Table of Contents Author Guidelines Submit a Manuscript
Neural Plasticity
Volume 2012 (2012), Article ID 309494, 6 pages
http://dx.doi.org/10.1155/2012/309494
Research Article

Selective Estrogen Receptor Modulators Regulate Dendritic Spine Plasticity in the Hippocampus of Male Rats

1Centro de Investigación Biomédica de Occidente, Guadalajara, Jalisco 44340, Mexico
2CUCBA, Universidad de Guadalajara, Guadalajara, Jalisco 45100, Mexico
3Instituto Cajal, CSIC, 28002 Madrid, Spain

Received 19 July 2011; Accepted 12 August 2011

Academic Editor: Irina Nikonenko

Copyright © 2012 Ignacio González-Burgos et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. R. D. Brinton, “Requirements of a brain selective estrogen: advances and remaining challenges for developing a NeuroSERM,” Journal of Alzheimer's Disease, vol. 6, supplement, pp. S27–S35, 2004. View at Google Scholar · View at Scopus
  2. F. Bernardi, N. Pluchino, M. Stomati, M. Pieri, and A. R. Genazzani, “CNS: sex steroids and SERMs,” Annals of the New York Academy of Sciences, vol. 997, pp. 378–388, 2003. View at Publisher · View at Google Scholar · View at Scopus
  3. L. Zhao, K. O'Neill, and R. Diaz Brinton, “Selective estrogen receptor modulators (SERMs) for the brain: current status and remaining challenges for developing NeuroSERMs,” Brain Research Reviews, vol. 49, no. 3, pp. 472–493, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  4. L. L. DonCarlos, I. Azcoitia, and L. M. Garcia-Segura, “Neuroprotective actions of selective estrogen receptor modulators,” Psychoneuroendocrinology, vol. 34, supplement 1, pp. S113–S122, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  5. M. A. Arevalo, M. Santos-Galindo, N. Lagunas, I. Azcoitia, and L. M. Garcia-Segura, “Selective estrogen receptor modulators as brain therapeutic agents,” Journal of Molecular Endocrinology, vol. 46, no. 1, pp. R1–R9, 2011. View at Publisher · View at Google Scholar · View at PubMed
  6. K. M. Dhandapani and D. W. Brann, “Protective effects of estrogen and selective estrogen receptor modulators in the brain,” Biology of Reproduction, vol. 67, no. 5, pp. 1379–1385, 2002. View at Publisher · View at Google Scholar · View at Scopus
  7. I. Ciriza, P. Carrero, I. Azcoitia, S. G. Lundeen, and L. M. Garcia-Segura, “Selective estrogen receptor modulators protect hippocampal neurons from kainic acid excitotoxicity: differences with the effect of estradiol,” Journal of Neurobiology, vol. 61, no. 2, pp. 209–221, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  8. B. F. Bebo, B. Dehghani, S. Foster, A. Kurniawan, F. J. Lopez, and L. S. Sherman, “Treatment with selective estrogen receptor modulators regulates myelin specific T-cells and suppresses experimental autoimmune encephalomyelitis,” GLIA, vol. 57, no. 7, pp. 777–790, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  9. L. Zhao, K. O'Neill, and R. D. Brinton, “Selective estrogen receptor modulators (SERMs) for the brain: current status and remaining challenges for developing NeuroSERMs,” Brain Research Reviews, vol. 49, no. 3, pp. 472–493, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  10. L. Zhao, K. O'Neill, and R. D. Brinton, “Estrogenic agonist activity of ICI 182,780 (Faslodex) in hippocampal neurons: implications for basic science understanding of estrogen signaling and development of estrogen modulators with a dual therapeutic profile,” Journal of Pharmacology and Experimental Therapeutics, vol. 319, no. 3, pp. 1124–1132, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  11. S. Benvenuti, P. Luciani, G. B. Vannelli et al., “Estrogen and selective estrogen receptor modulators exert neuroprotective effects and stimulate the expression of Selective Alzheimer's Disease Indicator-1, a recently discovered antiapoptotic gene, in human neuroblast long-term cell cultures,” Journal of Clinical Endocrinology and Metabolism, vol. 90, no. 3, pp. 1775–1782, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  12. E. Biewenga, L. Cabell, and T. Audesirk, “Estradiol and