Table of Contents Author Guidelines Submit a Manuscript
Neural Plasticity
Volume 2011, Article ID 728395, 10 pages
http://dx.doi.org/10.1155/2011/728395
Review Article

Spatial and Temporal Dynamics in the Ionic Driving Force for GABAA Receptors

Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, UK

Received 21 January 2011; Accepted 29 March 2011

Academic Editor: Laura Cancedda

Copyright © 2011 R. Wright et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. Y. Ben-Ari, E. Cherubini, R. Corradetti, and J. L. Gaiarsa, “Giant synaptic potentials in immature rat CA3 hippocampal neurones,” Journal of Physiology, vol. 416, pp. 303–325, 1989. View at Google Scholar · View at Scopus
  2. R. Tyzio, G. L. Holmes, Y. Ben-Ari, and R. Khazipov, “Timing of the developmental switch in GABA mediated signaling from excitation to inhibition in CA3 rat hippocampus using gramicidin perforated patch and extracellular recordings,” Epilepsia, vol. 48, supplement 5, pp. 96–105, 2007. View at Publisher · View at Google Scholar · View at Scopus
  3. R. Khazipov, I. Khalilov, R. Tyzio, E. Morozova, Y. Ben-Ari, and G. L. Holmes, “Developmental changes in GABAergic actions and seizure susceptibility in the rat hippocampus,” European Journal of Neuroscience, vol. 19, no. 3, pp. 590–600, 2004. View at Publisher · View at Google Scholar · View at Scopus
  4. K. Ganguly, A. F. Schinder, S. T. Wong, and M. M. Poo, “GABA itself promotes the developmental switch of neuronal GABAergic responses from excitation to inhibition,” Cell, vol. 105, no. 4, pp. 521–532, 2001. View at Publisher · View at Google Scholar · View at Scopus
  5. J. A. Payne, C. Rivera, J. Voipio, and K. Kaila, “Cation-chloride co-transporters in neuronal communication, development and trauma,” Trends in Neurosciences, vol. 26, no. 4, pp. 199–206, 2003. View at Publisher · View at Google Scholar · View at Scopus
  6. E. Papp, C. Rivera, K. Kaila, and T. F. Freund, “Relationship between neuronal vulnerability and potassium-chloride cotransporter 2 immunoreactivity in hippocampus following transient forebrain ischemia,” Neuroscience, vol. 154, no. 2, pp. 677–689, 2008. View at Publisher · View at Google Scholar · View at Scopus
  7. J. A. Coull, S. Beggs, D. Boudreau et al., “BDNF from microglia causes the shift in neuronal anion gradient underlying neuropathic pain,” Nature, vol. 438, no. 7070, pp. 1017–1021, 2005. View at Publisher · View at Google Scholar · View at Scopus
  8. I. Khalilov, G. L. Holmes, and Y. Ben-Ari, “In vitro formation of a secondary epileptogenic mirror focus by interhippocampal propagation of seizures,” Nature Neuroscience, vol. 6, no. 10, pp. 1079–1085, 2003. View at Publisher · View at Google Scholar · View at Scopus
  9. C. Rivera, H. Li, J. Thomas-Crusells et al., “BDNF-induced TrkB activation down-regulates the K+-Cl-cotransporter KCC2 and impairs neuronal Cl- extrusion,” Journal of Cell Biology, vol. 159, no. 5, pp. 747–752, 2002. View at Publisher · View at Google Scholar · View at Scopus
  10. C. Rivera, J. Voipio, J. Thomas-Crusells et al., “Mechanism of activity-dependent downregulation of the neuron-specific K-Cl cotransporter KCC2,” Journal of Neuroscience, vol. 24, no. 19, pp. 4683–4691, 2004. View at Publisher · View at Google Scholar · View at Scopus
