Table of Contents Author Guidelines Submit a Manuscript
Neural Plasticity
Volume 2011, Article ID 921680, 17 pages
http://dx.doi.org/10.1155/2011/921680
Review Article

Autism: A “Critical Period” Disorder?

Harvard Medical School and The F. M. Kirby Neurobiology Center, Children's Hospital Boston, Boston, MA 02115, USA

Received 5 March 2011; Accepted 2 June 2011

Academic Editor: Evelyne Sernagor

Copyright © 2011 Jocelyn J. LeBlanc and Michela Fagiolini. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. L. C. Katz and C. J. Shatz, “Synaptic activity and the construction of cortical circuits,” Science, vol. 274, no. 5290, pp. 1133–1138, 1996. View at Publisher · View at Google Scholar
  2. T. K. Hensch, “Critical period regulation,” Annual Review of Neuroscience, vol. 27, pp. 549–579, 2004. View at Publisher · View at Google Scholar · View at PubMed
  3. H. F. Harlow, R. O. Dodsworth, and M. K. Harlow, “Total social isolation in monkeys,” Proceedings of the National Academy of Sciences of the United States of America, vol. 54, no. 1, pp. 90–97, 1965. View at Google Scholar
  4. C. A. Nelson, C. H. Zeanah, N. A. Fox, P. J. Marshall, A. T. Smyke, and D. Guthrie, “Cognitive recovery in socially deprived young children: the Bucharest early intervention project,” Science, vol. 318, no. 5858, pp. 1937–1940, 2007. View at Publisher · View at Google Scholar · View at PubMed
  5. M. V. Popescu and D. B. Polley, “Monaural deprivation disrupts development of binaural selectivity in auditory midbrain and cortex,” Neuron, vol. 65, no. 5, pp. 718–731, 2010. View at Publisher · View at Google Scholar · View at PubMed
  6. R. V. Harrison, K. A. Gordon, and R. J. Mount, “Is there a critical period for cochlear implantation in congenitally deaf children? Analyses of hearing and speech perception performance after implantation,” Developmental Psychobiology, vol. 46, no. 3, pp. 252–261, 2005. View at Publisher · View at Google Scholar · View at PubMed
  7. M. A. Svirsky, S. W. Teoh, and H. Neuburger, “Development of language and speech perception in congenitally, profoundly deaf children as a function of age at cochlear implantation,” Audiology and Neuro-Otology, vol. 9, no. 4, pp. 224–233, 2004. View at Publisher · View at Google Scholar · View at PubMed
  8. M. S. Banks, R. N. Aslin, and R. D. Letson, “Sensitive period for the development of human binocular vision,” Science, vol. 190, no. 4215, pp. 675–677, 1975. View at Google Scholar · View at Scopus
  9. D. E. Mitchell and S. Mackinnon, “The present and potential impact of research on animal models for clinical treatment of stimulus deprivation amblyopia,” Clinical and Experimental Optometry, vol. 85, no. 1, pp. 5–18, 2002. View at Publisher · View at Google Scholar
  10. M. Fagiolini, H. Katagiri, H. Miyamoto et al., “Separable features of visual cortical plasticity revealed by N-methyl-D-aspartate receptor 2A signaling,” Proceedings of the National Academy of Sciences of the United States of America, vol. 100, no. 5, pp. 2854–2859, 2003. View at Publisher · View at Google Scholar · View at PubMed
  11. M. Fagiolini, J. M. Fritschy, K. Löw, H. Möhler, U. Rudolph, and T. K. Hensch, “Specific GABAA circuits for visual cortical plasticity,” Science, vol. 303, no. 5664, pp. 1681–1683, 2004. View at Publisher · View at Google Scholar · View at PubMed
  12. T. K. Hensch, M. Fagiolini, N. Mataga, M. P. Stryker, S. Baekkeskov, and S. F. Kash, “Local GABA circuit control of experience-dependent plasticity in developing visual cortex,” Science, vol. 282, no. 5393, pp. 1504–1508, 1998. View at Google Scholar
  13. American Psychiatric Association, Diagnostic and Statistical Manual of Mental Disorders, APA, Washington, DC, USA, 4th edition, 1994.
  14. E. J. Marco, L. B. N. Hinkley, S. S. Hill, and S. S. Nagarajan, “Sensory processing in autism: a review of neurophysiologic findings,” Pediatric Research, vol. 69, no. 5, pp. 48R–54R, 2011. View at Publisher · View at Google Scholar · View at PubMed
  15. B. S. Abrahams and D. H. Geschwind, “Advances in autism genetics: on the threshold of a new neurobiology,” Nature Reviews Genetics, vol. 9, no. 5, pp. 341–355, 2008. View at Publisher · View at Google Scholar · View at PubMed
  16. D. H. Geschwind, “Autism: many genes, common pathways?” Cell, vol. 135, no. 3, pp. 391–395, 2008. View at Publisher · View at Google Scholar · View at PubMed
  17. Z. Warren, M. L. McPheeters, N. Sathe, J. H. Foss-Feig, A. Glasser, and J. Veenstra-VanderWeele, “A systematic review of early intensive intervention for autism spectrum disorders,” Pediatrics, vol. 127, no. 5, pp. e1303–e1311, 2011. View at Publisher · View at Google Scholar · View at PubMed
  18. M. L. McPheeters, Z. Warren, N. Sathe et al., “A systematic review of medical treatments for children with autism spectrum disorders,” Pediatrics, vol. 127, no. 5, pp. e1312–e1321, 2011. View at Publisher · View at Google Scholar · View at PubMed
  19. M. K. Belmonte, E. H. Cook, G. M. Anderson et al., “Autism as a disorder of neural information processing: directions for research and targets for therapy,” Molecular Psychiatry, vol. 9, no. 7, pp. 646–663, 2004. View at Google Scholar
  20. A. Bertone, L. Mottron, P. Jelenic, and J. Faubert, “Motion perception in autism: a “complex” issue,” Journal of Cognitive Neuroscience, vol. 15, no. 2, pp. 218–225, 2003. View at Publisher · View at Google Scholar · View at PubMed
  21. L. Kanner, “Autistic disturbances of affective contact,” Nervous Child, vol. 2, pp. 217–250, 1943. View at Google Scholar
  22. T. Grandin, “An inside view of autism,” in High-Functioning Individuals with Autism, E. Schopler and G. B. Mesibov, Eds., pp. 105–126, Plenum Press, New York, NY, USA, 1992. View at Google Scholar
  23. T. Grandin, “Visual abilities and sensory differences in a person with autism,” Biological Psychiatry, vol. 65, no. 1, pp. 15–16, 2009. View at Publisher · View at Google Scholar · View at PubMed
  24. D. Williams, “The remarkable autobiography of an autistic girl,” in Nobody Nowhere, Jessica Kingsley, London, UK, 1998. View at Google Scholar
  25. O. Bogdashina, Sensory Perceptual Issues in Autism and Asperger Syndrome: Different Sensory Experiences, Different Perceptual Worlds, Jessica Kingsley, London, UK, 2003.