raloxifene protect cultured SN4741 neurons against oxidative stress,” Neuroscience Letters, vol. 373, no. 3, pp. 179–183, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  13. M. Bourque, B. Liu, D. E. Dluzen, and T. Di Paolo, “Tamoxifen protects male mice nigrostriatal dopamine against methamphetamine-induced toxicity,” Biochemical Pharmacology, vol. 74, no. 9, pp. 1413–1423, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  14. S. Callier, M. Morissette, M. Grandbois, D. Pelaprat, and T. Di Paolo, “Neuroprotective properties of 17β-estradiol, progesterone, and raloxifene in MPTP C57Bl/6 mice,” Synapse, vol. 41, no. 2, pp. 131–138, 2001. View at Publisher · View at Google Scholar · View at PubMed
  15. B. Du, M. Ohmichi, K. Takahashi et al., “Both estrogen and raloxifene protect against β-amyloid-induced neurotoxicity in estrogen receptor α-transfected PC12 cells by activation of telomerase activity via Akt cascade,” Journal of Endocrinology, vol. 183, no. 3, pp. 605–615, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  16. Y. Feng, J. D. Fratkins, and M. H. LeBlanc, “Treatment with tamoxifen reduces hypoxic-ischemic brain injury in neonatal rats,” European Journal of Pharmacology, vol. 484, no. 1, pp. 65–74, 2004. View at Publisher · View at Google Scholar · View at Scopus
  17. M. Grandbois, M. Morissette, S. Callier, and T. Di Paolo, “Ovarian steroids and raloxifene prevent MPTP-induced dopamine depletion in mice,” NeuroReport, vol. 11, no. 2, pp. 343–346, 2000. View at Google Scholar · View at Scopus
  18. H. K. Kimelberg, “Tamoxifen as a powerful neuroprotectant in experimental stroke and implications for human stroke therapy,” Recent Patents on CNS Drug Discovery, vol. 3, no. 2, pp. 104–108, 2008. View at Publisher · View at Google Scholar · View at Scopus
  19. H. K. Kimelberg, Y. Jin, C. Charniga, and P. J. Feustel, “Neuroprotective activity of tamoxifen in permanent focal ischemia,” Journal of Neurosurgery, vol. 99, no. 1, pp. 138–142, 2003. View at Google Scholar · View at Scopus
  20. O. N. Kokiko, A. K. Murashov, and M. R. Hoane, “Administration of raloxifene reduces sensorimotor and working memory deficits following traumatic brain injury,” Behavioural Brain Research, vol. 170, no. 2, pp. 233–240, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  21. E. S. Y. Lee, Z. Yin, D. Milatovic, H. Jiang, and M. Aschner, “Estrogen and tamoxifen protect against Mn-induced toxicity in rat cortical primary cultures of neurons and astrocytes,” Toxicological Sciences, vol. 110, no. 1, pp. 156–167, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  22. E. S. Y. Lee, M. Sidoryk, H. Jiang, Z. Yin, and M. Aschner, “Estrogen and tamoxifen reverse manganese-induced glutamate transporter impairment in astrocytes,” Journal of Neurochemistry, vol. 110, no. 2, pp. 530–544, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  23. D. L. Lei, J. M. Long, J. Hengemihle et al., “Effects of estrogen and raloxifene on neuroglia number and morphology in the hippocampus of aged female mice,” Neuroscience, vol. 121, no. 3, pp. 659–666, 2003. View at Publisher · View at Google Scholar · View at Scopus
  24. R. McMurray, R. Islamov, and A. K. Murashov, “Raloxifene analog LY117018 enhances the regeneration of sciatic nerve in ovariectomized female mice,” Brain Research, vol. 980, no. 1, pp. 140–145, 2003. View at Publisher · View at Google Scholar · View at Scopus
  25. S. H. Mehta, K. M. Dhandapani, L. M. De Sevilla, R. C. Webb, V. B. Mahesh, and D. W. Brann, “Tamoxifen, a selective estrogen receptor modulator, reduces ischemic damage caused by middle cerebral artery occlusion in the ovariectomized female rat,” Neuroendocrinology, vol. 77, no. 1, pp. 44–50, 2003. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  26. K. R. Mickley and D. E. Dluzen, “Dose-response effects of estrogen and tamoxifen upon methamphetamine- induced behavioral responses and neurotoxicity of the nigrostriatal dopaminergic system in female mice,” Neuroendocrinology, vol. 79, no. 6, pp. 305–316, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  27. M. Morissette, S. A. Sweidi, S. Callier, and T. Di Paolo, “Estrogen and SERM neuroprotection in animal models of Parkinson's disease,” Molecular and Cellular Endocrinology, vol. 290, no. 1-2, pp. 60–69, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  28. M. I. Rossberg, S. J. Murphy, R. J. Traystman, and P. D. Hurn, “LY353381.HCl, a selective estrogen receptor modulator, and experimental stroke,” Stroke, vol. 31, no. 12, pp. 3041–3046, 2000. View at Google Scholar · View at Scopus