  11. J. Nabekura, T. Ueno, A. Okabe et al., “Reduction of KCC2 expression and GABA receptor-mediated excitation after In vivo axonal injury,” Journal of Neuroscience, vol. 22, no. 11, pp. 4412–4417, 2002. View at Google Scholar · View at Scopus
  12. B. B. Pond, K. Berglund, T. Kuner, G. Feng, G. J. Augustine, and R. D. Schwartz-Bloom, “The chloride transporter Na+-K+-Cl- cotransporter isoform-1 contributes to intracellular chloride increases after in vitro ischemia,” Journal of Neuroscience, vol. 26, no. 5, pp. 1396–1406, 2006. View at Publisher · View at Google Scholar · View at Scopus
  13. N. Jaenisch, O. W. Witte, and C. Frahm, “Downregulation of potassium chloride cotransporter KCC2 after transient focal cerebral ischemia,” Stroke, vol. 41, no. 3, pp. e151–e159, 2010. View at Publisher · View at Google Scholar · View at Scopus
  14. P. Boulenguez, S. Liabeuf, R. Bos et al., “Down-regulation of the potassium-chloride cotransporter KCC2 contributes to spasticity after spinal cord injury,” Nature Medicine, vol. 16, no. 3, pp. 302–307, 2010. View at Publisher · View at Google Scholar · View at Scopus
  15. H. R. Pathak, F. Weissinger, M. Terunuma et al., “Disrupted dentate granule cell chloride regulation enhances synaptic excitability during development of temporal lobe epilepsy,” Journal of Neuroscience, vol. 27, no. 51, pp. 14012–14022, 2007. View at Publisher · View at Google Scholar · View at Scopus
  16. I. Cohen, V. Navarro, S. Clemenceau, M. Baulac, and R. Miles, “On the origin of interictal activity in human temporal lobe epilepsy in vitro,” Science, vol. 298, no. 5597, pp. 1418–1421, 2002. View at Publisher · View at Google Scholar · View at Scopus
  17. Y. Lu, J. Zheng, L. Xiong, M. Zimmermann, and J. Yang, “Spinal cord injury-induced attenuation of GABAergic inhibition in spinal dorsal horn circuits is associated with down-regulation of the chloride transporter KCC2 in rat,” Journal of Physiology, vol. 586, no. 23, pp. 5701–5715, 2008. View at Publisher · View at Google Scholar · View at Scopus
  18. M. Martina, S. Royer, and D. Pare, “Cell-type-specific GABA responses and chloride homeostasis in the cortex and amygdala,” Journal of Neurophysiology, vol. 86, no. 6, pp. 2887–2895, 2001. View at Google Scholar · View at Scopus
  19. J. Chavas and A. Marty, “Coexistence of excitatory and inhibitory GABA synapses in the cerebellar interneuron network,” Journal of Neuroscience, vol. 23, no. 6, pp. 2019–2031, 2003. View at Google Scholar · View at Scopus
  20. A. Gulacsi, C. R. Lee, A. Sík et al., “Cell type-specific differences in chloride-regulatory mechanisms and GABA(A) receptor-mediated inhibition in rat substantia nigra,” Journal of Neuroscience, vol. 23, no. 23, pp. 8237–8246, 2003. View at Google Scholar · View at Scopus
  21. A. Woodruff et al., “Depolarizing effect of neocortical chandelier neurons,” Front Neural Circuits, vol. 3, p. 15, 2009. View at Google Scholar
  22. S. Khirug, J. Yamada, R. Afzalov, J. Voipio, L. Khiroug, and K. Kaila, “GABAergic depolarization of the axon initial segment in cortical principal neurons is caused by the Na-K-2Cl cotransporter NKCC1,” Journal of Neuroscience, vol. 28, no. 18, pp. 4635–4639, 2008. View at Publisher · View at Google Scholar · View at Scopus