  26. A. Ben-Sasson, L. Hen, R. Fluss, S. A. Cermak, B. Engel-Yeger, and E. Gal, “A meta-analysis of sensory modulation symptoms in individuals with autism spectrum disorders,” Journal of Autism and Developmental Disorders, vol. 39, no. 1, pp. 1–11, 2009. View at Publisher · View at Google Scholar · View at PubMed
  27. D. R. Simmons, A. E. Robertson, L. S. McKay, E. Toal, P. McAleer, and F. E. Pollick, “Vision in autism spectrum disorders,” Vision Research, vol. 49, no. 22, pp. 2705–2739, 2009. View at Publisher · View at Google Scholar · View at PubMed
  28. R. Ferri, M. Elia, N. Agarwal, B. Lanuzza, S. A. Musumeci, and G. Pennisi, “The mismatch negativity and the P3a components of the auditory event-related potentials in autistic low-functioning subjects,” Clinical Neurophysiology, vol. 114, no. 9, pp. 1671–1680, 2003. View at Publisher · View at Google Scholar
  29. J. Martineau, B. Garreau, C. Barthelemy, and G. Lelord, “Evoked potentials and P300 during sensory conditioning in autistic children,” Annals of the New York Academy of Sciences, vol. 425, pp. 362–369, 1984. View at Google Scholar
  30. N. Bruneau, F. Bonnet-Brilhault, M. Gomot, J. L. Adrien, and C. Barthélémy, “Cortical auditory processing and communication in children with autism: electrophysiological/behavioral relations,” International Journal of Psychophysiology, vol. 51, no. 1, pp. 17–25, 2003. View at Publisher · View at Google Scholar
  31. J. E. Oram Cardy, E. J. Flagg, W. Roberts, and T. P. L. Roberts, “Auditory evoked fields predict language ability and impairment in children,” International Journal of Psychophysiology, vol. 68, no. 2, pp. 170–175, 2008. View at Publisher · View at Google Scholar · View at PubMed
  32. T. P. L. Roberts, S. Y. Khan, M. Rey et al., “MEG detection of delayed auditory evoked responses in autism spectrum disorders: towards an imaging biomarker for autism,” Autism Research, vol. 3, no. 1, pp. 8–18, 2010. View at Publisher · View at Google Scholar · View at PubMed
  33. C. J. Cascio, “Somatosensory processing in neurodevelopmental disorders,” Journal of Neurodevelopmental Disorders, vol. 2, no. 2, pp. 62–69, 2010. View at Publisher · View at Google Scholar
  34. M. Tommerdahl, V. Tannan, C. J. Cascio, G. T. Baranek, and B. L. Whitsel, “Vibrotactile adaptation fails to enhance spatial localization in adults with autism,” Brain Research, vol. 1154, pp. 116–123, 2007. View at Google Scholar
  35. M. Miyazaki, E. Fujii, T. Saijo et al., “Short-latency somatosensory evoked potentials in infantile autism: evidence of hyperactivity in the right primary somatosensory area,” Developmental Medicine and Child Neurology, vol. 49, no. 1, pp. 13–17, 2007. View at Google Scholar
  36. M. A. Coskun, L. Varghese, S. Reddoch et al., “How somatic cortical maps differ in autistic and typical brains,” NeuroReport, vol. 20, no. 2, pp. 175–179, 2009. View at Publisher · View at Google Scholar · View at PubMed
  37. P. H. J. M. Vlamings, L. M. Jonkman, E. Van Daalen, R. J. Van Der Gaag, and C. Kemner, “Basic abnormalities in visual processing affect face processing at an early age in autism spectrum disorder,” Biological Psychiatry, vol. 68, no. 12, pp. 1107–1113, 2010. View at Publisher · View at Google Scholar · View at PubMed
  38. S. Dakin and U. Frith, “Vagaries of visual perception in autism,” Neuron, vol. 48, no. 3, pp. 497–507, 2005. View at Publisher · View at Google Scholar · View at PubMed
  39. F. Happé and U. Frith, “The weak coherence account: detail-focused cognitive style in autism spectrum disorders,” Journal of Autism and Developmental Disorders, vol. 36, no. 1, pp. 5–25, 2006. View at Publisher · View at Google Scholar · View at PubMed
  40. L. Mottron, M. Dawson, I. Soulières, B. Hubert, and J. Burack, “Enhanced perceptual functioning in autism: an update, and eight principles of autistic perception,” Journal of Autism and Developmental Disorders, vol. 36, no. 1, pp. 27–43, 2006. View at Publisher · View at Google Scholar · View at PubMed
  41. M. Behrmann, C. Thomas, and K. Humphreys, “Seeing it differently: visual processing in autism,” Trends in Cognitive Sciences, vol. 10, no. 6, pp. 258–264, 2006. View at Publisher · View at Google Scholar · View at PubMed
  42. J. L. R. Rubenstein and M. M. Merzenich, “Model of autism: Increased ratio of excitation/inhibition in key neural systems,” Genes, Brain and Behavior, vol. 2, no. 5, pp. 255–267, 2003. View at Publisher · View at Google Scholar
  43. G. Rippon, J. Brock, C. Brown, and J. Boucher, “Disordered connectivity in the autistic brain: challenges for the 'new psychophysiology',” International Journal of Psychophysiology, vol. 63, no. 2, pp. 164–172, 2007. View at Publisher · View at Google Scholar · View at PubMed
  44. N. Russo, J. J. Foxe, A. B. Brandwein, T. Altschuler, H. Gomes, and S. Molholm, “Multisensory processing in children with autism: high-density electrical mapping of auditory-somatosensory integration,” Autism Research, vol. 3, no. 5, pp. 253–267, 2010. View at Publisher · View at Google Scholar · View at PubMed
  45. L. D. Kwakye, J. H. Foss-Feig, C. J. Cascio, W. L. Stone, and M. T. Wallace, “Altered auditory and multisensory temporal processing in autism spectrum disorders,” Frontiers in Integrative Neuroscience, vol. 4, article 129, 2011. View at Google Scholar
  46. H. McGurk and J. MacDonald, “Hearing lips and seeing voices,” Nature, vol. 264, no. 5588, pp. 746–748, 1976. View at Google Scholar
  47. B. de Gelder, J. Vroomen, and L. van der Heide, “Face recognition and lip-reading in autism,” European Journal of Cognitive Psychology, vol. 3, pp. 69–86, 1991. View at Google Scholar
  48. J. H. G. Williams, D. W. Massaro, N. J. Peel, A. Bosseler, and T. Suddendorf, “Visual-auditory integration during speech imitation in autism,” Research in Developmental Disabilities, vol. 25, no. 6, pp. 559–575, 2004. View at Publisher · View at Google Scholar · View at PubMed
  49. E. G. Smith and L. Bennetto, “Audiovisual speech integration and lipreading in autism,” Journal of Child Psychology and Psychiatry and Allied Disciplines, vol. 48, no. 8, pp. 813–821, 2007. View at Publisher · View at Google Scholar · View at PubMed