  29. H. Zhang, M. Xie, G. P. Schools et al., “Tamoxifen mediated estrogen receptor activation protects against early impairment of hippocampal neuron excitability in an oxygen/glucose deprivation brain slice ischemia model,” Brain Research, vol. 1247, pp. 196–211, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  30. P. S. Green, S. H. Yang, K. R. Nilsson, A. S. Kumar, D. F. Covey, and J. W. Simpkins, “The nonfeminizing enantiomer of 17β-estradiol exerts protective effects in neuronal cultures and a rat model of cerebral ischemia,” Endocrinology, vol. 142, no. 1, pp. 400–406, 2001. View at Publisher · View at Google Scholar · View at Scopus
  31. M. E. Jung, A. M. Wilson, and J. W. Simpkins, “A nonfeminizing estrogen analog protects against ethanol withdrawal toxicity in immortalized hippocampal cells,” Journal of Pharmacology and Experimental Therapeutics, vol. 319, no. 2, pp. 543–550, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  32. R. Liu, S. H. Yang, E. Perez et al., “Neuroprotective effects of a novel non-receptor-binding estrogen analogue: in vitro and in vivo analysis,” Stroke, vol. 33, no. 10, pp. 2485–2491, 2002. View at Publisher · View at Google Scholar · View at Scopus
  33. J. W. Simpkins, Y. Wen, E. Perez, S. Yang, and X. Wang, “Role of nonfeminizing estrogens in brain protection from cerebral ischemia: an animal model of Alzheimer's disease neuropathology,” Annals of the New York Academy of Sciences, vol. 1052, pp. 233–242, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  34. X. Wang, J. A. Dykens, E. Perez et al., “Neuroprotective effects of 17β-estradiol and nonfeminizing estrogens against H2O2 toxicity in human neuroblastoma SK-N-SH cells,” Molecular Pharmacology, vol. 70, no. 1, pp. 395–404, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  35. I. Azcoitia, A. Moreno, P. Carrero, S. Palacios, and L. M. Garcia-Segura, “Neuroprotective effects of soy phytoestrogens in the rat brain,” Gynecological Endocrinology, vol. 22, no. 2, pp. 63–69, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  36. D. A. Schreihofer and L. Redmond, “Soy phytoestrogens are neuroprotective against stroke-like injury in vitro,” Neuroscience, vol. 158, no. 2, pp. 602–609, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  37. D. L. Lei, J. M. Long, J. Hengemihle et al., “Effects of estrogen and raloxifene on neuroglia number and morphology in the hippocampus of aged female mice,” Neuroscience, vol. 121, no. 3, pp. 659–666, 2003. View at Publisher · View at Google Scholar · View at Scopus
  38. S. Tapia-Gonzalez, P. Carrero, O. Pernia, L. M. Garcia-Segura, and Y. Diz-Chaves, “Selective oestrogen receptor (ER) modulators reduce microglia reactivity in vivo after peripheral inflammation: potential role of microglial ERs,” Journal of Endocrinology, vol. 198, no. 1, pp. 219–230, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  39. M. Cerciat, M. Unkila, L. M. Garcia-Segura, and M. A. Arevalo, “Selective estrogen receptor modulators decrease the production of interleukin-6 and interferon-γ-inducible protein-10 by astrocytes exposed to inflammatory challenge in vitro,” GLIA, vol. 58, no. 1, pp. 93–102, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  40. T. Suuronen, T. Nuutinen, J. Huuskonen, J. Ojala, A. Thornell, and A. Salminen, “Anti-inflammatory effect of selective estrogen receptor modulators (SERMs) in microglial cells,” Inflammation Research, vol. 54, no. 5, pp. 194–203, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  