  23. J. Szabadics, C. Varga, G. Molnár, S. Oláh, P. Barzó, and G. Tamás, “Excitatory effect of GABAergic axo-axonic cells in cortical microcircuits,” Science, vol. 311, no. 5758, pp. 233–235, 2006. View at Publisher · View at Google Scholar · View at Scopus
  24. R. Baldi, C. Varga, and G. Tamas, “Differential distribution of KCC2 along the axo-somato-dendritic axis of hippocampal principal cells,” European Journal of Neuroscience, vol. 32, no. 8, pp. 1319–1325, 2010. View at Google Scholar
  25. K. J. Staley and W. R. Proctor, “Modulation of mammalian dendritic GABA(A) receptor function by the kinetics of Cl- and HCO3- transport,” Journal of Physiology, vol. 519, part 3, pp. 693–712, 1999. View at Publisher · View at Google Scholar · View at Scopus
  26. K. J. Staley, B. L. Soldo, and W. R. Proctor, “Ionic mechanisms of neuronal excitation by inhibitory GABA(A) receptors,” Science, vol. 269, no. 5226, pp. 977–981, 1995. View at Google Scholar · View at Scopus
  27. M. A. Woodin, K. Ganguly, and M. M. Poo, “Coincident pre- and postsynaptic activity modifies GABAergic synapses by postsynaptic changes in Cl- transporter activity,” Neuron, vol. 39, no. 5, pp. 807–820, 2003. View at Publisher · View at Google Scholar · View at Scopus
  28. H. Fiumelli, L. Cancedda, and M. M. Poo, “Modulation of GABAergic transmission by activity via postsynaptic Ca2+ -dependent regulation of KCC2 function,” Neuron, vol. 48, no. 5, pp. 773–786, 2005. View at Publisher · View at Google Scholar · View at Scopus
  29. A. R. Woodruff, S. A. Anderson, and R. Yuste, “The enigmatic function of chandelier cells,” Front Neurosci, vol. 4, p. 201, 2010. View at Google Scholar
  30. L. L. Glickfeld, J. D. Roberts, P. Somogyi, and M. Scanziani, “Interneurons hyperpolarize pyramidal cells along their entire somatodendritic axis,” Nature Neuroscience, vol. 12, no. 1, pp. 21–23, 2009. View at Publisher · View at Google Scholar · View at Scopus
  31. G. Molnar, S. Oláh, G. Komlósi et al., “Complex events initiated by individual spikes in the human cerebral cortex,” PLoS Biology, vol. 6, no. 9, article e222, 2008. View at Publisher · View at Google Scholar · View at Scopus
  32. K. J. Staley and I. Mody, “Shunting of excitatory input to dentate gyrus granule cells by a depolarizing GABA(A) receptor-mediated postsynaptic conductance,” Journal of Neurophysiology, vol. 68, no. 1, pp. 197–212, 1992. View at Google Scholar · View at Scopus
  33. C. Jean-Xavier, G. Z. Mentis, M. J. O'Donovan, D. Cattaert, and L. Vinay, “Dual personality of GABA/glycine-mediated depolarizations in immature spinal cord,” Proceedings of the National Academy of Sciences of the United States of America, vol. 104, no. 27, pp. 11477–11482, 2007. View at Publisher · View at Google Scholar · View at Scopus
  34. J. Duebel, S. Haverkamp, W. Schleich et al., “Two-photon imaging reveals somatodendritic chloride gradient in retinal on-type bipolar cells expressing the biosensor clomeleon,” Neuron, vol. 49, no. 1, pp. 81–94, 2006. View at Publisher · View at Google Scholar · View at Scopus
  35. T. Waseem et al., “Genetically encoded Cl- Sensor as a tool for monitoring of Cl- dependent processes in small neuronal compartments,” The Journal of Neuroscience Methods, vol. 193, no. 1, pp. 14–23, 2010. View at Google Scholar
  36. P. Andersen, R. Dingledine, and L. Gjerstad, “Two different responses of hippocampal pyramidal cells to application of gamma-amino butyric acid,” Journal of Physiology, vol. 305, pp. 279–296, 1980. View at Google Scholar · View at Scopus
