View at Scopus
  41. H. Wichterle, D. H. Turnbull, S. Nery, G. Fishell, and A. Alvarez-Buylla, “In utero fate mapping reveals distinct migratory pathways and fates of neurons born in the mammalian basal forebrain,” Development, vol. 128, no. 19, pp. 3759–3771, 2001. View at Google Scholar · View at Scopus
  42. S. A. Anderson, C. E. Kaznowski, C. Horn, J. L. R. Rubenstein, and S. K. McConnell, “Distinct origins of neocortical projection neurons and interneurons in vivo,” Cerebral Cortex, vol. 12, no. 7, pp. 702–709, 2002. View at Google Scholar · View at Scopus
  43. S. Nery, G. Fishell, and J. G. Corbin, “The caudal ganglionic eminence is a source of distinct cortical and subcortical cell populations,” Nature Neuroscience, vol. 5, no. 12, pp. 1279–1287, 2002. View at Publisher · View at Google Scholar · View at Scopus
  44. S. J. B. Butt, M. Fuccillo, S. Nery et al., “The temporal and spatial origins of cortical interneurons predict their physiological subtype,” Neuron, vol. 48, no. 4, pp. 591–604, 2005. View at Publisher · View at Google Scholar · View at Scopus
  45. G. Miyoshi, S. J. B. Butt, H. Takebayashi, and G. Fishell, “Physiologically distinct temporal cohorts of cortical interneurons arise from telencephalic Olig2-expressing precursors,” The Journal of Neuroscience, vol. 27, no. 29, pp. 7786–7798, 2007. View at Publisher · View at Google Scholar · View at Scopus
  46. G. Miyoshi, J. Hjerling-Leffler, T. Karayannis et al., “Genetic fate mapping reveals that the caudal ganglionic eminence produces a large and diverse population of superficial cortical interneurons,” The Journal of Neuroscience, vol. 30, no. 5, pp. 1582–1594, 2010. View at Publisher · View at Google Scholar · View at Scopus
  47. D. M. Gelman, F. J. Martini, S. Nobrega-Pereira et al., “The embryonic preoptic area is a novel source of cortical GABAergic interneurons,” The Journal of Neuroscience, vol. 29, no. 29, pp. 9380–9389, 2009. View at Publisher · View at Google Scholar
  48. S. Lee, J. Hjerling-Leffler, E. Zagha, G. Fishell, and B. Rudy, “The largest group of superficial neocortical GABAergic interneurons expresses ionotropic serotonin receptors,” The Journal of Neuroscience, vol. 30, no. 50, pp. 16796–16808, 2010. View at Publisher · View at Google Scholar · View at Scopus
  49. I. Férézou, B. Cauli, E. L. Hill, J. Rossier, E. Hamel, and B. Lambolez, “5-HT3 receptors mediate serotonergic fast synaptic excitation of neocortical vasoactive intestinal peptide/cholecystokinin interneurons,” The Journal of Neuroscience, vol. 22, no. 17, pp. 7389–7397, 2002. View at Google Scholar · View at Scopus
  50. K. Campbell, M. Olsson, and A. Björklund, “Regional incorporation and site-specific differentiation of striatal precursors transplanted to the embryonic forebrain ventricle,” Neuron, vol. 15, no. 6, pp. 1259–1273, 1995. View at Publisher · View at Google Scholar · View at Scopus
  51. C. P. Wonders and S. A. Anderson, “The origin and specification of cortical interneurons,” Nature Reviews Neuroscience, vol. 7, no. 9, pp. 687–696, 2006. View at Publisher · View at Google Scholar · View at Scopus
  52. E. M. Goldberg, B. D. Clark, E. Zagha, M. Nahmani, A. Erisir, and B. Rudy, “K+ channels at the axon initial segment dampen near-threshold excitability of neocortical fast-spiking GABAergic interneurons,” Neuron, vol. 58, no. 3, pp. 387–400, 2008. View at Publisher · View at Google Scholar · View at Scopus
  53. M. Helmstaedter, B. Sakmann, and D. Feldmeyer, “Neuronal correlates of local, lateral, and translaminar inhibition with reference to cortical columns,” Cerebral Cortex, vol. 19, no. 4, pp. 926–937, 2009. View at Publisher · View at Google Scholar · View at Scopus
  54. J. R. Gibson, M. Belerlein, and B. W. Connors, “Two networks of electrically coupled inhibitory neurons in neocortex,” Nature, vol. 402, no. 6757, pp. 75–79, 1999. View at Publisher · View at Google Scholar · View at Scopus
  55. A. Erisir, D. Lau, B. Rudy, and C. S. Leonard, “Function of specific K+ channels in sustained high-frequency firing of fast-spiking neocortical interneurons,” Journal of Neurophysiology, vol. 82, no. 5, pp. 2476–2489, 1999. View at Google Scholar · View at Scopus
  56. B. Rudy, A. Chow, D. Lau et al., “Contributions of Kv3 channels to neuronal excitability,” Annals of the New York Academy of Sciences, vol. 868, pp. 304–343, 1999. View at Publisher · View at Google Scholar · View at Scopus
  57. D. Lau, E. C. Vega-Saenz de Miera, D. Contreras et al., “Impaired fast-spiking, suppressed cortical inhibition, and increased susceptibility to seizures in mice lacking Kv3.2 K+ channel proteins,” The Journal of Neuroscience, vol. 20, no. 24, pp. 9071–9085, 2000. View at Google Scholar · View at Scopus
  58. B. Rudy and C. J. McBain, “Kv3 channels: voltage-gated K+ channels designed for high-frequency repetitive firing,” Trends in Neurosciences, vol. 24, no. 9, pp. 517–526, 2001. View at Publisher · View at Google Scholar · View at Scopus
  59. S. Y. Chang, E. Zagha, E. S. Kwon et al., “Distribution of Kv3.3 potassium channel subunits in distinct neuronal populations of mouse brain,” Journal of Comparative Neurology, vol. 502, no. 6, pp. 953–972, 2007. View at Publisher · View at Google Scholar · View at Scopus
  60. A. V. Zaitsev, N. V. Povysheva, D. A. Lewis, and L. S. Krimer, “P/Q-type, but not N-type, calcium channels mediate GABA release from fast-spiking interneurons to pyramidal cells in rat prefrontal cortex,” Journal of Neurophysiology, vol. 97, no. 5, pp. 3567–3573, 2007. View at Publisher · View at Google Scholar · View at Scopus
  61. I. Bucurenciu, A. Kulik, B. Schwaller, M. Frotscher, and P. Jonas, “Nanodomain coupling between Ca2+ channels and Ca2+ sensors promotes fast and efficient transmitter release at a cortical GABAergic synapse,” Neuron, vol. 57, no. 4, pp. 536–545, 2008. View at Publisher · View at Google Scholar · View at Scopus
  62. I. Kruglikov and B. Rudy, “Perisomatic GABA release and thalamocortical integration onto neocortical excitatory cells are regulated by neuromodulators,” Neuron, vol. 58, no. 6, pp. 911–924, 2008. View at Publisher · View at Google Scholar · View at Scopus
  63. E. Rossignol, I. Kruglikov, A. M. J. M. van den Maagdenberg, G. Fishell, and B. Rudy, “Defective cortical signaling results in generalised seizures,” in Proceedings of the 40th Annual Meeting of Neuroscience, Society for Neuroscience, San Diego, Calif, USA, 2010.
  64. D. J. Pinto, J. C. Brumberg, and D. J. Simons, “Circuit dynamics and coding strategies in rodent somatosensory cortex,” Journal of Neurophysiology, vol. 83, no. 3, pp. 1158–1166, 2000. View at Google Scholar · View at Scopus
  65. D. J. Pinto, J. A. Hartings, J. C. Brumberg, and D. J. Simons, “Cortical damping: analysis of thalamocortical response transformations in rodent barrel cortex,” Cerebral Cortex, vol. 13, no. 1, pp. 33–44, 2003. View at Google Scholar · View at Scopus
  66. L. Gabernet, S. P. Jadhav, D. E. Feldman, M. Carandini, and M. Scanziani, “Somatosensory integration controlled by dynamic thalamocortical feed-forward inhibition,” Neuron, vol. 48, no. 2, pp. 315–327, 2005. View at Publisher · View at Google Scholar · View at Scopus
  67. S. J. Cruikshank, T. J. Lewis, and B. W. Connors, “Synaptic basis for intense thalamocortical activation of feedforward inhibitory cells in neocortex,” Nature Neuroscience, vol. 10, no. 4, pp. 462–468, 2007. View at Publisher · View at Google Scholar · View at Scopus
  68. F. Pouille, A. Marin-Burgin, H. Adesnik, B. V. Atallah, and M. Scanziani, “Input normalization by global feedforward inhibition expands cortical dynamic range,” Nature Neuroscience, vol. 12, no. 12, pp. 1577–1585, 2009. View at Publisher · View at Google Scholar · View at Scopus
  69. G. Tamas, E. H. Buhl, A. Lorincz, and P. Somogyi, “Proximally targeted G.ABAergic synapses and gap junctions synchronize cortical interneurons,” Nature Neuroscience, vol. 3, no. 4, pp. 366–371, 2000. View at Publisher · View at Google Scholar
  70. J. Szabadics, A. Lorincz, and G. Tamas, “Beta and gamma frequency synchronization by dendritic gabaergic synapses and gap junctions in a network of cortical interneurons,” The Journal of Neuroscience, vol. 21, no. 15, pp. 5824–5831, 2001. View at Google Scholar
  71. M. R. Deans, J. R. Gibson, C. Sellitto, B. W. Connors, and D. L. Paul, “Synchronous activity of inhibitory networks in neocortex requires electrical synapses containing connexin36,” Neuron, vol. 31, no. 3, pp. 477–485, 2001. View at Publisher · View at Google Scholar · View at Scopus
  72. M. Bartos, I. Vida, M. Frotscher et al., “Fast synaptic inhibition promotes synchronized gamma oscillations in hippocampal interneuron networks,” Proceedings of the National Academy of Sciences of the United States of America, vol. 99, no. 20, pp. 13222–13227, 2002. View at Publisher · View at Google Scholar · View at Scopus
  73. R. D. Traub, M. O. Cunningham, T. Gloveli et al., “GABA-enhanced collective behavior in neuronal axons underlies persistent gamma-frequency oscillations,” Proceedings of the National Academy of Sciences of the United States of America, vol. 100, no. 19, pp. 11047–11052, 2003. View at Publisher · View at Google Scholar · View at Scopus
  74. R. D. Traub, A. Bibbig, F. E. N. LeBeau, E. H. Buhl, and M. A. Whittington, “Cellular mechanisms of neuronal population oscillations in the hippocampus in vitro,” Annual Review of Neuroscience, vol. 27, pp. 247–278, 2004. View at Publisher · View at Google Scholar · View at Scopus
  75. R. D. Traub, H. Michelson-Law, A. E. J. Bibbig, E. H. Buhl, and M. A. Whittington, “Gap junctions, fast oscillations and the initiation of seizures,” Advances in Experimental Medicine and Biology, vol. 548, pp. 110–122, 2004. View at Google Scholar · View at Scopus
  76. M. Bartos, I. Vida, and P. Jonas, “Synaptic mechanisms of synchronized gamma oscillations in inhibitory interneuron networks,” Nature Reviews Neuroscience, vol. 8, no. 1, pp. 45–56, 2007. View at Publisher · View at Google Scholar · View at Scopus
  77. J. A. Cardin, M. Carlén, K. Meletis et al., “Driving fast-spiking cells induces gamma rhythm and controls sensory responses,” Nature, vol. 459, no. 7247, pp. 663–667, 2009. View at Publisher · View at Google Scholar · View at Scopus
  78. D. L. Buhl, K. D. Harris, S. G. Hormuzdi, H. Monyer, and G. Buzsáki, “Selective impairment of hippocampal gamma oscillations in connexin-36 knock-out mouse in vivo,” The Journal of Neuroscience, vol. 23, no. 3, pp. 1013–1018, 2003. View at Google Scholar · View at Scopus