41. G. Barreto, M. Santos-Galindo, Y. Diz-Chaves et al., “Selective estrogen receptor modulators decrease reactive astrogliosis in the injured brain: effects of aging and prolonged depletion of ovarian hormones,” Endocrinology, vol. 150, no. 11, pp. 5010–5015, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  42. J. L. Liu, D. S. Tian, Z. W. Li et al., “Tamoxifen alleviates irradiation-induced brain injury by attenuating microglial inflammatory response in vitro and in vivo,” Brain Research, vol. 1316, pp. 101–111, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  43. D. S. Tian, J. L. Liu, M. J. Xie et al., “Tamoxifen attenuates inflammatory-mediated damage and improves functional outcome after spinal cord injury in rats,” Journal of Neurochemistry, vol. 109, no. 6, pp. 1658–1667, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  44. J. Nilsen, G. Mor, and F. Naftolin, “Raloxifene induces neurite outgrowth in estrogen receptor positive PC12 cells,” Menopause, vol. 5, no. 4, pp. 211–216, 1998. View at Google Scholar · View at Scopus
  45. K. O'Neill, S. Chen, and R. D. Brinton, “Impact of the selective estrogen receptor modulator, tamoxifen, on neuronal outgrowth and survival following toxic insults associated with aging and Alzheimer's disease,” Experimental Neurology, vol. 188, no. 2, pp. 268–278, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  46. E. Gould, C. S. Woolley, M. Frankfurt, and B. S. McEwen, “Gonadal steroids regulate dendritic spine density in hippocampal pyramidal cells in adulthood,” Journal of Neuroscience, vol. 10, no. 4, pp. 1286–1291, 1990. View at Google Scholar · View at Scopus
  47. C. S. Woolley and B. S. McEwen, “Roles of estradiol and progesterone in regulation of hippocampal dendritic spine density during the estrous cycle in the rat,” Journal of Comparative Neurology, vol. 336, no. 2, pp. 293–306, 1993. View at Google Scholar · View at Scopus
  48. B. S. McEwen and C. S. Woolley, “Estradiol and progesterone regulate neuronal structure and synaptic connectivity in adult as well as developing brain,” Experimental Gerontology, vol. 29, no. 3-4, pp. 431–436, 1994. View at Publisher · View at Google Scholar · View at Scopus
  49. D. D. Murphy and M. Segal, “Regulation of dendritic spine density in cultured rat hippocampal neurons by steroid hormones,” Journal of Neuroscience, vol. 16, no. 13, pp. 4059–4068, 1996. View at Google Scholar · View at Scopus
  50. C. S. Woolley, “Estrogen-mediated structural and functional synaptic plasticity in the female rat hippocampus,” Hormones and Behavior, vol. 34, no. 2, pp. 140–148, 1998. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  51. F. Liu, M. Day, L. C. Muñiz et al., “Activation of estrogen receptor-β regulates hippocampal synaptic plasticity and improves memory,” Nature Neuroscience, vol. 11, no. 3, pp. 334–343, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  52. K. Sharma, R. D. Mehra, P. Dhar, and U. Vij, “Chronic exposure to estrogen and tamoxifen regulates synaptophysin and phosphorylated cAMP response element-binding (CREB) protein expression in CA1 of ovariectomized rat hippocampus,” Brain Research, vol. 1132, no. 1, pp. 10–19, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  53. X. Wu, M. A. Glinn, N. L. Ostrowski et al., “Raloxifene and estradiol benzoate both fully restore hippocampal choline acetyltransferase activity in ovariectomized rats,” Brain Research, vol. 847, no. 1, pp. 98–104, 1999. View at Publisher · View at Google Scholar · View at Scopus
  54. M. Cyr, M. Landry, and T. Di Paolo, “Modulation by estrogen-receptor directed drugs of 5-hydroxytryptamine-2A receptors in rat brain,” Neuropsychopharmacology, vol. 23, no. 1, pp. 69–78, 2000. View at Publisher · View at Google Scholar · View at Scopus