  37. M. Hara, M. Inoue, T. Yasukura, S. Ohnishi, Y. Mikami, and C. Inagaki, “Uneven distribution of intracellular Cl- in rat hippocampal neurons,” Neuroscience Letters, vol. 143, no. 1-2, pp. 135–138, 1992. View at Google Scholar · View at Scopus
  38. K. L. Perkins and R. K. Wong, “Ionic basis of the postsynaptic depolarizing GABA response in hippocampal pyramidal cells,” Journal of Neurophysiology, vol. 76, no. 6, pp. 3886–3894, 1996. View at Google Scholar · View at Scopus
  39. T. Kuner and G. J. Augustine, “A genetically encoded ratiometric indicator for chloride: capturing chloride transients in cultured hippocampal neurons,” Neuron, vol. 27, no. 3, pp. 447–459, 2000. View at Google Scholar · View at Scopus
  40. H. Romo-Parra, M. Treviño, U. Heinemann, and R. Gutiérrez, “GABA actions in hippocampal area CA3 during postnatal development: differential shift from depolarizing to hyperpolarizing in somatic and dendritic compartments,” Journal of Neurophysiology, vol. 99, no. 3, pp. 1523–1534, 2008. View at Publisher · View at Google Scholar · View at Scopus
  41. P. Jedlicka et al., “Activity-dependent intracellular chloride accumulation and diffusion controls GABA(A) receptor-mediated synaptic transmission,” Hippocampus, 2010. View at Publisher · View at Google Scholar
  42. C. Földy, S.-H. Lee, R. J. Morgan et al., “Regulation of fast-spiking basket cell synapses by the chloride channel ClC-2,” Nature Neuroscience, vol. 13, no. 9, pp. 1047–1049, 2010. View at Google Scholar
  43. K. Staley, “The role of an inwardly rectifying chloride conductance in postsynaptic inhibition,” Journal of Neurophysiology, vol. 72, no. 1, pp. 273–284, 1994. View at Google Scholar · View at Scopus
  44. R. L. Smith, G. H. Clayton, C. L. Wilcox, K. W. Escudero, and K. J. Staley, “Differential expression of an inwardly rectifying chloride conductance in rat brain neurons: a potential mechanism for cell-specific modulation of postsynaptic inhibition,” Journal of Neuroscience, vol. 15, no. 5, part 2, pp. 4057–4067, 1995. View at Google Scholar · View at Scopus
  45. I. Rinke, J. Artmann, and V. Stein, “ClC-2 voltage-gated channels constitute part of the background conductance and assist chloride extrusion,” Journal of Neuroscience, vol. 30, no. 13, pp. 4776–4786, 2010. View at Publisher · View at Google Scholar · View at Scopus
  46. P. Blaesse, M. S. Airaksinen, C. Rivera, and K. Kaila, “Cation-chloride cotransporters and neuronal function,” Neuron, vol. 61, no. 6, pp. 820–838, 2009. View at Publisher · View at Google Scholar · View at Scopus
  47. B. E. Alger and R. A. Nicoll, “GABA-mediated biphasic inhibitory responses in hippocampus,” Nature, vol. 281, no. 5729, pp. 315–317, 1979. View at Google Scholar · View at Scopus
  48. S. M. Thompson and B. H. Gahwiler, “Activity-dependent disinhibition. II. effects of extracellular potassium, furosemide, and membrane potential on ECl- in hippocampal CA3 neurons,” Journal of Neurophysiology, vol. 61, no. 3, pp. 512–523, 1989. View at Google Scholar · View at Scopus
  49. K. Kaila, K. Lamsa, S. Smirnov, T. Taira, and J. Voipio, “Long-lasting GABA-mediated depolarization evoked by high-frequency stimulation in pyramidal neurons of rat hippocampal slice is attributable to a network-driven, bicarbonate-dependent K+ transient,” Journal of Neuroscience, vol. 17, no. 20, pp. 7662–7672, 1997. View at Google Scholar · View at Scopus