  79. C. Tallon-Baudry, O. Bertrand, F. Peronnet, and J. Pernier, “Induced γ-band activity during the delay of a visual short-term memory task in humans,” The Journal of Neuroscience, vol. 18, no. 11, pp. 4244–4254, 1998. View at Google Scholar · View at Scopus
  80. P. Fries, J. H. Reynolds, A. E. Rorie, and R. Desimone, “Modulation of oscillatory neuronal synchronization by selective visual attention,” Science, vol. 291, no. 5508, pp. 1560–1563, 2001. View at Publisher · View at Google Scholar · View at Scopus
  81. M. W. Howard, D. S. Rizzuto, J. B. Caplan et al., “Gamma oscillations correlate with working memory load in humans,” Cerebral Cortex, vol. 13, no. 12, pp. 1369–1374, 2003. View at Publisher · View at Google Scholar · View at Scopus
  82. K. M. Spencer, P. G. Nestor, M. A. Niznikiewicz, D. F. Salisbury, M. E. Shenton, and R. W. McCarley, “Abnormal neural synchrony in schizophrenia,” The Journal of Neuroscience, vol. 23, no. 19, pp. 7407–7411, 2003. View at Google Scholar · View at Scopus
  83. V. S. Sohal, F. Zhang, O. Yizhar, and K. Deisseroth, “Parvalbumin neurons and gamma rhythms enhance cortical circuit performance,” Nature, vol. 459, no. 7247, pp. 698–702, 2009. View at Publisher · View at Google Scholar · View at Scopus
  84. K. M. Spencer, P. G. Nestor, R. Perlmutter et al., “Neural synchrony indexes disordered perception and cognition in schizophrenia,” Proceedings of the National Academy of Sciences of the United States of America, vol. 101, no. 49, pp. 17288–17293, 2004. View at Publisher · View at Google Scholar · View at Scopus
  85. R. Y. Cho, R. O. Konecky, and C. S. Carter, “Impairments in frontal cortical γ synchrony and cognitive control in schizophrenia,” Proceedings of the National Academy of Sciences of the United States of America, vol. 103, no. 52, pp. 19878–19883, 2006. View at Publisher · View at Google Scholar · View at Scopus
  86. Y. Kawaguchi, “Physiological subgroups of nonpyramidal cells with specific morphological characteristics in layer II/III of rat frontal cortex,” The Journal of Neuroscience, vol. 15, no. 4, pp. 2638–2655, 1995. View at Google Scholar · View at Scopus
  87. G. Gonzalez-Burgos, L. S. Krimer, N. V. Povysheva, G. Barrionuevo, and D. A. Lewis, “Functional properties of fast spiking interneurons and their synaptic connections with pyramidal cells in primate dorsolateral prefrontal cortex,” Journal of Neurophysiology, vol. 93, no. 2, pp. 942–953, 2005. View at Publisher · View at Google Scholar
  88. E. G. Jones, “Varieties and distribution of non pyramidal cells in the somatic sensory cortex of the squirrel monkey,” Journal of Comparative Neurology, vol. 160, no. 2, pp. 205–267, 1975. View at Google Scholar · View at Scopus
  89. A. Fairen and F. Valverde, “A specialized type of neuron in the visual cortex of cat: golgi golgi and electron microscope study of chandelier cells,” Journal of Comparative Neurology, vol. 194, no. 4, pp. 761–779, 1980. View at Google Scholar · View at Scopus
  90. J. DeFelipe, S. H. C. Hendry, and E. G. Jones, “Visualization of chandelier cell axons by parvalbumin immunoreactivity in monkey cerebral cortex,” Proceedings of the National Academy of Sciences of the United States of America, vol. 86, no. 6, pp. 2093–2097, 1989. View at Google Scholar · View at Scopus
  91. P. Somogyi, “A specific “axo-axonal” interneuron in the visual cortex of the rat,” Brain Research, vol. 136, no. 2, pp. 345–350, 1977. View at Publisher · View at Google Scholar · View at Scopus
  92. J. Szabadics, C. Varga, G. Molnar, S. Olah, P. Barzo, and G. Tamas, “Excitatory effect of GABAergic axo-axonic cells in cortical microcircuits,” Science, vol. 311, no. 5758, pp. 233–235, 2006. View at Publisher · View at Google Scholar
  93. S. Khirug, J. Yamada, R. Afzalov, J. Voipio, L. Khiroug, and K. Kaila, “GABAergic depolarization of the axon initial segment in cortical principal neurons is caused by the Na-K-2Cl cotransporter NKCC1,” The Journal of Neuroscience, vol. 28, no. 18, pp. 4635–4639, 2008. View at Publisher · View at Google Scholar · View at Scopus
  94. A. R. Woodruff, Q. Xu, S. A. Anderson, and R. Yuste, “Depolarizing effect of neocortical chandelier neurons,” Frontiers in Neural Circuits, vol. 3, no. 15, 10 pages, 2009. View at Publisher · View at Google Scholar
  95. A. R. Woodruff, S. A. Anderson, R. Yuste et al., “The enigmatic function of chandelier cells,” Frontiers in Neuroscience, vol. 4, article 201, 2010. View at Publisher · View at Google Scholar
  96. L. L. Glickfeld, J. D. Roberts, P. Somogyi, and M. Scanziani, “Interneurons hyperpolarize pyramidal cells along their entire somatodendritic axis,” Nature Neuroscience, vol. 12, no. 1, pp. 21–23, 2009. View at Publisher · View at Google Scholar · View at Scopus
  97. T. Klausberger, P. J. Magill, L. F. Marton et al., “Brain-state and cell-type-specific firing of hippocampal interneurons in vivo,” Nature, vol. 421, no. 6925, pp. 844–848, 2003. View at Publisher · View at Google Scholar
  98. B. Halabisky, F. Shen, J. R. Huguenard, and D. A. Prince, “Electrophysiological classification of somatostatin-positive interneurons in mouse sensorimotor cortex,” Journal of Neurophysiology, vol. 96, no. 2, pp. 834–845, 2006. View at Publisher · View at Google Scholar · View at Scopus
  99. Y. Ma, H. Hu, A. S. Berrebi, P. H. Mathers, and A. Agmon, “Distinct subtypes of somatostatin-containing neocortical interneurons revealed in transgenic mice,” The Journal of Neuroscience, vol. 26, no. 19, pp. 5069–5082, 2006. View at Publisher · View at Google Scholar · View at Scopus
  100. L. M. McGarry, A. M. Packer, E. Fino, V. Nikolenko, T. Sippy, and R. Yuste, “Quantitative classification of somatostatin-positive neocortical interneurons identifies three interneuron subtypes,” Frontiers in Neural Circuits, vol. 4, no. 12, 19 pages, 2010. View at Publisher · View at Google Scholar
  101. E. E. Fanselow, K. A. Richardson, and B. W. Connors, “Selective, state-dependent activation of somatostatin-expressing inhibitory interneurons in mouse neocortex,” Journal of Neurophysiology, vol. 100, no. 5, pp. 2640–2652, 2008. View at Publisher · View at Google Scholar · View at Scopus
  102. Y. Wang, M. Toledo-Rodriguez, A. Gupta et al., “Anatomical, physiological and molecular properties of Martinotti cells in the somatosensory cortex of the juvenile rat,” Journal of Physiology, vol. 561, no. 1, pp. 65–90, 2004. View at Publisher · View at Google Scholar · View at Scopus
  103. M. Uematsu, Y. Hirai, F. Karube et al., “Quantitative chemical composition of cortical GABAergic neurons revealed in transgenic venus-expressing rats,” Cerebral Cortex, vol. 18, no. 2, pp. 315–330, 2008. View at Publisher · View at Google Scholar · View at Scopus
  104. M. Murayama, E. Pérez-Garci, T. Nevian, T. Bock, W. Senn, and M. E. Larkum, “Dendritic encoding of sensory stimuli controlled by deep cortical interneurons,” Nature, vol. 457, no. 7233, pp. 1137–1141, 2009. View at Publisher · View at Google Scholar · View at Scopus
  105. G. Silberberg and H. Markram, “Disynaptic inhibition between neocortical pyramidal cells mediated by martinotti cells,” Neuron, vol. 53, no. 5, pp. 735–746, 2007. View at Publisher · View at Google Scholar · View at Scopus
  106. T. K. Berger, R. Perin, G. Silberberg, and H. Markram, “Frequency-dependent disynaptic inhibition in the pyramidal network: a ubiquitous pathway in the developing rat neocortex,” Journal of Physiology, vol. 587, no. 22, pp. 5411–5425, 2009. View at Publisher · View at Google Scholar · View at Scopus
  107. E. E. Fanselow and B. W. Connors, “The roles of somatostatin-expressing (GIN) and fast-spiking inhibitory interneurons in UP-DOWN states of mouse neocortex,” Journal of Neurophysiology, vol. 104, no. 2, pp. 596–606, 2010. View at Publisher · View at Google Scholar · View at Scopus
  108. R. Cossart, C. Dinocourt, J. C. Hirsch et al., “Dendritic but not somatic GABAergic inhibition is decreased in experimental epilepsy,” Nature Neuroscience, vol. 4, no. 1, pp. 52–62, 2001. View at Publisher · View at Google Scholar · View at Scopus
  109. D. W. Volk, M. C. Austin, J. N. Pierri, A. R. Sampson, and D. A. Lewis, “Decreased glutamic acid decarboxylase67 messenger RNA expression in a subset of prefrontal cortical γ-aminobutyric acid neurons in subjects with schizophrenia,” Archives of General Psychiatry, vol. 57, no. 3, pp. 237–245, 2000. View at Google Scholar
  110. S. Akbarian, J. J. Kim, S. G. Potkin et al., “Gene expression for glutamic acid decarboxylase is reduced without loss of neurons in prefrontal cortex of schizophrenics,” Archives of General Psychiatry, vol. 52, no. 4, pp. 258–278, 1995. View at Google Scholar · View at Scopus
  111. T. U. Woo, J. L. Miller, and D. A. Lewis, “Schizophrenia and the parvalbumin-containing class of cortical local circuit neurons,” American Journal of Psychiatry, vol. 154, no. 7, pp. 1013–1015, 1997. View at Google Scholar · View at Scopus
  112. T. Hashimoto, D. W. Volk, S. M. Eggan et al., “Gene expression deficits in a subclass of GABA neurons in the prefrontal cortex of subjects with schizophrenia,” The Journal of Neuroscience, vol. 23, no. 15, pp. 6315–6326, 2003. View at Google Scholar · View at Scopus
  113. A. M. Addington, M. Gornick, J. Duckworth et al., “GAD1 (2q31.1), which encodes glutamic acid decarboxylase (GAD67), is associated with childhood-onset schizophrenia and cortical gray matter volume loss,” Molecular Psychiatry, vol. 10, no. 6, pp. 581–588, 2005. View at Publisher · View at Google Scholar · View at Scopus
  114. T. U. Woo, R. E. Whitehead, D. S. Melchitzky, and D. A. Lewis, “A subclass of prefrontal γ-aminobutyric acid axon terminals are selectively altered in schizophrenia,” Proceedings of the National Academy of Sciences of the United States of America, vol. 95, no. 9, pp. 5341–5346, 1998. View at Publisher · View at Google Scholar · View at Scopus
  115. D. W. Volk, M. C. Austin, J. N. Pierri, A. R. Sampson, and D. A. Lewis, “GABA transporter-1 mRNA in the prefrontal cortex in schizophrenia: decreased expression in a subset of neurons,” American Journal of Psychiatry, vol. 158, no. 2, pp. 256–265, 2001. View at Publisher · View at Google Scholar · View at Scopus
  116. T. Hashimoto, D. Arion, T. Unger et al., “Alterations in GABA-related transcriptome in the dorsolateral prefrontal cortex of subjects with schizophrenia,” Molecular Psychiatry, vol. 13, no. 2, pp. 147–161, 2008. View at Publisher · View at Google Scholar · View at Scopus