  50. M. L. Patterson and J. F. Werker, “Two-month-old infants match phonetic information in lips and voice,” Developmental Science, vol. 6, no. 2, pp. 191–196, 2003. View at Publisher · View at Google Scholar
  51. T. Teinonen, R. N. Aslin, P. Alku, and G. Csibra, “Visual speech contributes to phonetic learning in 6-month-old infants,” Cognition, vol. 108, no. 3, pp. 850–855, 2008. View at Publisher · View at Google Scholar · View at PubMed
  52. L. Woodhouse, L. Hickson, and B. Dodd, “Review of visual speech perception by hearing and hearingimpaired people clinical implications,” International Journal of Language and Communication Disorders, vol. 44, no. 3, pp. 253–270, 2009. View at Publisher · View at Google Scholar · View at PubMed
  53. K. Z. Lorenz, “The evolution of behavior,” Scientific American, vol. 199, no. 6, pp. 67–74, 1958. View at Google Scholar
  54. A. J. Doupe and P. K. Kuhl, “Birdsong and human speech: common themes and mechanisms,” Annual Review of Neuroscience, vol. 22, pp. 567–631, 1999. View at Publisher · View at Google Scholar · View at PubMed
  55. M. S. Brainard and A. J. Doupe, “What songbirds teach us about learning,” Nature, vol. 417, no. 6886, pp. 351–358, 2002. View at Publisher · View at Google Scholar · View at PubMed
  56. E. I. Knudsen, W. Zheng, and W. M. DeBello, “Traces of learning in the auditory localization pathway,” Proceedings of the National Academy of Sciences of the United States of America, vol. 97, no. 22, pp. 11815–11820, 2000. View at Publisher · View at Google Scholar · View at PubMed
  57. J. H. Kim and R. Richardson, “A developmental dissociation in reinstatement of an extinguished fear response in rats,” Neurobiology of Learning and Memory, vol. 88, no. 1, pp. 48–57, 2007. View at Publisher · View at Google Scholar · View at PubMed
  58. N. Gogolla, J. J. LeBlanc, K. B. Quast, T. C. Südhof, M. Fagiolini, and T. K. Hensch, “Common circuit defect of excitatory-inhibitory balance in mouse models of autism,” Journal of Neurodevelopmental Disorders, vol. 1, pp. 172–181, 2009. View at Google Scholar
  59. N. Gogolla, P. Caroni, A. Lüthi, and C. Herry, “Perineuronal nets protect fear memories from erasure,” Science, vol. 325, no. 5945, pp. 1258–1261, 2009. View at Publisher · View at Google Scholar · View at PubMed
  60. E. F. Chang and M. M. Merzenich, “Environmental noise retards auditory cortical development,” Science, vol. 300, no. 5618, pp. 498–502, 2003. View at Publisher · View at Google Scholar · View at PubMed
  61. H. Van Der Loos and T. A. Woolsey, “Somatosensory cortex: structural alterations following early injury to sense organs,” Science, vol. 179, no. 4071, pp. 395–398, 1973. View at Google Scholar
  62. K. Fox, “A critical period for experience-dependent synaptic plasticity in rat barrel cortex,” Journal of Neuroscience, vol. 12, no. 5, pp. 1826–1838, 1992. View at Google Scholar
  63. E. A. Stern, M. Maravall, and K. Svoboda, “Rapid development and plasticity of layer 2/3 maps in rat barrel cortex in vivo,” Neuron, vol. 31, no. 2, pp. 305–315, 2001. View at Publisher · View at Google Scholar
  64. T. L. Lewis and D. Maurer, “Effects of early pattern deprivation on visual development,” Optometry and Vision Science, vol. 86, no. 6, pp. 640–646, 2009. View at Publisher · View at Google Scholar · View at PubMed
  65. T. N. Wiesel, “Postnatal development of the visual cortex and the influence of environment,” Nature, vol. 299, no. 5884, pp. 583–591, 1982. View at Google Scholar
  66. D. H. Hubel and T. N. Wiesel, “Early exploration of the visual cortex,” Neuron, vol. 20, no. 3, pp. 401–412, 1998. View at Publisher · View at Google Scholar
  67. T. N. Wiesel and D. H. Hubel, “Single-cell responses in striate cortex of kittens deprived of vision in one eye,” Journal of Neurophysiology, vol. 26, pp. 1003–1017, 1963. View at Google Scholar
  68. S. Oray, A. Majewska, and M. Sur, “Dendritic spine dynamics are regulated by monocular deprivation and extracellular matrix degradation,” Neuron, vol. 44, no. 6, pp. 1021–1030, 2004. View at Publisher · View at Google Scholar · View at PubMed
  69. N. Mataga, Y. Mizuguchi, and T. K. Hensch, “Experience-dependent pruning of dendritic spines in visual cortex by tissue plasminogen activator,” Neuron, vol. 44, no. 6, pp. 1031–1041, 2004. View at Publisher · View at Google Scholar · View at PubMed
  70. T. K. Hensch, “Critical period plasticity in local cortical circuits,” Nature Reviews Neuroscience, vol. 6, no. 11, pp. 877–888, 2005. View at Publisher · View at Google Scholar · View at PubMed
  71. N. Berardi, T. Pizzorusso, and L. Maffei, “Critical periods during sensory development,” Current Opinion in Neurobiology, vol. 10, no. 1, pp. 138–145, 2000. View at Publisher · View at Google Scholar
  72. M. Fagiolini and T. K. Hensch, “Inhibitory threshold for critical-period activation in primary visual cortex,” Nature, vol. 404, no. 6774, pp. 183–186, 2000. View at Publisher · View at Google Scholar · View at PubMed
  73. H. Markram, M. Toledo-Rodriguez, Y. Wang, A. Gupta, G. Silberberg, and C. Wu, “Interneurons of the neocortical inhibitory system,” Nature Reviews Neuroscience, vol. 5, no. 10, pp. 793–807, 2004. View at Publisher · View at Google Scholar · View at PubMed
  74. H. Katagiri, M. Fagiolini, and T. K. Hensch, “Optimization of somatic inhibition at critical period onset in mouse visual cortex,” Neuron, vol. 53, no. 6, pp. 805–812, 2007. View at Publisher · View at Google Scholar · View at PubMed
  75. J. A. Del Rio, L. De Lecea, I. Ferrer, and E. Soriano, “The development of parvalbumin-immunoreactivity in the neocortex of the mouse,” Developmental Brain Research, vol. 81, no. 2, pp. 247–259, 1994. View at Publisher · View at Google Scholar
  76. B. Chattopadhyaya, G. Di Cristo, H. Higashiyama et al., “Experience and activity-dependent maturation of perisomatic GABAergic innervation in primary visual cortex during a postnatal critical period,” Journal of Neuroscience, vol. 24, no. 43, pp. 9598–9611, 2004. View at Publisher · View at Google Scholar · View at PubMed
  77. Z. J. Huang, A. Kirkwood, T. Pizzorusso et al., “BDNF regulates the maturation of inhibition and the critical period of plasticity in mouse visual cortex,” Cell, vol. 98, no. 6, pp. 739–755, 1999. View at Publisher · View at Google Scholar