  50. K. Kaila, “Ionic basis of GABA(A) receptor channel function in the nervous system,” Progress in Neurobiology, vol. 42, no. 4, pp. 489–537, 1994. View at Publisher · View at Google Scholar · View at Scopus
  51. N. Lambert and L. Grover, “The mechanism of biphasic GABA responses,” Science, vol. 269, no. 5226, pp. 928–929, 1995. View at Google Scholar · View at Scopus
  52. C. Rivera, J. Voipio, and K. Kaila, “Two developmental switches in GABAergic signalling: the K+-Cl- cotransporter KCC2 and carbonic anhydrase CAVII,” Journal of Physiology, vol. 562, part 1, pp. 27–36, 2005. View at Publisher · View at Google Scholar · View at Scopus
  53. T. Viitanen, E. Ruusuvuori, K. Kaila, and J. Voipio, “The K+-Cl- cotransporter KCC2 promotes GABAergic excitation in the mature rat hippocampus,” Journal of Physiology, vol. 588, part 9, pp. 1527–1540, 2010. View at Publisher · View at Google Scholar · View at Scopus
  54. K. Lamsa and T. Taira, “Use-dependent shift from inhibitory to excitatory GABA receptor action in SP-O interneurons in the rat hippocampal CA3 area,” Journal of Neurophysiology, vol. 90, no. 3, pp. 1983–1995, 2003. View at Publisher · View at Google Scholar · View at Scopus
  55. N. Qian and T. J. Sejnowski, “When is an inhibitory synapse effective?” Proceedings of the National Academy of Sciences of the United States of America, vol. 87, no. 20, pp. 8145–8149, 1990. View at Google Scholar · View at Scopus
  56. T. F. Freund and G. Buzsaki, “Interneurons of the hippocampus,” Hippocampus, vol. 6, no. 4, pp. 347–470, 1996. View at Google Scholar · View at Scopus
  57. M. Megias, Z. Emri, T. F. Freund, and A. I. Gulyás, “Total number and distribution of inhibitory and excitatory synapses on hippocampal CA1 pyramidal cells,” Neuroscience, vol. 102, no. 3, pp. 527–540, 2001. View at Publisher · View at Google Scholar · View at Scopus
  58. V. Lopantsev and M. Avoli, “Participation of GABA(A)-mediated inhibition in ictallike discharges in the rat entorhinal cortex,” Journal of Neurophysiology, vol. 79, no. 1, pp. 352–360, 1998. View at Google Scholar · View at Scopus
  59. K. Lamsa and K. Kaila, “Ionic mechanisms of spontaneous GABAergic events in rat hippocampal slices exposed to 4-amino-pyridine,” Journal of Neurophysiology, vol. 78, no. 5, pp. 2582–2591, 1997. View at Google Scholar · View at Scopus
  60. Y. Fujiwara-Tsukamoto, Y. Isomura, A. Nambu, and M. Takada, “Excitatory gaba input directly drives seizure-like rhythmic synchronization in mature hippocampal CA1 pyramidal cells,” Neuroscience, vol. 119, no. 1, pp. 265–275, 2003. View at Publisher · View at Google Scholar · View at Scopus
  61. Y. Fujiwara-Tsukamoto, Y. Isomura, M. Imanishi, T. Fukai, and M. Takada, “Distinct types of ionic modulation of GABA actions in pyramidal cells and interneurons during electrical induction of hippocampal seizure-like network activity,” European Journal of Neuroscience, vol. 25, no. 9, pp. 2713–2725, 2007. View at Publisher · View at Google Scholar · View at Scopus