  117. H. Stefansson, E. Sigurdsson, V. Steinthorsdottir et al., “Neuregulin 1 and susceptibility to schizophrenia,” American Journal of Human Genetics, vol. 71, no. 4, pp. 877–892, 2002. View at Google Scholar · View at Scopus
  118. H. Stefansson, J. Sarginson, A. Kong et al., “Association of neuregulin 1 with schizophrenia confirmed in a Scottish population,” American Journal of Human Genetics, vol. 72, no. 1, pp. 83–87, 2003. View at Publisher · View at Google Scholar · View at Scopus
  119. H. X. Zhang, W. Q. Li, Y. Zhang, J. P. Zhao, L. X. Lv, and G. Yang, “Association analysis of neuregulin 1 gene polymorphism with schizophrenia in Chinese Han population,” Zhonghua Yi Xue Yi Chuan Xue Za Zhi, vol. 26, no. 1, pp. 16–20, 2009. View at Publisher · View at Google Scholar
  120. J. Z. Yang, T. M. Si, Y. Ruan et al., “Association study of neuregulin 1 gene with schizophrenia,” Molecular Psychiatry, vol. 8, no. 7, pp. 706–709, 2003. View at Publisher · View at Google Scholar · View at Scopus
  121. G. Silberberg, A. Darvasi, R. Pinkas-Kramarski, and R. Navon, “The involvement of ErbB4 with schizophrenia: association and expression studies,” American Journal of Medical Genetics Part B, vol. 141, no. 2, pp. 142–148, 2006. View at Publisher · View at Google Scholar · View at Scopus
  122. C. S. Weickert, T. M. Hyde, B. K. Lipska, M. M. Herman, D. R. Weinberger, and J. E. Kleinman, “Reduced brain-derived neurotrophic factor in prefrontal cortex of patients with schizophrenia,” Molecular Psychiatry, vol. 8, no. 6, pp. 592–610, 2003. View at Publisher · View at Google Scholar · View at Scopus
  123. J. Wong, T. M. Hyde, H. L. Cassano, A. Deep-Soboslay, J. E. Kleinman, and C. S. Weickert, “Promoter specific alterations of brain-derived neurotrophic factor mRNA in schizophrenia,” Neuroscience, vol. 169, no. 3, pp. 1071–1084, 2010. View at Publisher · View at Google Scholar · View at Scopus
  124. M. Takahashi, O. Shirakawa, K. Toyooka et al., “Abnormal expression of brain-derived neurotrophic factor and its receptor in the corticolimbic system of schizophrenic patients,” Molecular Psychiatry, vol. 5, no. 3, pp. 293–300, 2000. View at Google Scholar · View at Scopus
  125. D. Barbeau, J. J. Liang, Y. Robitaille, R. Quirion, and L. K. Srivastava, “Decreased expression of the embryonic form of the neural cell adhesion molecule in schizophrenic brains,” Proceedings of the National Academy of Sciences of the United States of America, vol. 92, no. 7, pp. 2785–2789, 1995. View at Publisher · View at Google Scholar · View at Scopus
  126. L. Wen, Y. S. Lu, X. H. Zhu et al., “Neuregulin 1 regulates pyramidal neuron activity via ErbB4 in parvalbumin-positive interneurons,” Proceedings of the National Academy of Sciences of the United States of America, vol. 107, no. 3, pp. 1211–1216, 2010. View at Publisher · View at Google Scholar · View at Scopus
  127. Y. J. Chen, M. Zhang, D. M. Yin et al., “ErbB4 in parvalbumin-positive interneurons is critical for neuregulin 1 regulation of long-term potentiation,” Proceedings of the National Academy of Sciences of the United States of America, vol. 107, no. 50, pp. 21818–21823, 2010. View at Publisher · View at Google Scholar · View at Scopus
  128. J. E. Belforte, V. Zsiros, E. R. Sklar et al., “Postnatal NMDA receptor ablation in corticolimbic interneurons confers schizophrenia-like phenotypes,” Nature Neuroscience, vol. 13, no. 1, pp. 76–83, 2010. View at Publisher · View at Google Scholar · View at Scopus
  129. Z. J. Huang, A. Kirkwood, T. Pizzorusso et al., “BDNF regulates the maturation of inhibition and the critical period of plasticity in mouse visual cortex,” Cell, vol. 98, no. 6, pp. 739–755, 1999. View at Publisher · View at Google Scholar · View at Scopus
  130. T. Cotrufo, A. Viegi, N. Berardi, Y. Bozzi, L. Mascia, and L. Maffei, “Effects of neurotrophins on synaptic protein expression in the visual cortex of dark-reared rats,” The Journal of Neuroscience, vol. 23, no. 9, pp. 3566–3571, 2003. View at Google Scholar · View at Scopus
  131. T. Hashimoto, S. E. Bergen, Q. L. Nguyen et al., “Relationship of brain-derived neurotrophic factor and its receptor TrkB to altered inhibitory prefrontal circuitry in schizophrenia,” The Journal of Neuroscience, vol. 25, no. 2, pp. 372–383, 2005. View at Publisher · View at Google Scholar · View at Scopus
  132. G. Di Cristo, B. Chattopadhyaya, S. J. Kuhlman et al., “Activity-dependent PSA expression regulates inhibitory maturation and onset of critical period plasticity,” Nature Neuroscience, vol. 10, no. 12, pp. 1569–1577, 2007. View at Publisher · View at Google Scholar · View at Scopus
  133. A. Levitas, R. J. Hagerman, M. Braden, B. Rimland, P. McBogg, and I. Matus, “Autism and the fragile X syndrome,” Journal of Developmental & Behavioral Pediatrics, vol. 4, no. 3, pp. 151–158, 1983. View at Google Scholar
  134. W. T. Brown, E. C. Jenkins, I. L. Cohen et al., “Fragile X and autism: a multicenter survey,” American Journal of Medical Genetics, vol. 23, no. 1-2, pp. 341–352, 1986. View at Google Scholar
  135. S. Jamain, H. Quach, C. Betancur et al., “Mutations of the X-linked genes encoding neuroligins NLGN3 and NLGN4 are associated with autism,” Nature Genetics, vol. 34, no. 1, pp. 27–29, 2003. View at Publisher · View at Google Scholar · View at Scopus
  136. F. Laumonnier, F. Bonnet-Brilhault, M. Gomot et al., “X-linked mental retardation and autism are associated with a mutation in the NLGN4 gene, a member of the neuroligin family,” American Journal of Human Genetics, vol. 74, no. 3, pp. 552–557, 2004. View at Publisher · View at Google Scholar · View at Scopus
  137. C. M. Durand, C. Betancur, T. M. Boeckers et al., “Mutations in the gene encoding the synaptic scaffolding protein SHANK3 are associated with autism spectrum disorders,” Nature Genetics, vol. 39, no. 1, pp. 25–27, 2007. View at Publisher · View at Google Scholar · View at Scopus
  138. J. Gauthier, D. Spiegelman, A. Piton et al., “Novel de novo SHANK3 mutation in autistic patients,” American Journal of Medical Genetics Part B, vol. 150, no. 3, pp. 421–424, 2009. View at Publisher · View at Google Scholar
  139. R. Moessner, C. R. Marshall, J. S. Sutcliffe et al., “Contribution of SHANK3 mutations to autism spectrum disorder,” American Journal of Human Genetics, vol. 81, no. 6, pp. 1289–1297, 2007. View at Publisher · View at Google Scholar · View at Scopus
  140. S. Berkel, C. R. Marshall, B. Weiss et al., “Mutations in the SHANK2 synaptic scaffolding gene in autism spectrum disorder and mental retardation,” Nature Genetics, vol. 42, no. 6, pp. 489–491, 2010. View at Publisher · View at Google Scholar · View at Scopus
  141. P. Szatmari, A. D. Paterson, L. Zwaigenbaum et al., “Mapping autism risk loci using genetic linkage and chromosomal rearrangements,” Nature Genetics, vol. 39, no. 3, pp. 319–328, 2007. View at Publisher · View at Google Scholar · View at Scopus
  142. H. G. Kim, S. Kishikawa, A. W. Higgins et al., “Disruption of neurexin 1 associated with autism spectrum disorder,” American Journal of Human Genetics, vol. 82, no. 1, pp. 199–207, 2008. View at Publisher · View at Google Scholar · View at Scopus
  143. S. H. Fatemi, A. R. Halt, J. M. Stary, R. Kanodia, S. C. Schulz, and G. R. Realmuto, “Glutamic acid decarboxylase 65 and 67 kDa proteins are reduced in autistic parietal and cerebellar cortices,” Biological Psychiatry, vol. 52, no. 8, pp. 805–810, 2002. View at Publisher · View at Google Scholar · View at Scopus
  144. X. Liu, N. Novosedlik, A. Wang et al., “The DLX1and DLX2 genes and susceptibility to autism spectrum disorders,” European Journal of Human Genetics, vol. 17, no. 2, pp. 228–235, 2009. View at Publisher · View at Google Scholar · View at Scopus
  145. P. Baker, J. Piven, S. Schwartz, and S. Patil, “Brief report: duplication of chromosome 15q11-13 in two individuals with autistic disorder,” Journal of Autism and Developmental Disorders, vol. 24, no. 4, pp. 529–535, 1994. View at Publisher · View at Google Scholar · View at Scopus
  146. A. Hogart, D. Wu, J. M. LaSalle, and N. C. Schanen, “The comorbidity of autism with the genomic disorders of chromosome 15q11.2-q13,” Neurobiology of Disease, vol. 38, no. 2, pp. 181–191, 2010. View at Publisher · View at Google Scholar · View at Scopus
  147. R. E. Amir, I. B. van den Veyver, M. Wan, C. Q. Tran, U. Francke, and H. Y. Zoghbi, “Rett syndrome is caused by mutations in X-linked MECP2, encoding methyl-CpG-binding protein 2,” Nature Genetics, vol. 23, no. 2, pp. 185–188, 1999. View at Publisher · View at Google Scholar · View at Scopus
  148. I. M. Buyse, P. Fang, K. T. Hoon, R. E. Amir, H. Y. Zoghbi, and B. B. Roa, “Diagnostic testing for Rett syndrome by DHPLC and direct sequencing analysis of the MECP2 gene: identification of several novel mutations and polymorphisms,” American Journal of Human Genetics, vol. 67, no. 6, pp. 1428–1436, 2000. View at Publisher · View at Google Scholar · View at Scopus
  149. P. B. Jackson, L. Boccuto, C. Skinner et al., “Further evidence that the rs1858830 C variant in the promoter region of the MET gene is associated with autistic disorder,” Autism Research, vol. 2, no. 4, pp. 232–236, 2009. View at Publisher · View at Google Scholar · View at Scopus
  150. D. B. Campbell, J. S. Sutcliffe, P. J. Ebert et al., “A genetic variant that disrupts MET transcription is associated with autism,” Proceedings of the National Academy of Sciences of the United States of America, vol. 103, no. 45, pp. 16834–16839, 2006. View at Publisher · View at Google Scholar · View at Scopus
  151. G. Dölen, E. Osterweil, B. S. S. Rao et al., “Correction of fragile X syndrome in mice,” Neuron, vol. 56, no. 6, pp. 955–962, 2007. View at Publisher · View at Google Scholar · View at Scopus
  152. M. F. Bear, K. M. Huber, and S. T. Warren, “The mGluR theory of fragile X mental retardation,” Trends in Neurosciences, vol. 27, no. 7, pp. 370–377, 2004. View at Publisher · View at Google Scholar · View at Scopus
  153. M. F. Bear, G. Dölen, E. Osterweil, and N. Nagarajan, “Fragile X: translation in action,” Neuropsychopharmacology, vol. 33, no. 1, pp. 84–87, 2008. View at Publisher · View at Google Scholar · View at Scopus
  154. P. Scheiffele, J. Fan, J. Choih, R. Fetter, and T. Serafini, “Neuroligin expressed in nonneuronal cells triggers presynaptic development in contacting axons,” Cell, vol. 101, no. 6, pp. 657–669, 2000. View at Google Scholar · View at Scopus