  78. S. Sugiyama, A. A. Di Nardo, S. Aizawa et al., “Experience-dependent transfer of Otx2 homeoprotein into the visual cortex activates postnatal plasticity,” Cell, vol. 134, no. 3, pp. 508–520, 2008. View at Publisher · View at Google Scholar · View at PubMed
  79. J. L. Hanover, Z. J. Huang, S. Tonegawa, and M. P. Stryker, “Brain-derived neurotrophic factor overexpression induces precocious critical period in mouse visual cortex,” The Journal of Neuroscience, vol. 19, no. 22, p. RC40, 1999. View at Google Scholar
  80. G. Di Cristo, B. Chattopadhyaya, S. J. Kuhlman et al., “Activity-dependent PSA expression regulates inhibitory maturation and onset of critical period plasticity,” Nature Neuroscience, vol. 10, no. 12, pp. 1569–1577, 2007. View at Publisher · View at Google Scholar · View at PubMed
  81. S. J. Cruikshank, T. J. Lewis, and B. W. Connors, “Synaptic basis for intense thalamocortical activation of feedforward inhibitory cells in neocortex,” Nature Neuroscience, vol. 10, no. 4, pp. 462–468, 2007. View at Publisher · View at Google Scholar · View at PubMed
  82. M. Galarreta and S. Hestrin, “A network of fast-spiking cells in the neocortex connected by electrical synapses,” Nature, vol. 402, no. 6757, pp. 72–75, 1999. View at Publisher · View at Google Scholar · View at PubMed
  83. T. Klausberger, “GABAergic interneurons targeting dendrites of pyramidal cells in the CA1 area of the hippocampus,” European Journal of Neuroscience, vol. 30, no. 6, pp. 947–957, 2009. View at Publisher · View at Google Scholar · View at PubMed
  84. J. DeFelipe and I. Farinas, “The pyramidal neuron of the cerebral cortex: morphological and chemical characteristics of the synaptic inputs,” Progress in Neurobiology, vol. 39, no. 6, pp. 563–607, 1992. View at Publisher · View at Google Scholar
  85. Y. Kawaguchi and Y. Kubota, “GABAergic cell subtypes and their synaptic connections in rat frontal cortex,” Cerebral Cortex, vol. 7, no. 6, pp. 476–486, 1997. View at Publisher · View at Google Scholar
  86. P. Somogyi, G. Tamás, R. Lujan, and E. H. Buhl, “Salient features of synaptic organisation in the cerebral cortex,” Brain Research Reviews, vol. 26, no. 2-3, pp. 113–135, 1998. View at Publisher · View at Google Scholar
  87. A. Sale, N. Berardi, M. Spolidoro, L. Baroncelli, and L. Maffei, “GABAergic inhibition in visual cortical plasticity,” Frontiers in Cellular Neuroscience, vol. 4, pp. 4–10, 2010. View at Google Scholar
  88. C. P. Wonders and S. A. Anderson, “The origin and specification of cortical interneurons,” Nature Reviews Neuroscience, vol. 7, no. 9, pp. 687–696, 2006. View at Publisher · View at Google Scholar · View at PubMed
  89. S. J. B. Butt, I. Cobos, J. Golden, N. Kessaris, V. Pachnis, and S. Anderson, “Transcriptional regulation of cortical interneuron development,” Journal of Neuroscience, vol. 27, no. 44, pp. 11847–11850, 2007. View at Publisher · View at Google Scholar · View at PubMed
  90. S. Lodato, C. Rouaux, K. Quast et al., “Excitatory projection neuron subtypes control the distribution of local inhibitory interneurons in the cerebral cortex,” Neuron, vol. 69, no. 4, pp. 763–779, 2011. View at Publisher · View at Google Scholar · View at PubMed
  91. D. G. Southwell, R. C. Froemke, A. Alvarez-Buylla, M. P. Stryker, and S. P. Gandhi, “Cortical plasticity induced by inhibitory neuron transplantation,” Science, vol. 327, no. 5969, pp. 1145–1148, 2010. View at Publisher · View at Google Scholar · View at PubMed
  92. J. A. Gordon and M. P. Stryker, “Experience-dependent plasticity of binocular responses in the primary visual cortex of the mouse,” Journal of Neuroscience, vol. 16, no. 10, pp. 3274–3286, 1996. View at Google Scholar
  93. D. Bavelier, D. M. Levi, R. W. Li, Y. Dan, and T. K. Hensch, “Removing brakes on adult brain plasticity: from molecular to behavioral interventions,” Journal of Neuroscience, vol. 30, no. 45, pp. 14964–14971, 2010. View at Publisher · View at Google Scholar · View at PubMed
  94. H. Y. He, W. Hodos, and E. M. Quinlan, “Visual deprivation reactivates rapid ocular dominance plasticity in adult visual cortex,” Journal of Neuroscience, vol. 26, no. 11, pp. 2951–2955, 2006. View at Publisher · View at Google Scholar · View at PubMed
  95. A. Harauzov, M. Spolidoro, G. DiCristo et al., “Reducing intracortical inhibition in the adult visual cortex promotes ocular dominance plasticity,” Journal of Neuroscience, vol. 30, no. 1, pp. 361–371, 2010. View at Publisher · View at Google Scholar · View at PubMed
  96. J. F. M. Vetencourt, A. Sale, A. Viegi et al., “The antidepressant fluoxetine restores plasticity in the adult visual cortex,” Science, vol. 320, no. 5874, pp. 385–388, 2008. View at Publisher · View at Google Scholar · View at PubMed
  97. J. L. Chen, W. C. Lin, J. W. Cha, P. T. So, Y. Kubota, and E. Nedivi, “Structural basis for the role of inhibition in facilitating adult brain plasticity,” Nature Neuroscience, vol. 14, no. 5, pp. 587–596, 2011. View at Publisher · View at Google Scholar · View at PubMed
  98. H. Morishita, J. M. Miwa, N. Heintz, and T. K. Hensch, “Lynx1, a cholinergic brake, limits plasticity in adult visual cortex,” Science, vol. 330, no. 6008, pp. 1238–1240, 2010. View at Publisher · View at Google Scholar · View at PubMed
  99. T. Pizzorusso, P. Medini, N. Berardi, S. Chierzi, J. W. Fawcett, and L. Maffei, “Reactivation of ocular dominance plasticity in the adult visual cortex,” Science, vol. 298, no. 5596, pp. 1248–1251, 2002. View at Publisher · View at Google Scholar · View at PubMed
  100. D. Carulli, T. Pizzorusso, J. C. F. Kwok et al., “Animals lacking link protein have attenuated perineuronal nets and persistent plasticity,” Brain, vol. 133, no. 8, pp. 2331–2347, 2010. View at Publisher · View at Google Scholar · View at PubMed
  101. A. W. McGee, Y. Yang, Q. S. Fischer, N. W. Daw, and S. H. Strittmatter, “Neuroscience: experience-driven plasticity of visual cortex limited by myelin and nogo receptor,” Science, vol. 309, no. 5744, pp. 2222–2226, 2005. View at Publisher · View at Google Scholar · View at PubMed