  62. Y. Isomura, M. Sugimoto, Y. Fujiwara-Tsukamoto, S. Yamamoto-Muraki, J. Yamada, and A. Fukuda, “Synaptically activated Cl- accumulation responsible for depolarizing GABAergic responses in mature hippocampal neurons,” Journal of Neurophysiology, vol. 90, no. 4, pp. 2752–2756, 2003. View at Publisher · View at Google Scholar · View at Scopus
  63. B. Lasztoczi, G. Nyitrai, L. Héja, and J. Kardos, “Synchronization of GABAergic inputs to CA3 pyramidal cells precedes seizure-like event onset in juvenile rat hippocampal slices,” Journal of Neurophysiology, vol. 102, no. 4, pp. 2538–2553, 2009. View at Publisher · View at Google Scholar · View at Scopus
  64. K. Berglund, W. Schleich, H. Wang et al., “Imaging synaptic inhibition throughout the brain via genetically targeted clomeleon,” Brain Cell Biology, vol. 36, no. 1–4, pp. 101–118, 2008. View at Publisher · View at Google Scholar · View at Scopus
  65. E. Ruusuvuori, H. Li, K. Huttu et al., “Carbonic anhydrase isoform VII acts as a molecular switch in the development of synchronous gamma-frequency firing of hippocampal CA1 pyramidal cells,” Journal of Neuroscience, vol. 24, no. 11, pp. 2699–2707, 2004. View at Publisher · View at Google Scholar · View at Scopus
  66. V. I. Dzhala, D. M. Talos, D. A. Sdrulla et al., “NKCC1 transporter facilitates seizures in the developing brain,” Nature Medicine, vol. 11, no. 11, pp. 1205–1213, 2005. View at Publisher · View at Google Scholar · View at Scopus
  67. C. Rivera, J. Voipio, J. A. Payne et al., “The K+/Cl- co-transporter KCC2 renders GABA hyperpolarizing during neuronal maturation,” Nature, vol. 397, no. 6716, pp. 251–255, 1999. View at Publisher · View at Google Scholar · View at Scopus
  68. C. M. Becker, H. Betz, and H. Schroder, “Expression of inhibitory glycine receptors in postnatal rat cerebral cortex,” Brain Research, vol. 606, no. 2, pp. 220–226, 1993. View at Publisher · View at Google Scholar · View at Scopus
  69. E. Palma, M. Amici, F. Sobrero et al., “Anomalous levels of Cl- transporters in the hippocampal subiculum from temporal lobe epilepsy patients make GABA excitatory,” Proceedings of the National Academy of Sciences of the United States of America, vol. 103, no. 22, pp. 8465–8468, 2006. View at Publisher · View at Google Scholar · View at Scopus
  70. J. A. Coull, D. Boudreau, K. Bachand et al., “Trans-synaptic shift in anion gradient in spinal lamina I neurons as a mechanism of neuropathic pain,” Nature, vol. 424, no. 6951, pp. 938–942, 2003. View at Publisher · View at Google Scholar · View at Scopus
  71. S. W. Cramer, C. Baggott, J. Cain et al., “The role of cation-dependent chloride transporters in neuropathic pain following spinal cord injury,” Molecular Pain, vol. 4, article 36, p. 36, 2008. View at Publisher · View at Google Scholar · View at Scopus
  72. T. Balena and M. A. Woodin, “Coincident pre- and postsynaptic activity downregulates NKCC1 to hyperpolarize E(Cl) during development,” European Journal of Neuroscience, vol. 27, no. 9, pp. 2402–2412, 2008. View at Publisher · View at Google Scholar · View at Scopus
  73. J. Ormond and M. A. Woodin, “Disinhibition mediates a form of hippocampal long-term potentiation in area CA1,” PLoS One, vol. 4, no. 9, article e7224, 2009. View at Publisher · View at Google Scholar · View at Scopus
  74. M. Ouardouz and B. R. Sastry, “Activity-mediated shift in reversal potential of GABA-ergic synaptic currents in immature neurons,” Developmental Brain Research, vol. 160, no. 1, pp. 78–84, 2005. View at Publisher · View at Google Scholar · View at Scopus