  155. B. Chih, H. Engelman, P. Scheiffele et al., “Control of excitatory and inhibitory synapse formation by neuroligins,” Science, vol. 307, no. 5713, pp. 1324–1328, 2005. View at Publisher · View at Google Scholar
  156. E. R. Graf, X. Zhang, S. X. Jin, M. W. Linhoff, and A. M. Craig, “Neurexins induce differentiation of GABA and glutamate postsynaptic specializations via neuroligins,” Cell, vol. 119, no. 7, pp. 1013–1026, 2004. View at Publisher · View at Google Scholar · View at Scopus
  157. R. C. Samaco, A. Hogart, and J. M. LaSalle, “Epigenetic overlap in autism-spectrum neurodevelopmental disorders: MECP2 deficiency causes reduced expression of UBE3A and GABRB3,” Human Molecular Genetics, vol. 14, no. 4, pp. 483–492, 2005. View at Publisher · View at Google Scholar · View at Scopus
  158. H. T. Chao, H. Chen, R. C. Samaco et al., “Dysfunction in GABA signalling mediates autism-like stereotypies and Rett syndrome phenotypes,” Nature, vol. 468, no. 7321, pp. 263–269, 2010. View at Publisher · View at Google Scholar · View at Scopus
  159. E. M. Powell, W. M. Mars, and P. Levitt, “Hepatocyte growth factor/scatter factor is a motogen for interneurons migrating from the ventral to dorsal telencephalon,” Neuron, vol. 30, no. 1, pp. 79–89, 2001. View at Publisher · View at Google Scholar · View at Scopus
  160. M. H. Bae, G. B. Bissonette, W. M. Mars et al., “Hepatocyte growth factor (HGF) modulates GABAergic inhibition and seizure susceptibility,” Experimental Neurology, vol. 221, no. 1, pp. 129–135, 2010. View at Publisher · View at Google Scholar · View at Scopus
  161. G. J. Martins, M. Shahrokh, and E. M. Powell, “Genetic disruption of Met signaling impairs GABAergic striatal development and cognition,” Neuroscience, vol. 176, no. 10, pp. 199–209, 2010. View at Publisher · View at Google Scholar
  162. L. Claes, J. Del-Favero, B. Ceulemans, L. Lagae, C. van Broeckhoven, and P. de Jonghe, “De novo mutations in the sodium-channel gene SCN1A cause severe myoclonic epilepsy of infancy,” American Journal of Human Genetics, vol. 68, no. 6, pp. 1327–1332, 2001. View at Publisher · View at Google Scholar · View at Scopus
  163. I. Ohmori, M. Ouchida, Y. Ohtsuka, E. Oka, and K. Shimizu, “Significant correlation of the SCN1A mutations and severe myoclonic epilepsy in infancy,” Biochemical and Biophysical Research Communications, vol. 295, no. 1, pp. 17–23, 2002. View at Publisher · View at Google Scholar
  164. T. Sugawara, E. Mazaki-Miyazaki, K. Fukushima et al., “Frequent mutations of SCN1A in severe myoclonic epilepsy in infancy,” Neurology, vol. 58, no. 7, pp. 1122–1124, 2002. View at Google Scholar · View at Scopus
  165. A. Orrico, L. Galli, S. Grosso et al., “Mutational analysis of the SCN1A, SCN1B and GABRG2 genes in 150 Italian patients with idiopathic childhood epilepsies,” Clinical Genetics, vol. 75, no. 6, pp. 579–581, 2009. View at Publisher · View at Google Scholar · View at Scopus
  166. A. Escayg and A. L. Goldin, “Sodium channel SCN1A and epilepsy: mutations and mechanisms,” Epilepsia, vol. 51, no. 9, pp. 1650–1658, 2010. View at Publisher · View at Google Scholar · View at Scopus
  167. A. Escayg, B. T. MacDonald, M. H. Meisler et al., “Mutations of SCN1A, encoding a neuronal sodium channel, in two families with GEFS+2,” Nature Genetics, vol. 24, no. 4, pp. 343–345, 2000. View at Publisher · View at Google Scholar · View at Scopus
  168. A. Escayg, A. Heils, B. T. Macdonald, K. Haug, T. Sander, and M. H. Meisler, “A novel SCN1A mutation associated with generalized epilepsy with febrile seizures plus—and prevalence of variants in patients with epilepsy,” American Journal of Human Genetics, vol. 68, no. 4, pp. 866–873, 2001. View at Publisher · View at Google Scholar · View at Scopus
  169. T. Fujiwara, T. Sugawara, E. Mazaki-Miyazaki et al., “Mutations of sodium channel α subunit type 1 (SCN1A) in intractable childhood epilepsies with frequent generalized tonic-clonic seizures,” Brain, vol. 126, no. 3, pp. 531–546, 2003. View at Publisher · View at Google Scholar · View at Scopus
  170. H. Osaka, I. Ogiwara, E. Mazaki et al., “Patients with a sodium channel alpha 1 gene mutation show wide phenotypic variation,” Epilepsy Research, vol. 75, no. 1, pp. 46–51, 2007. View at Publisher · View at Google Scholar · View at Scopus
  171. C. Zucca, F. Redaelli, R. Epifanio et al., “Cryptogenic epileptic syndromes related to SCN1A: twelve novel mutations identified,” Archives of Neurology, vol. 65, no. 4, pp. 489–494, 2008. View at Publisher · View at Google Scholar
  172. M. S. Martin, B. Tang, L. A. Papale, F. H. Yu, W. A. Catterall, and A. Escayg, “The voltage-gated sodium channel Scn8a is a genetic modifier of severe myoclonic epilepsy of infancy,” Human Molecular Genetics, vol. 16, no. 23, pp. 2892–2899, 2007. View at Publisher · View at Google Scholar · View at Scopus
  173. I. Ohmori, M. Ouchida, T. Miki et al., “A CACNB4 mutation shows that altered Cav2.1 function may be a genetic modifier of severe myoclonic epilepsy in infancy,” Neurobiology of Disease, vol. 32, no. 3, pp. 349–354, 2008. View at Publisher · View at Google Scholar · View at Scopus
  174. R. H. Wallace, C. Marini, S. Petrou et al., “Mutant GABAA receptor γ2-subunit in childhood absence epilepsy and febrile seizures,” Nature Genetics, vol. 28, no. 1, pp. 49–52, 2001. View at Publisher · View at Google Scholar · View at Scopus
  175. C. Shoubridge, T. Fullston, and J. Gécz, “ARX spectrum disorders: making inroads into the molecular pathology,” Human Mutation, vol. 31, no. 8, pp. 889–900, 2010. View at Publisher · View at Google Scholar · View at Scopus
  176. V. M. Kalscheuer, J. Tao, A. Donnelly et al., “Disruption of the serine/threonine kinase 9 gene causes severe X-linked infantile spasms and mental retardation,” American Journal of Human Genetics, vol. 72, no. 6, pp. 1401–1411, 2003. View at Publisher · View at Google Scholar · View at Scopus
  177. L. S. Weaving, J. Christodoulou, S. L. Williamson et al., “Mutations of CDKL5 cause a severe neurodevelopmental disorder with infantile spasms and mental retardation,” American Journal of Human Genetics, vol. 75, no. 6, pp. 1079–1093, 2004. View at Publisher · View at Google Scholar · View at Scopus
  178. E. Scala, F. Ariani, F. Mari et al., “CDKL5/STK9 is mutated in Rett syndrome variant with infantile spasms,” Journal of Medical Genetics, vol. 42, no. 2, pp. 103–107, 2005. View at Publisher · View at Google Scholar · View at Scopus
  179. H. L. Archer, J. Evans, S. Edwards et al., “CDKL5 mutations cause infantile spasms, early onset seizures, and severe mental retardation in female patients,” Journal of Medical Genetics, vol. 43, no. 9, pp. 729–734, 2006. View at Publisher · View at Google Scholar · View at Scopus
  180. C. Cordova-Fletes, N. Rademacher, I. Muller et al., “CDKL5 truncation due to a t(X;2)(p22.1;p25.3) in a girl with X-linked infantile spasm syndrome,” Clinical Genetics, vol. 77, no. 1, pp. 92–96, 2010. View at Google Scholar
  181. D. Mei, C. Marini, F. Novara et al., “Xp22.3 genomic deletions involving the CDKL5 gene in girls with early onset epileptic encephalopathy,” Epilepsia, vol. 51, no. 4, pp. 647–654, 2010. View at Publisher · View at Google Scholar · View at Scopus
  182. F. Melani, D. Mei, T. Pisano et al., “CDKL5 gene-related epileptic encephalopathy: electroclinical findings in the first year of life,” Developmental Medicine and Child Neurology, vol. 53,, no. 4, pp. 354–360, 2010. View at Publisher · View at Google Scholar
  183. C. Kananura, K. Haug, T. Sander et al., “A splice-site mutation in GABRG2 associated with childhood absence epilepsy and febrile convulsions,” Archives of Neurology, vol. 59, no. 7, pp. 1137–1141, 2002. View at Publisher · View at Google Scholar · View at Scopus
  184. L. A. Harkin, D. N. Bowser, L. M. Dibbens et al., “Truncation of the GABAA-receptor γ2 subunit in a family with generalized epilepsy with febrile seizures plus,” American Journal of Human Genetics, vol. 70, no. 2, pp. 530–536, 2002. View at Publisher · View at Google Scholar · View at Scopus
  185. P. Cossette, L. Liu, K. Brisebois et al., “Mutation of GABRA1 in an autosomal dominant form of juvenile myoclonic epilepsy,” Nature Genetics, vol. 31, no. 2, pp. 184–189, 2002. View at Publisher · View at Google Scholar · View at Scopus
  186. S. Maljevic, K. Krampfl, J. Cobilanschi et al., “A mutation in the GABAA receptor a1-subunit is associated with absence epilepsy,” Annals of Neurology, vol. 59, pp. 983–987, 2006. View at Publisher · View at Google Scholar
  187. B. Chioza, H. Wilkie, L. Nashef et al., “Association between the α1a calcium channel gene CACNA1A and idiopathic generalized epilepsy,” Neurology, vol. 56, no. 9, pp. 1245–1246, 2001. View at Google Scholar · View at Scopus
  188. A. Jouvenceau, L. H. Eunson, A. Spauschus et al., “Human epilepsy associated with dysfunction of the brain P/Q-type calcium channel,” The Lancet, vol. 358, no. 9284, pp. 801–807, 2001. View at Publisher · View at Google Scholar · View at Scopus
  189. P. Imbrici, S. L. Jaffe, L. H. Eunson et al., “Dysfunction of the brain calcium channel Cav2.1 in absence epilepsy and episodic ataxia,” Brain, vol. 127, no. 12, pp. 2682–2692, 2004. View at Publisher · View at Google Scholar · View at Scopus
  190. A. Escayg, M. de Waard, D. D. Lee et al., “Coding and noncoding variation of the human calcium-channel ß4-subunit gene CACNB4 in patients with idiopathic generalized epilepsy and episodic ataxia,” American Journal of Human Genetics, vol. 66, no. 5, pp. 1531–1539, 2000. View at Google Scholar
  191. H. Khosravani, C. Altier, B. Simms et al., “Gating effects of mutations in the Cav3.2 T-type calcium channel associated with childhood absence epilepsy,” Journal of Biological Chemistry, vol. 279, no. 11, pp. 9681–9684, 2004. View at Publisher · View at Google Scholar · View at Scopus
  192. A. Carré, G. Szinnai, M. Castanet et al., “Five new TTF1/NKX2.1 mutations in brain-lung-thyroid syndrome: rescue by PAX8 synergism in one case,” Human Molecular Genetics, vol. 18, no. 12, pp. 2266–2276, 2009. View at Publisher · View at Google Scholar · View at Scopus
  193. L. Guillot, A. Carré, G. Szinnai et al., “NKX2-1 mutations leading to surfactant protein promoter dysregulation cause interstitial lung disease in ‘brain-lung-thyroid syndrome’,” Human Mutation, vol. 31, no. 2, pp. E1146–E1162, 2010. View at Publisher · View at Google Scholar · View at Scopus