  102. H. Morishita, M. Chung, H. Miyamoto, Z. He, M. Fagiolini, and T. K. Hensch, unpublished observations.
  103. T. Pizzorusso, P. Medini, S. Landi, S. Baldini, N. Berardi, and L. Maffei, “Structural and functional recovery from early monocular deprivation in adult rats,” Proceedings of the National Academy of Sciences of the United States of America, vol. 103, no. 22, pp. 8517–8522, 2006. View at Publisher · View at Google Scholar · View at PubMed
  104. Y. Jiao, C. Zhang, Y. Yanagawa, and Q. Q. Sun, “Major effects of sensory experiences on the neocortical inhibitory circuits,” Journal of Neuroscience, vol. 26, no. 34, pp. 8691–8701, 2006. View at Publisher · View at Google Scholar · View at PubMed
  105. T. S. Balmer, V. M. Carels, J. L. Frisch, and T. A. Nick, “Modulation of perineuronal nets and parvalbumin with developmental song learning,” Journal of Neuroscience, vol. 29, no. 41, pp. 12878–12885, 2009. View at Publisher · View at Google Scholar · View at PubMed
  106. E. De Villers-Sidani, K. L. Simpson, Y. F. Lu, R. C. S. Lin, and M. M. Merzenich, “Manipulating critical period closure across different sectors of the primary auditory cortex,” Nature Neuroscience, vol. 11, no. 8, pp. 957–965, 2008. View at Publisher · View at Google Scholar · View at PubMed
  107. A. Bailey, A. Le Couteur, I. Gottesman et al., “Autism as a strongly genetic disorder: evidence from a British twin study,” Psychological Medicine, vol. 25, no. 1, pp. 63–77, 1995. View at Google Scholar
  108. C. Betancur, T. Sakurai, and J. D. Buxbaum, “The emerging role of synaptic cell-adhesion pathways in the pathogenesis of autism spectrum disorders,” Trends in Neurosciences, vol. 32, no. 7, pp. 402–412, 2009. View at Publisher · View at Google Scholar · View at PubMed
  109. E. C. Budreck and P. Scheiffele, “Neuroligin-3 is a neuronal adhesion protein at GABAergic and glutamatergic synapses,” European Journal of Neuroscience, vol. 26, no. 7, pp. 1738–1748, 2007. View at Publisher · View at Google Scholar · View at PubMed
  110. S. Jamain, H. Quach, C. Betancur et al., “Mutations of the X-linked genes encoding neuroligins NLGN3 and NLGN4 are associated with autism,” Nature Genetics, vol. 34, no. 1, pp. 27–29, 2003. View at Publisher · View at Google Scholar · View at PubMed
  111. C. M. Durand, C. Betancur, T. M. Boeckers et al., “Mutations in the gene encoding the synaptic scaffolding protein SHANK3 are associated with autism spectrum disorders,” Nature Genetics, vol. 39, no. 1, pp. 25–27, 2007. View at Publisher · View at Google Scholar · View at PubMed
  112. R. Moessner, C. R. Marshall, J. S. Sutcliffe et al., “Contribution of SHANK3 mutations to autism spectrum disorder,” American Journal of Human Genetics, vol. 81, no. 6, pp. 1289–1297, 2007. View at Publisher · View at Google Scholar · View at PubMed
  113. J. Gauthier, D. Spiegelman, A. Piton et al., “Novel de novo SHANK3 mutation in autistic patients,” American Journal of Medical Genetics, Part B, vol. 150, no. 3, pp. 421–424, 2009. View at Publisher · View at Google Scholar · View at PubMed
  114. R. J. Delahanty, J. Q. Kang, C. W. Brune et al., “Maternal transmission of a rare GABRB3 signal peptide variant is associated with autism,” Molecular Psychiatry, vol. 16, no. 1, pp. 86–96, 2011. View at Publisher · View at Google Scholar · View at PubMed
  115. International Molecular Genetic Study of Autism Consortium (IMGSAC), “A genomewide screen for autism: Strong evidence for linkage to chromosomes 2q, 7q, and 16p: international molecular genetic study of autism consortium, (IMGSAC),” American Journal of Human Genetics, vol. 69, no. 3, pp. 570–581, 2001. View at Publisher · View at Google Scholar · View at PubMed
  116. D. A. Skaar, Y. Shao, J. L. Haines et al., “Analysis of the RELN gene as a genetic risk factor for autism,” Molecular Psychiatry, vol. 10, no. 6, pp. 563–571, 2005. View at Publisher · View at Google Scholar · View at PubMed
  117. F. Laumonnier, F. Bonnet-Brilhault, M. Gomot et al., “X-linked mental retardation and autism are associated with a mutation in the NLGN4 gene, a member of the neuroligin family,” American Journal of Human Genetics, vol. 74, no. 3, pp. 552–557, 2004. View at Publisher · View at Google Scholar · View at PubMed
  118. C. R. Marshall, A. Noor, J. B. Vincent et al., “Structural variation in chromosomes in autism spectrum disorder,” American Journal of Human Genetics, vol. 82, no. 2, pp. 477–488, 2008. View at Publisher · View at Google Scholar · View at PubMed
  119. Autism Genome Project Consortium, “Mapping autism risk loci using genetic linkage and chromosomal rearrangements,” Nature Genetics, vol. 39, pp. 319–328, 2007. View at Google Scholar
  120. J. T. Glessner, K. Wang, G. Cai et al., “Autism genome-wide copy number variation reveals ubiquitin and neuronal genes,” Nature, vol. 459, no. 7246, pp. 569–572, 2009. View at Publisher · View at Google Scholar · View at PubMed
  121. H. G. Kim, S. Kishikawa, A. W. Higgins et al., “Disruption of neurexin 1 associated with autism spectrum disorder,” American Journal of Human Genetics, vol. 82, no. 1, pp. 199–207, 2008. View at Publisher · View at Google Scholar · View at PubMed
  122. D. Dhossche, H. Applegate, A. Abraham et al., “Elevated plasma gamma-aminobutyric acid (GABA) levels in autistic youngsters: Stimulus for a GABA hypothesis of autism,” Medical Science Monitor, vol. 8, no. 8, pp. PR1–PR6, 2002. View at Google Scholar
  123. D. M. Dhossche, Y. Song, and Y. Liu, “Is there a connection between autism, Prader-Willi syndrome, catatonia, and GABA?” International Review of Neurobiology, vol. 71, pp. 189–216, 2005. View at Publisher · View at Google Scholar
  124. S. H. Fatemi, A. R. Halt, J. M. Stary, R. Kanodia, S. C. Schulz, and G. R. Realmuto, “Glutamic acid decarboxylase 65 and 67 kDa proteins are reduced in autistic parietal and cerebellar cortices,” Biological Psychiatry, vol. 52, no. 8, pp. 805–810, 2002. View at Publisher · View at Google Scholar
  125. J. Yip, J. J. Soghomonian, and G. J. Blatt, “Decreased GAD67 mRNA levels in cerebellar Purkinje cells in autism: pathophysiological implications,” Acta Neuropathologica, vol. 113, no. 5, pp. 559–568, 2007. View at Publisher · View at Google Scholar · View at PubMed
  126. A. L. Collins, D. Ma, P. L. Whitehead et al., “Investigation of autism and GABA receptor subunit genes in multiple ethnic groups,” Neurogenetics, vol. 7, no. 3, pp. 167–174, 2006. View at Publisher · View at Google Scholar · View at PubMed
  127. S. H. Fatemi, T. D. Folsom, T. J. Reutiman, and P. D. Thuras, “Expression of GABAB receptors is altered in brains of subjects with autism,” Cerebellum, vol. 8, no. 1, pp. 64–69, 2009. View at Publisher · View at Google Scholar · View at PubMed
  128. S. H. Fatemi, T. J. Reutiman, T. D. Folsom, and P. D. Thuras, “GABAA receptor downregulation in brains of subjects with autism,” Journal of Autism and Developmental Disorders, vol. 39, no. 2, pp. 223–230, 2009. View at Publisher · View at Google Scholar · View at PubMed