  75. M. Ouardouz, J. Y. Xu, and B. R. Sastry, “Theta bursts set up glutamatergic as well as GABA-ergic plasticity in neonatal rat hippocampal CA1 neurons,” Brain Research, vol. 1068, no. 1, pp. 65–69, 2006. View at Publisher · View at Google Scholar · View at Scopus
  76. J. Y. Xu and B. R. Sastry, “Theta-bursts induce a shift in reversal potentials for GABA-A receptor-mediated postsynaptic currents in rat hippocampal CA1 neurons,” Experimental Neurology, vol. 204, no. 2, pp. 836–839, 2007. View at Publisher · View at Google Scholar · View at Scopus
  77. L. Wang, S. T. Kitai, and Z. Xiang, “Activity-dependent bidirectional modification of inhibitory synaptic transmission in rat subthalamic neurons,” Journal of Neuroscience, vol. 26, no. 28, pp. 7321–7327, 2006. View at Publisher · View at Google Scholar · View at Scopus
  78. C. Xu, M. X. Zhao, M. M. Poo, and X. H. Zhang, “GABA(B) receptor activation mediates frequency-dependent plasticity of developing GABAergic synapses,” Nature Neuroscience, vol. 11, no. 12, pp. 1410–1418, 2008. View at Publisher · View at Google Scholar · View at Scopus
  79. G. Miletic and V. Miletic, “Loose ligation of the sciatic nerve is associated with TrkB receptor-dependent decreases in KCC2 protein levels in the ipsilateral spinal dorsal horn,” Pain, vol. 137, no. 3, pp. 532–539, 2008. View at Publisher · View at Google Scholar · View at Scopus
  80. W. Zhang, L. Y. Liu, and T. L. Xu, “Reduced potassium-chloride co-transporter expression in spinal cord dorsal horn neurons contributes to inflammatory pain hypersensitivity in rats,” Neuroscience, vol. 152, no. 2, pp. 502–510, 2008. View at Publisher · View at Google Scholar · View at Scopus
  81. H. H. Lee, J. A. Walker, J. R. Williams, R. J. Goodier, J. A. Payne, and S. J. Moss, “Direct protein kinase C-dependent phosphorylation regulates the cell surface stability and activity of the potassium chloride cotransporter KCC2,” Journal of Biological Chemistry, vol. 282, no. 41, pp. 29777–29784, 2007. View at Publisher · View at Google Scholar · View at Scopus
  82. R. Nardou, Y. Ben-Ari, and I. Khalilov, “Bumetanide, an NKCC1 antagonist, does not prevent formation of epileptogenic focus but blocks epileptic focus seizures in immature rat hippocampus,” Journal of Neurophysiology, vol. 101, no. 6, pp. 2878–2888, 2009. View at Publisher · View at Google Scholar · View at Scopus
  83. A. S. Galanopoulou, “Dissociated gender-specific effects of recurrent seizures on GABA signaling in CA1 pyramidal neurons: Role of GABA receptors,” Journal of Neuroscience, vol. 28, no. 7, pp. 1557–1567, 2008. View at Publisher · View at Google Scholar · View at Scopus
  84. S. Khirug et al., “A single seizure episode leads to rapid functional activation of KCC2 in the neonatal rat hippocampus,” The Journal of Neuroscience, vol. 30, no. 36, pp. 12028–12035, 2010. View at Google Scholar
  85. A. S. Galanopoulou, “Developmental patterns in the regulation of chloride homeostasis and GABA receptor signaling by seizures,” Epilepsia, vol. 48, supplement 5, pp. 14–18, 2007. View at Publisher · View at Google Scholar · View at Scopus
  86. A. C. Brumback and K. J. Staley, “Thermodynamic regulation of NKCC1-mediated Cl- cotransport underlies plasticity of GABA signaling in neonatal neurons,” Journal of Neuroscience, vol. 28, no. 6, pp. 1301–1312, 2008. View at Publisher · View at Google Scholar · View at Scopus
  87. A. Kitamura, H. Ishibashi, M. Watanabe, Y. Takatsuru, M. Brodwick, and J. Nabekura, “Sustained depolarizing shift of the GABA reversal potential by glutamate receptor activation in hippocampal neurons,” Neuroscience Research, vol. 62, no. 4, pp. 270–277, 2008. View at Publisher · View at Google Scholar · View at Scopus
  88. W. Wang, N. Gong, and T. L. Xu, “Downregulation of KCC2 following LTP contributes to EPSP-spike potentiation in rat hippocampus,” Biochemical and Biophysical Research Communications, vol. 343, no. 4, pp. 1209–1215, 2006. View at Publisher · View at Google Scholar · View at Scopus
  89. Y. F. Wang, X. B. Gao, and A. N. van den Pol, “Membrane properties underlying patterns of GABA-dependent action potentials in developing mouse hypothalamic neurons,” Journal of Neurophysiology, vol. 86, no. 3, pp. 1252–1265, 2001. View at Google Scholar · View at Scopus
  90. G. Valeeva et al., “Temporal coding at the immature depolarizing GABAergic synapse,” Front Cell Neurosc, vol. 4, 2010. View at Google Scholar
  91. C. J. Akerman and H. T. Cline, “Depolarizing GABAergic conductances regulate the balance of excitation to inhibition in the developing retinotectal circuit in vivo,” Journal of Neuroscience, vol. 26, no. 19, pp. 5117–5130, 2006. View at Publisher · View at Google Scholar · View at Scopus
  92. F. Saraga, T. Balena, T. Wolansky, C. T. Dickson, and M. A. Woodin, “Inhibitory synaptic plasticity regulates pyramidal neuron spiking in the rodent hippocampus,” Neuroscience, vol. 155, no. 1, pp. 64–75, 2008. View at Publisher · View at Google Scholar · View at Scopus
  93. S. A. Prescott, T. J. Sejnowski, and Y. de Koninck, “Reduction of anion reversal potential subverts the inhibitory control of firing rate in spinal lamina I neurons: towards a biophysical basis for neuropathic pain,” Molecular Pain, vol. 2, article 32, 2006. View at Publisher · View at Google Scholar · View at Scopus
  94. A. T. Gulledge and G. J. Stuart, “Excitatory actions of GABA in the cortex,” Neuron, vol. 37, no. 2, pp. 299–309, 2003. View at Publisher · View at Google Scholar · View at Scopus
  95. K. Morita, K. Tsumoto, and K. Aihara, “Bidirectional modulation of neuronal responses by depolarizing GABAergic inputs,” Biophysical Journal, vol. 90, no. 6, pp. 1925–1938, 2006. View at Publisher · View at Google Scholar · View at Scopus
  96. K. M. Stiefel, V. Wespatat, B. Gutkin, F. Tennigkeit, and W. Singer, “Phase dependent sign changes of GABAergic synaptic input explored in-silicio and in-vitro,” Journal of Computational Neuroscience, vol. 19, no. 1, pp. 71–85, 2005. View at Publisher · View at Google Scholar · View at Scopus
  97. B. A. Richards, O. P. Voss, and C. J. Akerman, “GABAergic circuits control stimulus-instructed receptive field development in the optic tectum,” Nature Neurosci, vol. 13, no. 9, pp. 1098–1106, 2010. View at Google Scholar
  98. Y. Mu and M. M. Poo, “Spike timing-dependent LTP/LTD mediates visual experience-dependent plasticity in a developing retinotectal system,” Neuron, vol. 50, no. 1, pp. 115–125, 2006. View at Publisher · View at Google Scholar · View at Scopus