  194. G. Kleiner-Fisman, E. Rogaeva, W. Halliday et al., “Benign hereditary chorea: clinical, genetic, and pathological findings,” Annals of Neurology, vol. 54, no. 2, pp. 244–247, 2003. View at Publisher · View at Google Scholar · View at Scopus
  195. G. Kleiner-Fisman and A. E. Lang, “Benign hereditary chorea revisited: a journey to understanding,” Movement Disorders, vol. 22, no. 16, pp. 2297–2305, 2007. View at Publisher · View at Google Scholar · View at Scopus
  196. M. I. Morasso and N. Radoja, “Dlx genes, p63, and ectodermal dysplasias,” Birth Defects Research C, vol. 75, no. 3, pp. 163–171, 2005. View at Publisher · View at Google Scholar · View at Scopus
  197. N. L. Iacono, S. Mantero, A. Chiarelli et al., “Regulation of Dlx5 and Dlx6 gene expression by p63 is involved in EEC and SHFM congenital limb defects,” Development, vol. 135, no. 7, pp. 1377–1388, 2008. View at Publisher · View at Google Scholar · View at Scopus
  198. A. Tagariello, R. Heller, A. Greven et al., “Balanced translocation in a patient with craniosynostosis disrupts the SOX6 gene and an evolutionarily conserved non-transcribed region,” Journal of Medical Genetics, vol. 43, no. 6, pp. 534–540, 2006. View at Publisher · View at Google Scholar · View at Scopus
  199. F. H. Yu, M. Mantegazza, R. E. Westenbroek et al., “Reduced sodium current in GABAergic interneurons in a mouse model of severe myoclonic epilepsy in infancy,” Nature Neuroscience, vol. 9, no. 9, pp. 1142–1149, 2006. View at Publisher · View at Google Scholar · View at Scopus
  200. M. S. Martin, K. Dutt, L. A. Papale et al., “Altered function of the SCN1A voltage-gated sodium channel leads to γ-aminobutyric acid-ergic (GABAergic) interneuron abnormalities,” Journal of Biological Chemistry, vol. 285, no. 13, pp. 9823–9834, 2010. View at Publisher · View at Google Scholar · View at Scopus
  201. G. Friocourt, S. Kanatani, H. Tabata et al., “Cell-autonomous roles of ARX in cell proliferation and neuronal migration during corticogenesis,” The Journal of Neuroscience, vol. 28, no. 22, pp. 5794–5805, 2008. View at Publisher · View at Google Scholar
  202. G. Friocourt, K. Poirier, S. Rakić, J. G. Parnavelas, and J. Chelly, “The role of ARX in cortical development,” European Journal of Neuroscience, vol. 23, no. 4, pp. 869–876, 2006. View at Publisher · View at Google Scholar · View at Scopus
  203. G. Friocourt and J. G. Parnavelas, “Mutations in ARX result in several defects involving GABAergic neurons,” Frontiers in Cellular Neuroscience, vol. 4, article 4, 2010. View at Publisher · View at Google Scholar
  204. K. Poirier, H. van Esch, G. Friocourt et al., “Neuroanatomical distribution of ARX in brain and its localisation in GABAergic neurons,” Molecular Brain Research, vol. 122, no. 1, pp. 35–46, 2004. View at Publisher · View at Google Scholar · View at Scopus
  205. G. Colasante, P. Collombat, V. Raimondi et al., “Arx is a direct target of Dlx2 and thereby contributes to the tangential migration of GABAergic interneurons,” The Journal of Neuroscience, vol. 28, no. 42, pp. 10674–10686, 2008. View at Publisher · View at Google Scholar · View at Scopus
  206. M. G. Price, J. W. Yoo, D. L. Burgess et al., “A triplet repeat expansion genetic mouse model of infantile spasms syndrome, Arx(GCG)10+7, with interneuronopathy, spasms in infancy, persistent seizures, and adult cognitive and behavioral impairment,” The Journal of Neuroscience, vol. 29, no. 27, pp. 8752–8763, 2009. View at Publisher · View at Google Scholar · View at Scopus
  207. E. Marsh, C. Fulp, E. Gomez et al., “Targeted loss of Arx results in a developmental epilepsy mouse model and recapitulates the human phenotype in heterozygous females,” Brain, vol. 132, no. 6, pp. 1563–1576, 2009. View at Publisher · View at Google Scholar · View at Scopus
  208. F. Mari, S. Azimonti, I. Bertani et al., “CDKL5 belongs to the same molecular pathway of MeCP2 and it is responsible for the early-onset seizure variant of Rett syndrome,” Human Molecular Genetics, vol. 14, no. 14, pp. 1935–1946, 2005. View at Publisher · View at Google Scholar · View at Scopus
  209. I. Bertani, L. Rusconi, F. Bolognese et al., “Functional consequences of mutations in CDKL5, an X-linked gene involved in infantile spasms and mental retardation,” Journal of Biological Chemistry, vol. 281, no. 42, pp. 32048–32056, 2006. View at Publisher · View at Google Scholar · View at Scopus
  210. X. Nan, H. H. Ng, C. A. Johnson et al., “Transcriptional repression by the methyl-CpG-binding protein MeCP2 involves a histone deacetylase complex,” Nature, vol. 393, no. 6683, pp. 386–389, 1998. View at Publisher · View at Google Scholar · View at Scopus
  211. X. Nan and A. Bird, “The biological functions of the methyl-CpG-binding protein MeCP2 and its implication in Rett syndrome,” Brain and Development, vol. 23, no. 1, pp. S32–S37, 2001. View at Publisher · View at Google Scholar · View at Scopus
  212. J. L. Noebels and R. L. Sidman, “Inherited epilepsy: spike-wave and focal motor seizures in the mutant mouse tottering,” Science, vol. 204, no. 4399, pp. 1334–1336, 1979. View at Google Scholar · View at Scopus
  213. C. F. Fletcher, C. M. Lutz, T. N. O'Sullivan et al., “Absence epilepsy in tottering mutant mice is associated with calcium channel defects,” Cell, vol. 87, no. 4, pp. 607–617, 1996. View at Publisher · View at Google Scholar · View at Scopus
  214. Y. Zhang, M. Mori, D. L. Burgess, and J. L. Noebels, “Mutations in high-voltage-activated calcium channel genes stimulate low-voltage-activated currents in mouse thalamic relay neurons,” The Journal of Neuroscience, vol. 22, no. 15, pp. 6362–6371, 2002. View at Google Scholar · View at Scopus
  215. E. Tsakiridou, L. Bertollini, M. de Curtis, G. Avanzini, and H. C. Pape, “Selective increase in T-type calcium conductance of reticular thalamic neurons in a rat model of absence epilepsy,” The Journal of Neuroscience, vol. 15, no. 4, pp. 3110–3117, 1995. View at Google Scholar · View at Scopus
  216. D. L. Burgess, J. M. Jones, M. H. Meisler, and J. L. Noebels, “Mutation of the Ca2+ channel β subunit gene Cchb4 is associated with ataxia and seizures in the lethargic (lh) mouse,” Cell, vol. 88, no. 3, pp. 385–392, 1997. View at Publisher · View at Google Scholar · View at Scopus
  217. D. W. Cope, G. Di Giovanni, S. J. Fyson et al., “Enhanced tonic GABAA inhibition in typical absence epilepsy,” Nature Medicine, vol. 15, pp. 1392–1398, 2009. View at Google Scholar
  218. S. A. Anderson, D. D. Eisenstat, L. Shi, and J. L. R. Rubenstein, “Interneuron migration from basal forebrain to neocortex: dependence on Dlx genes,” Science, vol. 278, no. 5337, pp. 474–476, 1997. View at Publisher · View at Google Scholar · View at Scopus
  219. A. Bulfone, F. Wang, R. Hevner et al., “An olfactory sensory map develops in the absence of normal projection neurons or GABAergic interneurons,” Neuron, vol. 21, no. 6, pp. 1273–1282, 1998. View at Publisher · View at Google Scholar · View at Scopus
  220. I. Cobos, U. Borello, and J. L. R. Rubenstein, “Dlx transcription factors promote migration through repression of axon and dendrite growth,” Neuron, vol. 54, no. 6, pp. 873–888, 2007. View at Publisher · View at Google Scholar · View at Scopus
  221. I. Cobos, M. E. Calcagnotto, A. J. Vilaythong et al., “Mice lacking Dlx1 show subtype-specific loss of interneurons, reduced inhibition and epilepsy,” Nature Neuroscience, vol. 8, no. 8, pp. 1059–1068, 2005. View at Publisher · View at Google Scholar · View at Scopus
  222. L. Sussel, O. Marin, S. Kimura, and J. L. R. Rubenstein, “Loss of Nkx2.1 homeobox gene function results in a ventral to dorsal molecular respecification within the basal telencephalon: evidence for a transformation of the pallidum into the striatum,” Development, vol. 126, no. 15, pp. 3359–3370, 1999. View at Google Scholar · View at Scopus
  223. E. Azim, D. Jabaudon, R. M. Fame, and J. D. MacKlis, “SOX6 controls dorsal progenitor identity and interneuron diversity during neocortical development,” Nature Neuroscience, vol. 12, no. 10, pp. 1238–1247, 2009. View at Publisher · View at Google Scholar · View at Scopus
  224. M. Le Bon-Jego and R. Yuste, “Persistently active, pacemaker-like neurons in neocortex,” Frontiers in Neuroscience, vol. 1, no. 1, pp. 123–129, 2007. View at Publisher · View at Google Scholar
  225. X. Xu, K. D. Roby, and E. M. Callaway, “Mouse cortical inhibitory neuron type that coexpresses somatostatin and calretinin,” Journal of Comparative Neurology, vol. 499, no. 1, pp. 144–160, 2006. View at Publisher · View at Google Scholar · View at Scopus
  226. X. Xu, K. D. Roby, and E. M. Callaway, “Immunochemical characterization of inhibitory mouse cortical neurons: three chemically distinct classes of inhibitory cells,” Journal of Comparative Neurology, vol. 518, no. 3, pp. 389–404, 2010. View at Publisher · View at Google Scholar
  227. J. T. Porter, B. Cauli, J. F. Staiger, B. Lambolez, J. Rossier, and E. Audinat, “Properties of bipolar VIPergic interneurons and their excitation by pyramidal neurons in the rat neocortex,” European Journal of Neuroscience, vol. 10, no. 12, pp. 3617–3628, 1998. View at Publisher · View at Google Scholar · View at Scopus
  228. L. Acsády, D. Arabadzisz, and T. F. Freund, “Correlated morphological and neurochemical features identify different subsets of vasoactive intestinal polypeptide-immunoreactive interneurons in rat hippocampus,” Neuroscience, vol. 73, no. 2, pp. 299–315, 1996. View at Publisher · View at Google Scholar · View at Scopus
  229. N. Hajos, L. Acsady, and T. F. Freund, “Target selectivity and neurochemical characteristics of VIP-immunoreactive interneurons in the rat dentate gyrus,” European Journal of Neuroscience, vol. 8, no. 7, pp. 1415–1431, 1996. View at Publisher · View at Google Scholar · View at Scopus
  230. C. Dávid, A. Schleicher, W. Zuschratter, and J. F. Staiger, “The innervation of parvalbumin-containing interneurons by VIP-immunopositive interneurons in the primary somatosensory cortex of the adult rat,” European Journal of Neuroscience, vol. 25, no. 8, pp. 2329–2340, 2007. View at Publisher · View at Google Scholar · View at Scopus
  231. X. Xu and E. M. Callaway, “Laminar specificity of functional input to distinct types of inhibitory cortical neurons,” The Journal of Neuroscience, vol. 29, no. 1, pp. 70–85, 2009. View at Publisher · View at Google Scholar · View at Scopus
  232. A. Karagiannis, T. Gallopin, C. Dávid et al., “Classification of NPY-expressing neocortical interneurons,” The Journal of Neuroscience, vol. 29, no. 11, pp. 3642–3659, 2009. View at Publisher · View at Google Scholar · View at Scopus
  233. S. Olah, G. Komlosi, J. Szabadics et al., “Output of neurogliaform cells to various neuron types in the human and rat cerebral cortex,” Frontiers in Neural Circuits, vol. 1, article 4, 2007. View at Google Scholar
  234. G. Tamás, A. Lörincz, A. Simon, and J. Szabadics, “Identified sources and targets of slow inhibition in the neocortex,” Science, vol. 299, no. 5614, pp. 1902–1905, 2003. View at Publisher · View at Google Scholar · View at Scopus
  235. S. Olah, M. Fule, G. Komlosi et al., “Regulation of cortical microcircuits by unitary GABA-mediated volume transmission,” Nature, vol. 461, no. 7268, pp. 1278–1281, 2009. View at Publisher · View at Google Scholar
  236. G. Biagini, G. Panuccio, and M. Avoli, “Neurosteroids and epilepsy,” Current Opinion in Neurology, vol. 23, no. 2, pp. 170–176, 2010. View at Publisher · View at Google Scholar · View at Scopus
  237. J. M. Pellock, R. Hrachovy, S. Shinnar et al., “Infantile spasms: a U.S. consensus report,” Epilepsia, vol. 51, no. 10, pp. 2175–2189, 2010. View at Publisher · View at Google Scholar · View at Scopus
  238. C. J. Price, B. Cauli, E. R. Kovacs et al., “Neurogliaform neurons form a novel inhibitory network in the hippocampal CA1 area,” The Journal of Neuroscience, vol. 25, no. 29, pp. 6775–6786, 2005. View at Publisher · View at Google Scholar · View at Scopus
  239. A. Simon, S. Olah, G. Molnar, J. Szabadics, and G. Tamas, “Gap-junctional coupling between neurogliaform cells and various interneuron types in the neocortex,” The Journal of Neuroscience, vol. 25, no. 27, pp. 6278–6285, 2005. View at Publisher · View at Google Scholar
  240. V. Zsiros and G. Maccaferri, “Electrical coupling between interneurons with different excitable properties in the stratum lacunosum-moleculare of the juvenile CA1 rat hippocampus,” The Journal of Neuroscience, vol. 25, no. 38, pp. 8686–8695, 2005. View at Publisher · View at Google Scholar · View at Scopus
  241. B. Cauli, X. K. Tong, A. Rancillac et al., “Cortical GABA interneurons in neurovascular coupling: relays for subcortical vasoactive pathways,” The Journal of Neuroscience, vol. 24, no. 41, pp. 8940–8949, 2004. View at Publisher · View at Google Scholar · View at Scopus
  242. B. Cauli and E. Hamel, “Revisiting the role of neurons in neurovascular coupling,” Frontiers in Neuroenergetics, vol. 2, article 9, 2010. View at Publisher · View at Google Scholar
  243. S. Anderson, M. Mione, K. Yun, and J. L. R. Rubenstein, “Differential origins of neocortical projection and local circuit neurons: role of Dlx genes in neocortical interneuronogenesis,” Cerebral Cortex, vol. 9, no. 6, pp. 646–654, 1999. View at Publisher · View at Google Scholar · View at Scopus
  244. S. A. Anderson, O. Marín, C. Horn, K. Jennings, and J. L. R. Rubenstein, “Distinct cortical migrations from the medial and lateral ganglionic eminences,” Development, vol. 128, no. 3, pp. 353–363, 2001. View at Google Scholar · View at Scopus
  245. J. G. Corbin, S. Nery, and G. Fishell, “Telencephalic cells take a tangent: non-radial migration in the mammalian forebrain,” Nature Neuroscience, vol. 4, no. 1, pp. 1177–1182, 2001. View at Google Scholar · View at Scopus
  246. G. Miyoshi and G. Fishell, “GABAergic interneuron lineages selectively sort into specific cortical layers during early postnatal development,” Cerebral Cortex, vol. 21, no. 4, pp. 845–852, 2011. View at Publisher · View at Google Scholar
  247. M. H. Porteus, A. Bulfone, J. K. Liu, L. Puelles, L. C. Lo, and J. L. R. Rubenstein, “DLX-2, MASH-1, and MAP-2 expression and bromodeoxyuridine incorporation define molecularly distinct cell populations in the embryonic mouse forebrain,” The Journal of Neuroscience, vol. 14, no. 11, pp. 6370–6383, 1994. View at Google Scholar · View at Scopus
  248. S. J. Pleasure, S. Anderson, R. Hevner et al., “Cell migration from the ganglionic eminences is required for the development of hippocampal GABAergic interneurons,” Neuron, vol. 28, no. 3, pp. 727–740, 2000. View at Publisher · View at Google Scholar · View at Scopus
  249. M. Kohwi, M. A. Petryniak, J. E. Long et al., “A subpopulation of olfactory bulb GABAergic interneurons is derived from Emx1- and Dlx5/6-expressing progenitors,” The Journal of Neuroscience, vol. 27, no. 26, pp. 6878–6891, 2007. View at Publisher · View at Google Scholar · View at Scopus
  250. S. Casarosa, C. Fode, and F. Guillemot, “Mash1 regulates neurogenesis in the ventral telencephalon,” Development, vol. 126, no. 3, pp. 525–534, 1999. View at Google Scholar · View at Scopus
  251. M. Fogarty, M. Grist, D. Gelman, O. Marín, V. Pachnis, and N. Kessaris, “Spatial genetic patterning of the embryonic neuroepithelium generates GABAergic interneuron diversity in the adult cortex,” The Journal of Neuroscience, vol. 27, no. 41, pp. 10935–10946, 2007. View at Publisher · View at Google Scholar · View at Scopus
  252. C. P. Wonders, L. Taylor, J. Welagen, I. C. Mbata, J. Z. Xiang, and S. A. Anderson, “A spatial bias for the origins of interneuron subgroups within the medial ganglionic eminence,” Developmental Biology, vol. 314, no. 1, pp. 127–136, 2008. View at Publisher · View at Google Scholar · View at Scopus
  253. N. Flames, R. Pla, D. M. Gelman, J. L. R. Rubenstein, L. Puelles, and O. Marín, “Delineation of multiple subpallial progenitor domains by the combinatorial expression of transcriptional codes,” The Journal of Neuroscience, vol. 27, no. 36, pp. 9682–9695, 2007. View at Publisher · View at Google Scholar · View at Scopus
  254. Q. Xu, L. Guo, H. Moore, R. R. Waclaw, K. Campbell, and S. A. Anderson, “Sonic hedgehog signaling confers ventral telencephalic progenitors with distinct cortical interneuron fates,” Neuron, vol. 65, no. 3, pp. 328–340, 2010. View at Publisher · View at Google Scholar · View at Scopus
  255. V. H. Sousa, G. Miyoshi, J. Hjerling-Leffler, T. Karayannis, and G. Fishell, “Characterization of Nkx6-2-derived neocortical interneuron lineages,” Cerebral Cortex, vol. 19, supplement 1, pp. i1–i10, 2009. View at Publisher · View at Google Scholar
  256. M. Grigoriou, A. S. Tucker, P. T. Sharpe, and V. Pachnis, “Expression and regulation of Lhx6 and Lhx7, a novel subfamily of LIM homeodomain encoding genes, suggests a role in mammalian head development,” Development, vol. 125, no. 11, pp. 2063–2074, 1998. View at Google Scholar · View at Scopus
  257. P. Liodis, M. Denaxa, M. Grigoriou, C. Akufo-Addo, Y. Yanagawa, and V. Pachnis, “Lhx6 activity is required for the normal migration and specification of cortical interneuron subtypes,” The Journal of Neuroscience, vol. 27, no. 12, pp. 3078–3089, 2007. View at Publisher · View at Google Scholar · View at Scopus
  258. Y. Zhao, P. Flandin, J. E. Long, M. D. Cuesta, H. Westphal, and J. L. R. Rubenstein, “Distinct molecular pathways of development of telencephalic interneuron subtypes revealed through analysis of Lhx6 mutants,” Journal of Comparative Neurology, vol. 510, no. 1, pp. 79–99, 2008. View at Publisher · View at Google Scholar · View at Scopus
  259. M. Andäng, J. Hjerling-Leffler, A. Moliner et al., “Histone H2AX-dependent GABAA receptor regulation of stem cell proliferation,” Nature, vol. 451, no. 7177, pp. 460–464, 2008. View at Publisher · View at Google Scholar · View at Scopus
  260. J. J. LoTurco, D. F. Owens, M. J. S. Heath, M. B. E. Davis, and A. R. Kriegstein, “GABA and glutamate depolarize cortical progenitor cells and inhibit DNA synthesis,” Neuron, vol. 15, no. 6, pp. 1287–1298, 1995. View at Publisher · View at Google Scholar · View at Scopus
  261. N. Heck, W. Kilb, P. Reiprich et al., “GABA-A receptors regulate neocortical neuronal migration in vitro and in vivo,” Cerebral Cortex, vol. 17, no. 1, pp. 138–148, 2007. View at Publisher · View at Google Scholar · View at Scopus
  262. R. Tyzio, A. Represa, I. Jorquera, Y. Ben-Ari, H. Gozlan, and L. Aniksztejn, “The establishment of GABAergic and glutamatergic synapses on CA1 pyramidal neurons is sequential and correlates with the development of the apical dendrite,” The Journal of Neuroscience, vol. 19, no. 23, pp. 10372–10382, 1999. View at Google Scholar · View at Scopus
  263. S. Hennou, I. Khalilov, D. Diabira, Y. Ben-Ari, and H. Gozlan, “Early sequential formation of functional GABAA and glutamatergic synapses on CA1 interneurons of the rat foetal hippocampus,” European Journal of Neuroscience, vol. 16, no. 2, pp. 197–208, 2002. View at Publisher · View at Google Scholar · View at Scopus
  264. E. Delpire, “Cation-chloride cotransporters in neuronal communication,” News in Physiological Sciences, vol. 15, no. 6, pp. 309–312, 2000. View at Google Scholar · View at Scopus
  265. C. Rivera, J. Voipio, J. A. Payne et al., “The K+/Cl- co-transporter KCC2 renders GABA hyperpolarizing during neuronal maturation,” Nature, vol. 397, no. 6716, pp. 251–255, 1999. View at Publisher · View at Google Scholar · View at Scopus
  266. H. Li, J. Tornberg, K. Kaila, M. S. Airaksinen, and C. Rivera, “Patterns of cation-chloride cotransporter expression during embryonic rodent CNS development,” European Journal of Neuroscience, vol. 16, no. 12, pp. 2358–2370, 2002. View at Publisher · View at Google Scholar · View at Scopus
  267. J. B. Manent, M. Demarque, I. Jorquera et al., “A noncanonical release of GABA and glutamate modulates neuronal migration,” The Journal of Neuroscience, vol. 25, no. 19, pp. 4755–4765, 2005. View at Publisher · View at Google Scholar · View at Scopus
  268. D. Bortone and F. Polleux, “KCC2 expression promotes the termination of cortical interneuron migration in a voltage-sensitive calcium-dependent manner,” Neuron, vol. 62, no. 1, pp. 53–71, 2009. View at Publisher · View at Google Scholar · View at Scopus
  269. D. D. Wang and A. R. Kriegstein, “GABA regulates excitatory synapse formation in the neocortex via NMDA receptor activation,” The Journal of Neuroscience, vol. 28, no. 21, pp. 5547–5558, 2008. View at Publisher · View at Google Scholar · View at Scopus
  270. D. D. Wang and A. R. Kriegstein, “Blocking early GABA depolarization with bumetanide results in permanent alterations in cortical circuits and sensorimotor gating deficits,” Cerebral Cortex, vol. 21, no. 3, pp. 574–587, 2011. View at Publisher · View at Google Scholar
  271. L. Cancedda, H. Fiumelli, K. Chen, and M. M. Poo, “Excitatory GABA action is essential for morphological maturation of cortical neurons in vivo,” The Journal of Neuroscience, vol. 27, no. 19, pp. 5224–5235, 2007. View at Publisher · View at Google Scholar · View at Scopus
  272. R. Cossart, “The maturation of cortical interneuron diversity: how multiple developmental journeys shape the emergence of proper network function,” Current Opinion in Neurobiology, vol. 21, no. 1, pp. 160–168, 2010. View at Publisher · View at Google Scholar · View at Scopus
  273. T. K. Hensch, M. Fagiolini, N. Mataga, M. P. Stryker, S. Baekkeskov, and S. F. Kash, “Local GABA circuit control of experience-dependent plasticity in developing visual cortex,” Science, vol. 282, no. 5393, pp. 1504–1508, 1998. View at Google Scholar · View at Scopus
  274. M. Fagiolini, J. M. Fritschy, K. Low, H. Mohler, U. Rudolph, and T. K. Hensch, “Specific GABAA circuits for visual cortical plasticity,” Science, vol. 303, no. 5664, pp. 1681–1683, 2004. View at Publisher · View at Google Scholar
  275. Y. Yazaki-Sugiyama, S. Kang, H. Cteau, T. Fukai, and T. K. Hensch, “Bidirectional plasticity in fast-spiking GABA circuits by visual experience,” Nature, vol. 462, no. 7270, pp. 218–221, 2009. View at Publisher · View at Google Scholar · View at Scopus
  276. A. Harauzov, M. Spolidoro, G. DiCristo et al., “Reducing intracortical inhibition in the adult visual cortex promotes ocular dominance plasticity,” The Journal of Neuroscience, vol. 30, no. 1, pp. 361–371, 2010. View at Publisher · View at Google Scholar · View at Scopus
  277. V. Crépel, D. Aronov, I. Jorquera, A. Represa, Y. Ben-Ari, and R. Cossart, “A parturition-associated nonsynaptic coherent activity pattern in the developing hippocampus,” Neuron, vol. 54, no. 1, pp. 105–120, 2007. View at Publisher · View at Google Scholar · View at Scopus
  278. C. Allène, A. Cattani, J. B. Ackman et al., “Sequential generation of two distinct synapse-driven network patterns in developing neocortex,” The Journal of Neuroscience, vol. 28, no. 48, pp. 12851–12863, 2008. View at Publisher · View at Google Scholar · View at Scopus
  279. Y. Ben-Ari, E. Cherubini, R. Corradetti, and J. L. Gaiarsa, “Giant synaptic potentials in immature rat CA3 hippocampal neurones,” Journal of Physiology, vol. 416, pp. 303–325, 1989. View at Google Scholar · View at Scopus
  280. P. Bonifazi, M. Goldin, M. A. Picardo et al., “GABAergic hub neurons orchestrate synchrony in developing hippocampal networks,” Science, vol. 326, no. 5958, pp. 1419–1424, 2009. View at Publisher · View at Google Scholar · View at Scopus
  281. M. D. Lundorf, H. N. Buttenschon, L. Foldager et al., “Mutational screening and association study of glutamate decarboxylase 1 as a candidate susceptibility gene for bipolar affective disorder and schizophrenia,” American Journal of Medical Genetics Part B, vol. 135, no. 1, pp. 94–101, 2005. View at Publisher · View at Google Scholar · View at Scopus
  282. R. Batista-Brito, R. MacHold, C. Klein, and G. Fishell, “Gene expression in cortical interneuron precursors is prescient of their mature function,” Cerebral Cortex, vol. 18, no. 10, pp. 2306–2317, 2008. View at Publisher · View at Google Scholar · View at Scopus
  283. J. DeFelipe, “Cortical interneurons: from Cajal to 2001,” Progress in Brain Research, vol. 136, pp. 215–238, 2002. View at Publisher · View at Google Scholar · View at Scopus
  284. P. Rakic, “Evolution of the neocortex: a perspective from developmental biology,” Nature Reviews Neuroscience, vol. 10, no. 10, pp. 724–735, 2009. View at Publisher · View at Google Scholar · View at Scopus
  285. J. DeFelipe, “Types of neurons, synaptic connections and chemical characteristics of cells immunoreactive for calbindin-D28K, parvalbumin and calretinin in the neocortex,” Journal of Chemical Neuroanatomy, vol. 14, no. 1, pp. 1–19, 1997. View at Publisher · View at Google Scholar · View at Scopus
  286. J. DeFelipe, L. Alonso-Nanclares, and J. I. Arellano, “Microstructure of the neocortex: comparative aspects,” Journal of Neurocytology, vol. 31, no. 3–5, pp. 299–316, 2002. View at Publisher · View at Google Scholar · View at Scopus
  287. K. Letinic, R. Zoncu, and P. Rakic, “Origin of GABAergic neurons in the human neocortex,” Nature, vol. 417, no. 6889, pp. 645–649, 2002. View at Publisher · View at Google Scholar · View at Scopus
  288. S. Rakic and N. Zecevic, “Emerging complexity of layer I in human cerebral cortex,” Cerebral Cortex, vol. 13, no. 10, pp. 1072–1083, 2003. View at Publisher · View at Google Scholar · View at Scopus
  289. X. Yu and N. Zecevic, “Dorsal radial glial cells have the potential to generate cortical interneurons in human but not in mouse brain,” The Journal of Neuroscience, vol. 31, no. 7, pp. 2413–2420, 2011. View at Publisher · View at Google Scholar
  290. S. Lindsay, S. Sarma, M. Martínez-de-la-Torre et al., “Anatomical and gene expression mapping of the ventral pallium in a three-dimensional model of developing human brain,” Neuroscience, vol. 136, no. 3, pp. 625–632, 2005. View at Publisher · View at Google Scholar · View at Scopus
  291. S. Sarma, J. Kerwin, L. Puelles et al., “3D modelling, gene expression mapping and post-mapping image analysis in the developing human brain,” Brain Research Bulletin, vol. 66, no. 4–6, pp. 449–453, 2005. View at Publisher · View at Google Scholar · View at Scopus
  292. I. Jakovcevski, N. Mayer, and N. Zecevic, “Multiple origins of human neocortical interneurons are supported by distinct expression of transcription factors,” Cerebral Cortex, vol. 21, no. 8, pp. 1771–1782, 2011. View at Publisher · View at Google Scholar
  293. N. Zecevic, F. Hu, and I. Jakovcevski, “Interneurons in the developing human neocortex,” Developmental Neurobiology, vol. 71, no. 1, pp. 18–33, 2011. View at Publisher · View at Google Scholar · View at Scopus
  294. DSM-IV, Diagnostic and Statistical Manual of Mental Disorders, American Psychiatric Association, Washington, DC, USA, 1994.
  295. B. Elvevag and T. E. Goldberg, “Cognitive impairment in schizophrenia is the core of the disorder,” Critical Reviews in Neurobiology, vol. 14, no. 1, pp. 1–21, 2000. View at Google Scholar · View at Scopus
  296. J. R. Cohen, B. Elvevåg, and T. E. Goldberg, “Cognitive control and semantics in schizophrenia: an integrated approach,” American Journal of Psychiatry, vol. 162, no. 10, pp. 1969–1971, 2005. View at Publisher · View at Google Scholar · View at Scopus
  297. Z. H. Qin, S. P. Zhang, and B. Weiss, “Dopaminergic and glutamatergic blocking drugs differentially regulate glutamic acid decarboxylase mRNA in mouse brain,” Molecular Brain Research, vol. 21, no. 3-4, pp. 293–302, 1994. View at Publisher · View at Google Scholar · View at Scopus
  298. M. Gierdalski, B. Jablonska, A. Smith, J. Skangiel-Kramska, and M. Kossut, “Deafferentation induced changes in GAD67 and GluR2 mRNA expression in mouse somatosensory cortex,” Molecular Brain Research, vol. 71, no. 1, pp. 111–119, 1999. View at Publisher · View at Google Scholar · View at Scopus
  299. R. S. Woo, X. M. Li, Y. Tao et al., “Neuregulin-1 enhances depolarization-induced GABA release,” Neuron, vol. 54, no. 4, pp. 599–610, 2007. View at Publisher · View at Google Scholar · View at Scopus
  300. D. W. Volk, J. N. Pierri, J. M. Fritschy, S. Auh, A. R. Sampson, and D. A. Lewis, “Reciprocal alterations in pre- and postsynaptic inhibitory markers at chandelier cell inputs to pyramidal neurons in schizophrenia,” Cerebral Cortex, vol. 12, no. 10, pp. 1063–1070, 2002. View at Google Scholar · View at Scopus
  301. J. G. Maldonado-Avilés, A. A. Curley, T. Hashimoto et al., “Altered markers of tonic inhibition in the dorsolateral prefrontal cortex of subjects with schizophrenia,” American Journal of Psychiatry, vol. 166, no. 4, pp. 450–459, 2009. View at Publisher · View at Google Scholar · View at Scopus
  302. S. R. Cobb, E. H. Buhl, K. Halasy, O. Paulsen, and P. Somogyi, “Synchronization of neuronal activity in hippocampus by individual GABAergic interneurons,” Nature, vol. 378, no. 6552, pp. 75–78, 1995. View at Google Scholar · View at Scopus
  303. S. L. Smalley, P. E. Tanguay, M. Smith, and G. Gutierrez, “Autism and tuberous sclerosis,” Journal of Autism and Developmental Disorders, vol. 22, no. 3, pp. 339–355, 1992. View at Google Scholar · View at Scopus
  304. S. L. Smalley, “Autism and tuberous sclerosis,” Journal of Autism and Developmental Disorders, vol. 28, no. 5, pp. 407–414, 1998. View at Publisher · View at Google Scholar · View at Scopus
  305. J. Sebat, B. Lakshmi, D. Malhotra et al., “Strong association of de novo copy number mutations with autism,” Science, vol. 316, no. 5823, pp. 445–449, 2007. View at Publisher · View at Google Scholar · View at Scopus
  306. R. A. Kumar, S. Karamohamed, J. Sudi et al., “Recurrent 16p11.2 microdeletions in autism,” Human Molecular Genetics, vol. 17, no. 4, pp. 628–638, 2008. View at Publisher · View at Google Scholar · View at Scopus
  307. C. R. Marshall, A. Noor, J. B. Vincent et al., “Structural variation of chromosomes in autism spectrum disorder,” American Journal of Human Genetics, vol. 82, no. 2, pp. 477–488, 2008. View at Publisher · View at Google Scholar · View at Scopus
  308. L. A. Weiss, Y. Shen, J. M. Korn et al., “Association between microdeletion and microduplication at 16p11.2 and autism,” The New England Journal of Medicine, vol. 358, no. 7, pp. 667–675, 2008. View at Publisher · View at Google Scholar · View at Scopus
  309. M. W. State, “The genetics of child psychiatric disorders: focus on autism and tourette syndrome,” Neuron, vol. 68, no. 2, pp. 254–269, 2010. View at Publisher · View at Google Scholar · View at Scopus
  310. S. Lim, S. Naisbitt, J. Yoon et al., “Characterization of the Shank family of synaptic proteins: multiple genes, alternative splicing, and differential expression in brain and development,” Journal of Biological Chemistry, vol. 274, no. 41, pp. 29510–29518, 1999. View at Publisher · View at Google Scholar · View at Scopus
  311. A. A. Chubykin, X. Liu, D. Comoletti, I. Tsigelny, P. Taylor, and T. C. Südhof, “Dissection of synapse induction by neuroligins: effect of a neuroligin mutation associated with autism,” Journal of Biological Chemistry, vol. 280, no. 23, pp. 22365–22374, 2005. View at Publisher · View at Google Scholar · View at Scopus
  312. G. Dölen, R. L. Carpenter, T. D. Ocain, and M. F. Bear, “Mechanism-based approaches to treating fragile X,” Pharmacology and Therapeutics, vol. 127, no. 1, pp. 78–93, 2010. View at Publisher · View at Google Scholar · View at Scopus
  313. A. Brooks-Kayal, “Epilepsy and autism spectrum disorders: are there common developmental mechanisms?” Brain and Development, vol. 32, no. 9, pp. 731–738, 2010. View at Publisher · View at Google Scholar · View at Scopus