  55. M. G. Sánchez, M. Bourque, M. Morissette, and T. Di Paolo, “Steroids-dopamine interactions in the pathophysiology and treatment of cns disorders,” CNS Neuroscience and Therapeutics, vol. 16, no. 3, pp. e43–e71, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  56. L. J. Smith, J. A. Henderson, C. W. Abell, and C. L. Bethea, “Effects of ovarian steroids and raloxifene on proteins that synthesize, transport, and degrade serotonin in the raphe region of macaques,” Neuropsychopharmacology, vol. 29, no. 11, pp. 2035–2045, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  57. N. Lagunas, I. Calmarza-Font, D. Grassi, and L. M. Garcia-Segura, “Estrogen receptor ligands counteract cognitive deficits caused by androgen deprivation in male rats,” Hormones and Behavior, vol. 59, no. 4, pp. 581–584, 2011. View at Publisher · View at Google Scholar · View at PubMed
  58. I. Gonzalez-Burgos, G. Tapia-Arizmendi, and A. Feria-Velasco, “Golgi method without osmium tetroxide for the study of the central nervous system,” Biotechnic and Histochemistry, vol. 67, no. 5, pp. 288–296, 1992. View at Google Scholar · View at Scopus
  59. A. Peters and I. R. Kaiserman-Abramof, “The small pyramidal neuron of the rat cerebral cortex—the synapses upon dendritic spines,” Zeitschrift für Zellforschung und Mikroskopische Anatomie, vol. 100, no. 4, pp. 487–506, 1969. View at Publisher · View at Google Scholar · View at Scopus
  60. L. Tarelo-Acuña, E. Olvera-Cortés, and I. González-Burgos, “Prenatal and postnatal exposure to ethanol induces changes in the shape of the dendritic spines from hippocampal CA1 pyramidal neurons of the rat,” Neuroscience Letters, vol. 286, no. 1, pp. 13–16, 2000. View at Publisher · View at Google Scholar · View at Scopus
  61. I. González-Burgos, M. Alejandre-Gómez, and M. Cervantes, “Spine-type densities of hippocampal CA1 neurons vary in proestrus and estrus rats,” Neuroscience Letters, vol. 379, no. 1, pp. 52–54, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  62. B. Leuner and T. J. Shors, “New spines, new memories,” Molecular Neurobiology, vol. 29, no. 2, pp. 117–130, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  63. S. Hugel, M. Abegg, V. De Paola, P. Caroni, B. H. Gähwiler, and R. A. McKinney, “Dendritic spine morphology determines membrane-associated protein exchange between dendritic shafts and spine heads,” Cerebral Cortex, vol. 19, no. 3, pp. 697–702, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  64. M. Matsuzaki, G. C. R. Ellis-Davies, T. Nemoto, Y. Miyashita, M. Iino, and H. Kasai, “Dendritic spine geometry is critical for AMPA receptor expression in hippocampal CA1 pyramidal neurons,” Nature Neuroscience, vol. 4, no. 11, pp. 1086–1092, 2001. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  65. O. Ganeshina, R. W. Berry, R. S. Petralia, D. A. Nicholson, and Y. Geinisman, “Synapses with a segmented, completely partitioned postsynaptic density express more AMPA receptors than other axospinous synaptic junctions,” Neuroscience, vol. 125, no. 3, pp. 615–623, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  66. M. C. Ashby, S. R. Maier, A. Nishimune, and J. M. Henley, “Lateral diffusion drives constitutive exchange of AMPA receptors at dendritic spines and is regulated by spine morphology,” Journal of Neuroscience, vol. 26, no. 26, pp. 7046–7055, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  67. E. A. Nimchinsky, R. Yasuda, T. G. Oertner, and K. Svoboda, “The number of glutamate receptors opened by synaptic stimulation in single hippocampal spines,” Journal of Neuroscience, vol. 24, no. 8, pp. 2054–2064, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  68. A. Majewska, A. Tashiro, and R. Yuste, “Regulation of spine calcium dynamics by rapid spine motility,” Journal of Neuroscience, vol. 20, no. 22, pp. 8262–8268, 2000. View at Google Scholar · View at Scopus