  129. S. H. Fatemi, T. J. Reutiman, T. D. Folsom, R. J. Rooney, D. H. Patel, and P. D. Thuras, “mRNA and protein levels for GABA Aα4, α5, β1 and GABABR1 receptors are altered in brains from subjects with autism,” Journal of Autism and Developmental Disorders, vol. 40, no. 6, pp. 743–750, 2010. View at Publisher · View at Google Scholar · View at PubMed
  130. J. T. Guptill, A. B. Booker, T. T. Gibbs, T. L. Kemper, M. L. Bauman, and G. J. Blatt, “[3H]-flunitrazepam-labeled benzodiazepine binding sites in the hippocampal formation in autism: a multiple concentration autoradiographic study,” Journal of Autism and Developmental Disorders, vol. 37, no. 5, pp. 911–920, 2007. View at Publisher · View at Google Scholar · View at PubMed
  131. M. F. Casanova, D. P. Buxhoeveden, A. E. Switala, and E. Roy, “Minicolumnar pathology in autism,” Neurology, vol. 58, no. 3, pp. 428–432, 2002. View at Google Scholar
  132. M. F. Casanova, D. Buxhoeveden, and J. Gomez, “Disruption in the inhibitory architecture of the cell minicolumn: implications for autism,” Neuroscientist, vol. 9, no. 6, pp. 496–507, 2003. View at Publisher · View at Google Scholar · View at PubMed
  133. J. J. Hutsler and H. Zhang, “Increased dendritic spine densities on cortical projection neurons in autism spectrum disorders,” Brain Research, vol. 1309, pp. 83–94, 2010. View at Publisher · View at Google Scholar · View at PubMed
  134. C. Gillberg and E. Billstedt, “Autism and Asperger syndrome: coexistence with other clinical disorders,” Acta Psychiatrica Scandinavica, vol. 102, no. 5, pp. 321–330, 2000. View at Publisher · View at Google Scholar
  135. R. E. Amir, I. B. Van Den Veyver, M. Wan, C. Q. Tran, U. Francke, and H. Y. Zoghbi, “Rett syndrome is caused by mutations in X-linked MECP2, encoding methyl- CpG-binding protein 2,” Nature Genetics, vol. 23, no. 2, pp. 185–188, 1999. View at Publisher · View at Google Scholar · View at PubMed
  136. S. J. Moser, P. Weber, and J. Lütschg, “Rett syndrome: clinical and electrophysiologic aspects,” Pediatric Neurology, vol. 36, no. 2, pp. 95–100, 2007. View at Publisher · View at Google Scholar · View at PubMed
  137. P. V. Belichenko, A. Oldfors, B. Hagberg, and A. Dahlstrom, “Rett syndrome: 3-D confocal microscopy of cortical pyramidal dendrites and afferents,” NeuroReport, vol. 5, no. 12, pp. 1509–1513, 1994. View at Google Scholar
  138. C. A. Chapleau, G. D. Calfa, M. C. Lane et al., “Dendritic spine pathologies in hippocampal pyramidal neurons from Rett syndrome brain and after expression of Rett-associated MECP2 mutations,” Neurobiology of Disease, vol. 35, no. 2, pp. 219–233, 2009. View at Publisher · View at Google Scholar · View at PubMed
  139. M. E. Blue, S. Naidu, and M. V. Johnston, “Altered development of glutamate and GABA receptors in the basal ganglia of girls with Rett syndrome,” Experimental Neurology, vol. 156, no. 2, pp. 345–352, 1999. View at Publisher · View at Google Scholar · View at PubMed
  140. R. C. Samaco, A. Hogart, and J. M. LaSalle, “Epigenetic overlap in autism-spectrum neurodevelopmental disorders: MECP2 deficiency causes reduced expression of UBE3A and GABRB3,” Human Molecular Genetics, vol. 14, no. 4, pp. 483–492, 2005. View at Publisher · View at Google Scholar · View at PubMed
  141. W. G. Chen, Q. Chang, Y. Lin et al., “Derepression of BDNF transcription involves calcium-dependent phosphorylation of MeCP2,” Science, vol. 302, no. 5646, pp. 885–889, 2003. View at Publisher · View at Google Scholar · View at PubMed
  142. K. Martinowich, D. Hattori, H. Wu et al., “DNA methylation-related chromatin remodeling in activity-dependent BDNF gene regulation,” Science, vol. 302, no. 5646, pp. 890–893, 2003. View at Publisher · View at Google Scholar · View at PubMed
  143. M. Chahrour and H. Y. Zoghbi, “The story of Rett syndrome: from clinic to neurobiology,” Neuron, vol. 56, no. 3, pp. 422–437, 2007. View at Publisher · View at Google Scholar · View at PubMed
  144. D. Tropea, E. Giacometti, N. R. Wilson et al., “Partial reversal of Rett Syndrome-like symptoms in MeCP2 mutant mice,” Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 6, pp. 2029–2034, 2009. View at Publisher · View at Google Scholar · View at PubMed
  145. A. J. M. H. Verkerk, M. Pieretti, J. S. Sutcliffe et al., “Identification of a gene (FMR-1) containing a CGG repeat coincident with a breakpoint cluster region exhibiting length variation in fragile X syndrome,” Cell, vol. 65, no. 5, pp. 905–914, 1991. View at Google Scholar
  146. V. J. Hinton, W. T. Brown, K. Wisniewski, and R. D. Rudelli, “Analysis of neocortex in three males with the fragile X syndrome,” American Journal of Medical Genetics, vol. 41, no. 3, pp. 289–294, 1991. View at Google Scholar
  147. S. A. Irwin, R. Galvez, and W. T. Greenough, “Dendritic spine structural anomalies in fragile-X mental retardation syndrome,” Cerebral Cortex, vol. 10, no. 10, pp. 1038–1044, 2000. View at Google Scholar
  148. M. F. Bear, K. M. Huber, and S. T. Warren, “The mGluR theory of fragile X mental retardation,” Trends in Neurosciences, vol. 27, no. 7, pp. 370–377, 2004. View at Publisher · View at Google Scholar · View at PubMed
  149. S. Jacquemont, A. Curie, V. Des Portes et al., “Epigenetic modification of the FMR1 gene in fragile X syndrome is associated with differential response to the mGluR5 antagonist AFQ056,” Science Translational Medicine, vol. 3, no. 64, Article ID 64ra1, 2011. View at Publisher · View at Google Scholar · View at PubMed
  150. A. Sarihi, B. Jiang, A. Komaki, K. Sohya, Y. Yanagawa, and T. Tsumoto, “Metabotropic glutamate receptor type 5-dependent long-term potentiation of excitatory synapses on fast-spiking GABAergic neurons in mouse visual cortex,” Journal of Neuroscience, vol. 28, no. 5, pp. 1224–1235, 2008. View at Publisher · View at Google Scholar · View at PubMed
  151. J. R. Gibson, A. F. Bartley, S. A. Hays, and K. M. Huber, “Imbalance of neocortical excitation and inhibition and altered UP states reflect network hyperexcitability in the mouse model of fragile X syndrome,” Journal of Neurophysiology, vol. 100, no. 5, pp. 2615–2626, 2008. View at Publisher · View at Google Scholar · View at PubMed
  152. C. D'Hulst and R. F. Kooy, “The GABAA receptor: a novel target for treatment of fragile X?” Trends in Neurosciences, vol. 30, no. 8, pp. 425–431, 2007. View at Publisher · View at Google Scholar · View at PubMed
  153. J. Clayton-Smith and L. Laan, “Angelman syndrome: a review of the clinical and genetic aspects,” Journal of Medical Genetics, vol. 40, no. 2, pp. 87–95, 2003. View at Google Scholar
  154. P. L. Greer, R. Hanayama, B. L. Bloodgood et al., “The Angelman Syndrome protein Ube3A regulates synapse development by ubiquitinating arc,” Cell, vol. 140, no. 5, pp. 704–716, 2010. View at Publisher · View at Google Scholar · View at PubMed
  155. B. A. Minassian, T. M. DeLorey, R. W. Olsen et al., “Angelman syndrome: correlations between epilepsy phenotypes and genotypes,” Annals of Neurology, vol. 43, no. 4, pp. 485–493, 1998. View at Publisher · View at Google Scholar · View at PubMed
  156. W. H. Roden, L. D. Peugh, and L. A. Jansen, “Altered GABAA receptor subunit expression and pharmacology in human Angelman syndrome cortex,” Neuroscience Letters, vol. 483, no. 3, pp. 167–172, 2010. View at Publisher · View at Google Scholar · View at PubMed
  157. M.A. Geyer and A. Markou, “Animal models of psychiatric disease,” in Psychopharmacology: The Fourth Generation of Progress, pp. 787–798, Raven Press, New York, NY, USA, 1995. View at Google Scholar
  158. J. N. Crawley, “Designing mouse behavioral tasks relevant to autistic-like behaviors,” Mental Retardation and Developmental Disabilities Research Reviews, vol. 10, no. 4, pp. 248–258, 2004. View at Publisher · View at Google Scholar · View at PubMed
  159. D. Comoletti, A. De Jaco, L. L. Jennings et al., “The Arg451Cys-neuroligin-3 mutation associated with autism reveals a defect in protein processing,” Journal of Neuroscience, vol. 24, no. 20, pp. 4889–4893, 2004. View at Publisher · View at Google Scholar · View at PubMed
  160. A. A. Chubykin, X. Liu, D. Comoletti, I. Tsigelny, P. Taylor, and T. C. Südhof, “Dissection of synapse induction by neuroligins: effect of a neuroligin mutation associated with autism,” Journal of Biological Chemistry, vol. 280, no. 23, pp. 22365–22374, 2005. View at Publisher · View at Google Scholar · View at PubMed
  161. K. Tabuchi, J. Blundell, M. R. Etherton et al., “A neuroligin-3 mutation implicated in autism increases inhibitory synaptic transmission in mice,” Science, vol. 318, no. 5847, pp. 71–76, 2007. View at Publisher · View at Google Scholar · View at PubMed
  162. K. K. Chadman, S. Gong, M. L. Scattoni et al., “Minimal aberrant behavioral phenotypes of neuroligin-3 R451C knockin mice,” Autism Research, vol. 1, no. 3, pp. 147–158, 2008. View at Publisher · View at Google Scholar · View at PubMed
  163. Y.-B. Choi, H.-L. Li, S. Kassabov et al., “Neurexin-neuroligin transsynaptic interaction mediates learning-related synaptic remodeling and long-term facilitation in aplysia,” Neuron, vol. 70, no. 3, pp. 468–481, 2011. View at Publisher · View at Google Scholar · View at PubMed
  164. S. Jamain, K. Radyushkin, K. Hammerschmidt et al., “Reduced social interaction and ultrasonic communication in a mouse model of monogenic heritable autism,” Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 5, pp. 1710–1715, 2008. View at Publisher · View at Google Scholar · View at PubMed
  165. J. Peça, C. Feliciano, J. T. Ting et al., “Shank3 mutant mice display autistic-like behaviours and striatal dysfunction,” Nature, vol. 472, no. 7344, pp. 437–442, 2011. View at Publisher · View at Google Scholar · View at PubMed
  166. C. Prasad, A. N. Prasad, B. N. Chodirker et al., “Genetic evaluation of pervasive developmental disorders: the terminal 22q13 deletion syndrome may represent a recognizable phenotype,” Clinical Genetics, vol. 57, no. 2, pp. 103–109, 2000. View at Publisher · View at Google Scholar
  167. H. L. Wilson, A. C. C. Wong, S. R. Shaw et al., “Molecular characterisation of the 22q13 deletion syndrome supports the role of haploinsufficiency of SHANK3/PROSAP2 in the major neurological symptoms,” Journal of Medical Genetics, vol. 40, no. 8, pp. 575–584, 2003. View at Google Scholar
  168. A. L. Christianson, N. Chesler, and J. G. R. Kromberg, “Fetal valproate syndrome: clinical and neuro-developmental features in two sibling pairs,” Developmental Medicine and Child Neurology, vol. 36, no. 4, pp. 361–369, 1994. View at Google Scholar
  169. P. G. Williams and J. H. Hersh, “A male with fetal valproate syndrome and autism,” Developmental Medicine and Child Neurology, vol. 39, no. 9, pp. 632–634, 1997. View at Google Scholar
  170. G. Williams, J. King, M. Cunningham, M. Stephan, B. Kerr, and J. H. Hersh, “Fetal valproate syndrome and autism: additional evidence of an association,” Developmental Medicine and Child Neurology, vol. 43, no. 3, pp. 202–206, 2001. View at Publisher · View at Google Scholar
  171. R. L. Bromley, G. Mawer, J. Clayton-Smith, and G. A. Baker, “Autism spectrum disorders following in utero exposure to antiepileptic drugs,” Neurology, vol. 71, no. 23, pp. 1923–1924, 2008. View at Publisher · View at Google Scholar · View at PubMed
  172. S. S. Moy and J. J. Nadler, “Advances in behavioral genetics: mouse models of autism,” Molecular Psychiatry, vol. 13, no. 1, pp. 4–26, 2008. View at Publisher · View at Google Scholar · View at PubMed
  173. H. Markram, T. Rinaldi, and K. Markram, “The intense world syndrome—an alternative hypothesis for autism,” Frontiers in Neuroscience, vol. 1, pp. 77–96, 2007. View at Google Scholar
  174. T. Rinaldi, K. Kulangara, K. Antoniello, and H. Markram, “Elevated NMDA receptor levels and enhanced postsynaptic long-term potentiation induced by prenatal exposure to valproic acid,” Proceedings of the National Academy of Sciences of the United States of America, vol. 104, no. 33, pp. 13501–13506, 2007. View at Publisher · View at Google Scholar · View at PubMed
  175. T. Rinaldi, C. Perrodin, H. Markram, B. Cauli, and U. Pierre, “Hyper-connectivity and hyper-plasticity in the medial prefrontal cortex in the valproic acid animal model of autism,” Frontiers in Neural Circuits, vol. 2, pp. 1–7, 2008. View at Google Scholar
  176. T. Rinaldi, G. Silberberg, and H. Markram, “Hyperconnectivity of local neocortical microcircuitry induced by prenatal exposure to valproic acid,” Cerebral Cortex, vol. 18, no. 4, pp. 763–770, 2008. View at Publisher · View at Google Scholar · View at PubMed
  177. H. G. McFarlane, G. K. Kusek, M. Yang, J. L. Phoenix, V. J. Bolivar, and J. N. Crawley, “Autism-like behavioral phenotypes in BTBR T+tf/J mice,” Genes, Brain and Behavior, vol. 7, no. 2, pp. 152–163, 2008. View at Publisher · View at Google Scholar · View at PubMed
  178. M. L. Scattoni, S. U. Gandhy, L. Ricceri, and J. N. Crawley, “Unusual repertoire of vocalizations in the BTBR T+tf/J mouse model of autism,” PLoS One, vol. 3, no. 8, Article ID e3067, 2008. View at Publisher · View at Google Scholar · View at PubMed
  179. J. L. Silverman, S. S. Tolu, C. L. Barkan, and J. N. Crawley, “Repetitive self-grooming behavior in the BTBR mouse model of autism is blocked by the mGluR5 antagonist MPEP,” Neuropsychopharmacology, vol. 35, no. 4, pp. 976–989, 2010. View at Publisher · View at Google Scholar · View at PubMed
  180. K. K. Chadman, “Fluoxetine but not risperidone increases sociability in the BTBR mouse model of autism,” Pharmacology Biochemistry and Behavior, vol. 97, no. 3, pp. 586–594, 2011. View at Publisher · View at Google Scholar · View at PubMed
  181. M. F. Bear, G. Dölen, E. Osterweil, and N. Nagarajan, “Fragile X: translation in action,” Neuropsychopharmacology, vol. 33, no. 1, pp. 84–87, 2008. View at Publisher · View at Google Scholar · View at PubMed
  182. F. M. S. de Vrij, J. Levenga, H. C. van der Linde et al., “Rescue of behavioral phenotype and neuronal protrusion morphology in Fmr1 KO mice,” Neurobiology of Disease, vol. 31, no. 1, pp. 127–132, 2008. View at Publisher · View at Google Scholar · View at PubMed
  183. G. Dölen and M. F. Bear, “Role for metabotropic glutamate receptor 5 (mGluR5) in the pathogenesis of fragile X syndrome,” Journal of Physiology, vol. 586, no. 6, pp. 1503–1508, 2008. View at Publisher · View at Google Scholar · View at PubMed
  184. Q. J. Yan, M. Rammal, M. Tranfaglia, and R. P. Bauchwitz, “Suppression of two major Fragile X Syndrome mouse model phenotypes by the mGluR5 antagonist MPEP,” Neuropharmacology, vol. 49, no. 7, pp. 1053–1066, 2005. View at Publisher · View at Google Scholar · View at PubMed
  185. R. Z. Chen, S. Akbarian, M. Tudor, and R. Jaenisch, “Deficiency of methyl-CpG binding protein-2 in CNS neurons results in a Rett-like phenotype in mice,” Nature Genetics, vol. 27, no. 3, pp. 327–331, 2001. View at Publisher · View at Google Scholar · View at PubMed
  186. J. Guy, B. Hendrich, M. Holmes, J. E. Martin, and A. Bird, “A mouse Mecp2-null mutation causes neurological symptoms that mimic rett syndrome,” Nature Genetics, vol. 27, no. 3, pp. 322–326, 2001. View at Publisher · View at Google Scholar · View at PubMed
  187. M. D. Shahbazian, J. I. Young, L. A. Yuva-Paylor et al., “Mice with truncated MeCP2 recapitulate many Rett syndrome features and display hyperacetylation of histone H3,” Neuron, vol. 35, no. 2, pp. 243–254, 2002. View at Publisher · View at Google Scholar
  188. J. D. Picker, R. Yang, L. Ricceri, and J. Berger-Sweeney, “An altered neonatal behavioral phenotype in Mecp2 mutant mice,” NeuroReport, vol. 17, no. 5, pp. 541–544, 2006. View at Publisher · View at Google Scholar · View at PubMed
  189. P. Moretti, J. A. Bouwknecht, R. Teague, R. Paylor, and H. Y. Zoghbi, “Abnormalities of social interactions and home-cage behavior in a mouse model of Rett syndrome,” Human Molecular Genetics, vol. 14, no. 2, pp. 205–220, 2005. View at Publisher · View at Google Scholar · View at PubMed
  190. T. Gemelli, O. Berton, E. D. Nelson, L. I. Perrotti, R. Jaenisch, and L. M. Monteggia, “Postnatal loss of methyl-CpG binding protein 2 in the forebrain is sufficient to mediate behavioral aspects of Rett syndrome in mice,” Biological Psychiatry, vol. 59, no. 5, pp. 468–476, 2006. View at Publisher · View at Google Scholar · View at PubMed
  191. P. Moretti, J. M. Levenson, F. Battaglia et al., “Learning and memory and synaptic plasticity are impaired in a mouse model of Rett syndrome,” Journal of Neuroscience, vol. 26, no. 1, pp. 319–327, 2006. View at Publisher · View at Google Scholar · View at PubMed
  192. V. S. Dani, Q. Chang, A. Maffei, G. G. Turrigiano, R. Jaenisch, and S. B. Nelson, “Reduced cortical activity due to a shift in the balance between excitation and inhibition in a mouse model of Rett Syndrome,” Proceedings of the National Academy of Sciences of the United States of America, vol. 102, no. 35, pp. 12560–12565, 2005. View at Publisher · View at Google Scholar · View at PubMed
  193. V. S. Dani and S. B. Nelson, “Intact long-term potentiation but reduced connectivity between neocortical layer 5 pyramidal neurons in a mouse model of Rett syndrome,” Journal of Neuroscience, vol. 29, no. 36, pp. 11263–11270, 2009. View at Publisher · View at Google Scholar · View at PubMed
  194. L. Medrihan, E. Tantalaki, G. Aramuni et al., “Early defects of GABAergic synapses in the brain stem of a MeCP2 mouse model of Rett syndrome,” Journal of Neurophysiology, vol. 99, no. 1, pp. 112–121, 2008. View at Publisher · View at Google Scholar · View at PubMed
  195. H. T. Chao, H. Chen, R. C. Samaco et al., “Dysfunction in GABA signalling mediates autism-like stereotypies and Rett syndrome phenotypes,” Nature, vol. 468, no. 7321, pp. 263–269, 2010. View at Publisher · View at Google Scholar · View at PubMed
  196. S. Cobb, J. Guy, and A. Bird, “Reversibility of functional deficits in experimental models of Rett syndrome,” Biochemical Society Transactions, vol. 38, no. 2, pp. 498–506, 2010. View at Publisher · View at Google Scholar · View at PubMed
  197. C. E. Bakker, C. Verheij, R. Willemsen et al., “Fmr1 knockout mice: a model to study fragile X mental retardation,” Cell, vol. 78, no. 1, pp. 23–33, 1994. View at Google Scholar
  198. C. L. Gatto, K. Broadie, and H. Cline, “Genetic controls balancing excitatory and inhibitory synaptogenesis in neurodevelopmental disorder models,” Frontiers in Synaptic Neuroscience, vol. 2, pp. 1–19, 2010. View at Google Scholar
  199. Y. H. Jiang, D. Armstrong, U. Albrecht et al., “Mutation of the Angelman ubiquitin ligase in mice causes increased cytoplasmic p53 and deficits of contextual learning and long-term potentiation,” Neuron, vol. 21, no. 4, pp. 799–811, 1998. View at Publisher · View at Google Scholar
  200. K. Miura, T. Kishino, E. Li et al., “Neurobehavioral and electroencephalographic abnormalities in Ube3a maternal-deficient mice,” Neurobiology of Disease, vol. 9, no. 2, pp. 149–159, 2002. View at Publisher · View at Google Scholar · View at PubMed
  201. E. J. Weeber, Y. H. Jiang, Y. Elgersma et al., “Derangements of hippocampal calcium/calmodulin-dependent protein kinase II in a mouse model for Angelman mental retardation syndrome,” Journal of Neuroscience, vol. 23, no. 7, pp. 2634–2644, 2003. View at Google Scholar
  202. K. Yashiro, T. T. Riday, K. H. Condon et al., “Ube3a is required for experience-dependent maturation of the neocortex,” Nature Neuroscience, vol. 12, no. 6, pp. 777–783, 2009. View at Publisher · View at Google Scholar · View at PubMed
  203. G. E. Homanics, T. M. DeLorey, L. L. Firestone et al., “Mice devoid of γ-aminobutyrate type A receptor β3 subunit have epilepsy, cleft palate, and hypersensitive behavior,” Proceedings of the National Academy of Sciences of the United States of America, vol. 94, no. 8, pp. 4143–4148, 1997. View at Publisher · View at Google Scholar
  204. T. M. DeLorey, A. Handforth, S. G. Anagnostaras et al., “Mice lacking the β3 subunit of the GABA(A) receptor have the epilepsy phenotype and many of the behavioral characteristics of Angelman syndrome,” Journal of Neuroscience, vol. 18, no. 20, pp. 8505–8514, 1998. View at Google Scholar
  205. S. T. Sinkkonen, G. E. Homanics, and E. R. Korpi, “Mouse models of Angelman syndrome, a neurodevelopmental disorder, display different brain regional GABAA receptor alterations,” Neuroscience Letters, vol. 340, no. 3, pp. 205–208, 2003. View at Publisher · View at Google Scholar
  206. M. Sato and M. P. Stryker, “Genomic imprinting of experience-dependent cortical plasticity by the ubiquitin ligase gene Ube3a,” Proceedings of the National Academy of Sciences of the United States of America, vol. 107, no. 12, pp. 5611–5616, 2010. View at Publisher · View at Google Scholar · View at PubMed
  207. G. Dölen, E. Osterweil, B. S. S. Rao et al., “Correction of fragile X syndrome in mice,” Neuron, vol. 56, no. 6, pp. 955–962, 2007. View at Publisher · View at Google Scholar · View at PubMed
  208. E. G. Harlow, S. M. Till, T. A. Russell, L. S. Wijetunge, P. Kind, and A. Contractor, “Critical period plasticity is disrupted in the barrel cortex of FMR1 knockout mice,” Neuron, vol. 65, no. 3, pp. 385–398, 2010. View at Publisher · View at Google Scholar · View at PubMed