  314. A. Yasuhara, “Correlation between EEG abnormalities and symptoms of autism spectrum disorder (ASD),” Brain and Development, vol. 32, no. 10, pp. 791–798, 2010. View at Publisher · View at Google Scholar · View at Scopus
  315. N. C. de Lanerolle, J. H. Kim, R. J. Robbins, and D. D. Spencer, “Hippocampal interneuron loss and plasticity in human temporal lobe epilepsy,” Brain Research, vol. 495, no. 2, pp. 387–395, 1989. View at Google Scholar · View at Scopus
  316. P. Marco, R. G. Sola, P. Pulido et al., “Inhibitory neurons in the human epileptogenic temporal neocortex: an immunocytochemical study,” Brain, vol. 119, no. 4, pp. 1327–1347, 1996. View at Publisher · View at Google Scholar
  317. L. Wittner, Z. Magloczky, Z. Borhegyi et al., “Preservation of perisomatic inhibitory input of granule cells in the epileptic human dentate gyrus,” Neuroscience, vol. 108, no. 4, pp. 587–600, 2001. View at Publisher · View at Google Scholar
  318. L. A. Jansen, L. D. Peugh, and J. G. Ojemann, “GABAA receptor properties in catastrophic infantile epilepsy,” Epilepsy Research, vol. 81, no. 2-3, pp. 188–197, 2008. View at Publisher · View at Google Scholar · View at Scopus
  319. I. Cohen, V. Navarro, S. Clemenceau, M. Baulac, and R. Miles, “On the origin of interictal activity in human temporal lobe epilepsy in vitro,” Science, vol. 298, no. 5597, pp. 1418–1421, 2002. View at Publisher · View at Google Scholar · View at Scopus
  320. I. Khalilov, G. L. Holmes, and Y. Ben-Ari, “In vitro formation of a secondary epileptogenic mirror focus by interhippocampal propagation of seizures,” Nature Neuroscience, vol. 6, no. 10, pp. 1079–1085, 2003. View at Publisher · View at Google Scholar · View at Scopus
  321. R. S. Sloviter, “Decreased hippocampal inhibition and a selective loss of interneurons in experimental epilepsy,” Science, vol. 235, no. 4784, pp. 73–76, 1987. View at Google Scholar · View at Scopus
  322. R. S. Sloviter, “Permanently altered hippocampal structure, excitability, and inhibition after experimental status epilepticus in the rat: the “dormant basket cell” hypothesis and its possible relevance to temporal lobe epilepsy,” Hippocampus, vol. 1, no. 1, pp. 41–66, 1991. View at Google Scholar · View at Scopus
  323. D. H. Lowenstein, M. J. Thomas, D. H. Smith, and T. K. McIntosh, “Selective vulnerability of dentate hilar neurons following traumatic brain injury: a potential mechanistic link between head trauma and disorders of the hippocampus,” The Journal of Neuroscience, vol. 12, no. 12, pp. 4846–4853, 1992. View at Google Scholar · View at Scopus
  324. P. S. Buckmaster and A. L. Jongen-Rêlo, “Highly specific neuron loss preserves lateral inhibitory circuits in the dentate gyrus of kainate-induced epileptic rats,” The Journal of Neuroscience, vol. 19, no. 21, pp. 9519–9529, 1999. View at Google Scholar · View at Scopus
  325. C. Dinocourt, Z. Petanjek, T. F. Freund, Y. Ben-Ari, and M. Esclapez, “Loss of interneurons innervating pyramidal cell dendrites and axon initial segments in the CA1 region of the hippocampus following pilocarpine-induced seizures,” Journal of Comparative Neurology, vol. 459, no. 4, pp. 407–425, 2003. View at Publisher · View at Google Scholar · View at Scopus
  326. N. C. de Lanerolle, J. H. Kim, A. Williamson et al., “A retrospective analysis of hippocampal pathology in human temporal lobe epilepsy: evidence for distinctive patient subcategories,” Epilepsia, vol. 44, no. 5, pp. 677–687, 2003. View at Publisher · View at Google Scholar · View at Scopus
  327. A. Andrioli, L. Alonso-Nanclares, J. I. Arellano, and J. DeFelipe, “Quantitative analysis of parvalbumin-immunoreactive cells in the human epileptic hippocampus,” Neuroscience, vol. 149, no. 1, pp. 131–143, 2007. View at Publisher · View at Google Scholar · View at Scopus
  328. J. DeFelipe, “Chandelier cells and epilepsy,” Brain, vol. 122, no. 10, pp. 1807–1822, 1999. View at Publisher · View at Google Scholar · View at Scopus
  329. J. I. Arellano, A. Muñoz, I. Ballesteros-Yáñez, R. G. Sola, and J. DeFelipe, “Histopathology and reorganization of chandelier cells in the human epileptic sclerotic hippocampus,” Brain, vol. 127, no. 1, pp. 45–64, 2004. View at Publisher · View at Google Scholar · View at Scopus
  330. U. Sayin, S. Osting, J. Hagen, P. Rutecki, and T. Sutula, “Spontaneous seizures and loss of axo-axonic and axo-somatic inhibition induced by repeated brief seizures in kindled rats,” The Journal of Neuroscience, vol. 23, no. 7, pp. 2759–2768, 2003. View at Google Scholar · View at Scopus
  331. E. A. van Vliet, E. Aronica, E. A. Tolner, F. H. Lopes da Silva, and J. A. Gorter, “Progression of temporal lobe epilepsy in the rat is associated with immunocytochemical changes in inhibitory interneurons in specific regions of the hippocampal formation,” Experimental Neurology, vol. 187, no. 2, pp. 367–379, 2004. View at Publisher · View at Google Scholar · View at Scopus
  332. L. Palm, G. Blennow, and A. Brun, “Infantile spasms and neuronal heterotopias: a report on six cases,” Acta Paediatrica Scandinavica, vol. 75, no. 5, pp. 855–859, 1986. View at Google Scholar
  333. K. Jellinger, “Neuropathological aspects of infantile spasms,” Brain and Development, vol. 9, no. 4, pp. 349–357, 1987. View at Google Scholar · View at Scopus
  334. H. V. Vinters, M. J. de Rosa, M. A. Farrell, P. Genton, A. Portera-Sanchez, and C. K. Benninger, “Neuropathologic study of resected cerebral tissue from patients with infantile spasms,” Epilepsia, vol. 34, no. 4, pp. 772–779, 1993. View at Google Scholar · View at Scopus
  335. M. Hayashi, “Neuropathology of the limbic system and brainstem in West syndrome,” Brain and Development, vol. 23, no. 7, pp. 516–522, 2001. View at Publisher · View at Google Scholar · View at Scopus
  336. R. Riikonen, “Long-term outcome of patients with West syndrome,” Brain and Development, vol. 23, no. 7, pp. 683–687, 2001. View at Publisher · View at Google Scholar · View at Scopus
  337. L. A. Jansen, L. D. Peugh, W. H. Roden, and J. G. Ojemann, “Impaired maturation of cortical GABAA receptor expression in pediatric epilepsy,” Epilepsia, vol. 51, no. 8, pp. 1456–1467, 2010. View at Publisher · View at Google Scholar · View at Scopus
  338. L. Claes, B. Ceulemans, D. Audenaert et al., “De novo SCN1A mutations are a major cause of severe myoclonic epilepsy of infancy,” Human Mutation, vol. 21, no. 6, pp. 615–621, 2003. View at Publisher · View at Google Scholar · View at Scopus
  339. K. Kanai, S. Hirose, H. Oguni et al., “Effect of localization of missense mutations in SCN1A on epilepsy phenotype severity,” Neurology, vol. 63, no. 2, pp. 329–334, 2004. View at Google Scholar · View at Scopus
  340. K. Kanai, S. Yoshida, S. Hirose et al., “Physicochemical property changes of amino acid residues that accompany missense mutations in SCN1A affect epilepsy phenotype severity,” Journal of Medical Genetics, vol. 46, no. 10, pp. 671–679, 2009. View at Publisher · View at Google Scholar · View at Scopus
  341. I. Ogiwara, H. Miyamoto, N. Morita et al., “NaV1.1 localizes to axons of parvalbumin-positive inhibitory interneurons: a circuit basis for epileptic seizures in mice carrying an Scn1a gene mutation,” The Journal of Neuroscience, vol. 27, no. 22, pp. 5903–5914, 2007. View at Publisher · View at Google Scholar · View at Scopus
  342. E. H. Sherr, “The ARX story (epilepsy, mental retardation, autism, and cerebral malformations): one gene leads to many phenotypes,” Current Opinion in Pediatrics, vol. 15, no. 6, pp. 567–571, 2003. View at Publisher · View at Google Scholar · View at Scopus
  343. L. Rusconi, L. Salvatoni, L. Giudici et al., “CDKL5 expression is modulated during neuronal development and its subcellular distribution is tightly regulated by the C-terminal tail,” Journal of Biological Chemistry, vol. 283, no. 44, pp. 30101–30111, 2008. View at Publisher · View at Google Scholar · View at Scopus
  344. L. M. Dibbens, H. J. Feng, M. C. Richards et al., “GABRD encoding a protein for extra- or peri- synaptic GABAA receptors is susceptibility locus for generalized epilepsies,” Human Molecular Genetics, vol. 13, no. 13, pp. 1315–1319, 2004. View at Publisher · View at Google Scholar · View at Scopus
  345. Y. Chen, J. Lu, H. Pan et al., “Association between genetic variation of CACNA1H and childhood absence epilepsy,” Annals of Neurology, vol. 54, no. 2, pp. 239–243, 2003. View at Publisher · View at Google Scholar · View at Scopus
  346. D. L. Burgess and J. L. Noebels, “Single gene defects in mice: the role of voltage-dependent calcium channels in absence models,” Epilepsy Research, vol. 36, no. 2-3, pp. 111–122, 1999. View at Publisher · View at Google Scholar · View at Scopus
  347. E. M. Talley, G. Solórzano, A. Depaulis, E. Perez-Reyes, and D. A. Bayliss, “Low-voltage-activated calcium channel subunit expression in a genetic model of absence epilepsy in the rat,” Molecular Brain Research, vol. 75, no. 1, pp. 159–165, 2000. View at Publisher · View at Google Scholar · View at Scopus
  348. P. Smits, P. Li, J. Mandel et al., “The transcription factors L-Sox5 and Sox6 are essential for cartilage formation,” Developmental Cell, vol. 1, no. 2, pp. 277–290, 2001. View at Publisher · View at Google Scholar · View at Scopus
  349. P. Smits and V. Lefebvre, “Sox5 and Sox6 are required for notochord extracellular matrix sheath formation, notochord cell survival and development of the nucleus pulposus of intervertebral discs,” Development, vol. 130, no. 6, pp. 1135–1148, 2003. View at Publisher · View at Google Scholar · View at Scopus
  350. P. Smits, P. Dy, S. Mitra, and V. Lefebvre, “Sox5 and Sox6 are needed to develop and maintain source, columnar, and hypertrophic chondrocytes in the cartilage growth plate,” Journal of Cell Biology, vol. 164, no. 5, pp. 747–758, 2004. View at Publisher · View at Google Scholar · View at Scopus
  351. S. C. Baraban, D. G. Southwell, R. C. Estrada et al., “Reduction of seizures by transplantation of cortical GABAergic interneuron precursors into Kv1.1 mutant mice,” Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 36, pp. 15472–15477, 2009. View at Publisher · View at Google Scholar · View at Scopus
  352. J. Y. Sebe and S. C. Baraban, “The promise of an interneuron-based cell therapy for epilepsy,” Developmental Neurobiology, vol. 71, no. 1, pp. 107–117, 2011. View at Publisher · View at Google Scholar · View at Scopus