  69. R. Yuste, A. Majewska, and K. Holthoff, “From form to function: calcium compartmentalization in dendritic spines,” Nature Neuroscience, vol. 3, no. 7, pp. 653–659, 2000. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  70. Y. Hayashi and A. K. Majewska, “Dendritic spine geometry: functional implication and regulation,” Neuron, vol. 46, no. 4, pp. 529–532, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  71. J. Noguchi, M. Matsuzaki, G. C. R. Ellis-Davies, and H. Kasai, “Spine-neck geometry determines NMDA receptor-dependent Ca2+ signaling in dendrites,” Neuron, vol. 46, no. 4, pp. 609–622, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  72. H. Schmidt and J. Eilers, “Spine neck geometry determines spino-dendritic cross-talk in the presence of mobile endogenous calcium binding proteins,” Journal of Computational Neuroscience, vol. 27, no. 2, pp. 229–243, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  73. R. Araya, J. Jiang, K. B. Eisenthal, and R. Yuste, “The spine neck filters membrane potentials,” Proceedings of the National Academy of Sciences of the United States of America, vol. 103, no. 47, pp. 17961–17966, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  74. C. Koch, A. Zador, and T. H. Brown, “Dendritic spines: convergence of theory and experiment,” Science, vol. 256, no. 5059, pp. 973–974, 1992. View at Google Scholar · View at Scopus
  75. E. Korkotian and M. Segal, “Structure-function relations in dendritic spines: is size important?” Hippocampus, vol. 10, no. 5, pp. 587–595, 2000. View at Publisher · View at Google Scholar · View at Scopus
  76. M. I. Pérez-Vega, A. Feria-Velasco, and I. González-Burgos, “Prefrontocortical serotonin depletion results in plastic changes of prefrontocortical pyramidal neurons, underlying a greater efficiency of short-term memory,” Brain Research Bulletin, vol. 53, no. 3, pp. 291–300, 2000. View at Publisher · View at Google Scholar · View at Scopus
  77. K. M. Harris, J. C. Fiala, and L. Ostroff, “Structural changes at dendritic spine synapses during long-term potentiation,” Philosophical Transactions of the Royal Society B, vol. 358, no. 1432, pp. 745–748, 2003. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  78. J. Bourne and K. M. Harris, “Do thin spines learn to be mushroom spines that remember?” Current Opinion in Neurobiology, vol. 17, no. 3, pp. 381–386, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  79. I. González-Burgos, “Dendritic spine plasticity and learning/memory processes: theory, evidence and perspectives,” in Dendritic Spines: Biochemistry, Modeling and Properties, L. R. Baylog, Ed., pp. 163–186, Nova Science Publishers, Huntington, NY, USA, 2009. View at Google Scholar
  80. K. M. Harris, F. E. Jensen, and B. Tsao, “Three-dimensional structure of dendritic spines and synapses in rat hippocampus (CA 1) at postnatal day 15 and adult ages: implications for the maturation of synaptic physiology and long-term potentiation,” Journal of Neuroscience, vol. 12, no. 7, pp. 2685–2705, 1992. View at Google Scholar · View at Scopus
  81. H. Kasai, M. Matsuzaki, J. Noguchi, N. Yasumatsu, and H. Nakahara, “Structure-stability-function relationships of dendritic spines,” Trends in Neurosciences, vol. 26, no. 7, pp. 360–368, 2003. View at Publisher · View at Google Scholar · View at Scopus
  82. M. Matsuzaki, N. Honkura, G. C. R. Ellis-Davies, and H. Kasai, “Structural basis of long-term potentiation in single dendritic spines,” Nature, vol. 429, no. 6993, pp. 761–766, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  83. V. Birzniece, A. Sata, S. Sutanto, and K. K. Y. Ho, “Neuroendocrine regulation of growth hormone and androgen axes by selective estrogen receptor modulators in healthy men,” Journal of Clinical Endocrinology and Metabolism, vol. 95, no. 12, pp. 5443–5448, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  84. K. M. Webber, G. Perry, M. A. Smith, and G. Casadesus, “The contribution of luteinizing hormone to Alzheimer Disease pathogenesis,” Clinical Medicine and Research, vol. 5, no. 3, pp. 177–183, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  85. G. Casadesus, K. M. Webber, C. S. Atwood et al., “Luteinizing hormone modulates cognition and amyloid-β deposition in Alzheimer APP transgenic mice,” Biochimica et Biophysica Acta, vol. 1762, no. 4, pp. 447–452, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus