Table of Contents Author Guidelines Submit a Manuscript
Neural Plasticity
Volume 2012, Article ID 590725, 20 pages
http://dx.doi.org/10.1155/2012/590725
Review Article

Cortical GABAergic Interneurons in Cross-Modal Plasticity following Early Blindness

1Centre de Recherche du Centre Hospitalier Universitaire (CHU) Sainte-Justine, Université de Montréal, Case Postale 6128, succursale Centre-Ville, Montréal, QC, Canada H3C 3J7
2Département de Physiologie, Université de Montréal, Case Postale 6128, Succursale Centre-Ville, Montréal, QC, Canada H3C 3J7
3Harland Sanders Chair in Visual Science, École d'optométrie, Université de Montréal, Case Postale 6128, succursale Centre-Ville, Montréal, QC, Canada H3C 3J7
4Institute of Neuroscience and Pharmacology and Panum Institute, University of Copenhagen, 2200 Copenhagen, Denmark

Received 7 February 2012; Accepted 4 April 2012

Academic Editor: Ron Kupers

Copyright © 2012 Sébastien Desgent and Maurice Ptito. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. S. L. Pallas, “Intrinsic and extrinsic factors that shape neocortical specification,” Trends in Neurosciences, vol. 24, no. 7, pp. 417–423, 2001. View at Publisher · View at Google Scholar · View at Scopus
  2. A. K. Majewska and M. Sur, “Plasticity and specificity of cortical processing networks,” Trends in Neurosciences, vol. 29, no. 6, pp. 323–329, 2006. View at Publisher · View at Google Scholar · View at Scopus
  3. D. D. O'Leary, S. J. Chou, and S. Sahara, “Area patterning of the mammalian cortex,” Neuron, vol. 56, no. 2, pp. 252–269, 2007. View at Google Scholar · View at Scopus
  4. M. Ptito and S. Desgent, “Sensory input-based adaptation and brain architecture,” in Lifespan Development and the Brain. The Perspective of Biocultural Co-constructivism, P. Baltes, P. Reuter-Lorenz, and F. Rosler, Eds., pp. 111–134, Cambridge University Press, Cambridge, UK, 2006. View at Google Scholar
  5. L. Krubitzer, “The magnificent compromise: cortical field evolution in mammals,” Neuron, vol. 56, no. 2, pp. 201–208, 2007. View at Google Scholar · View at Scopus
  6. L. B. Merabet and A. Pascual-Leone, “Neural reorganization following sensory loss: the opportunity of change,” Nature Reviews Neuroscience, vol. 11, no. 1, pp. 44–52, 2010. View at Publisher · View at Google Scholar · View at Scopus
  7. E. Ricciardi and P. Pietrini, “New light from the dark: what blindness can teach us about brain function,” Current Opinion in Neurology, vol. 24, no. 4, pp. 357–363, 2011. View at Publisher · View at Google Scholar · View at Scopus
  8. R. Kupers and M. Ptito, “Insights from darkness: what the study of blindness has taught us about brain structure and function,” Progress in Brain Research, vol. 192, pp. 17–31, 2011. View at Publisher · View at Google Scholar · View at Scopus
  9. M. Ptito and R. Kupers, “Cross-modal plasticity in early blindness,” Journal of Integrative Neuroscience, vol. 4, no. 4, pp. 479–488, 2005. View at Publisher · View at Google Scholar · View at Scopus
  10. R. Kupers, P. Pietrini, E. Ricciardi, and M. Ptito, “The nature of consciousness in the visually deprived brain,” Frontiers in Psychology, vol. 2, article 19, 2011. View at Publisher · View at Google Scholar
  11. U. Noppeney, “The effects of visual deprivation on functional and structural organization of the human brain,” Neuroscience and Biobehavioral Reviews, vol. 31, no. 8, pp. 1169–1180, 2007. View at Publisher · View at Google Scholar · View at Scopus
  12. R. Kupers, D. R. Chebat, K. H. Madsen, O. B. Paulson, and M. Ptito, “Neural correlates of virtual route recognition in congenital blindness,” Proceedings of the National Academy of Sciences of the United States of America, vol. 107, no. 28, pp. 12716–12721, 2010. View at Publisher · View at Google Scholar · View at Scopus
  13. A. Bubic, E. Striem-Amit, and A. Amedi, “Large-scale brain plasticity following blindness and the use of sensory substitution devices,” in Multisensory Object Perception in the Primate Brain, M. J. Naumer and J. Kaiser, Eds., pp. 351–380, Springer, 2010. View at Google Scholar
  14. I. Matteau, R. Kupers, E. Ricciardi, P. Pietrini, and M. Ptito, “Beyond visual, aural and haptic movement perception: hMT+ is activated by electrotactile motion stimulation of the tongue in sighted and in congenitally blind individuals,” Brain Research Bulletin, vol. 82, no. 5-6, pp. 264–270, 2010. View at Publisher · View at Google Scholar · View at Scopus
  15. O. Collignon, G. Vandewalle, P. Voss et al., “Functional specialization for auditory-spatial processing in the occipital cortex of congenitally blind humans,” Proceedings of the National Academy of Sciences of the United States of America, vol. 108, no. 11, pp. 4435–4440, 2011. View at Publisher · View at Google Scholar · View at Scopus
  16. R. Kupers, M. Beaulieu-Lefebvre, F. C. Schneider et al., “Neural correlates of olfactory processing in congenital blindness,” Neuropsychologia, vol. 49, no. 7, pp. 2037–2044, 2011. View at Publisher · View at Google Scholar · View at Scopus
  17. D. Bavelier and H. J. Neville, “Cross-modal plasticity: where and how?” Nature Reviews Neuroscience, vol. 3, no. 6, pp. 443–452, 2002. View at Google Scholar · View at Scopus
  18. J. Driver and T. Noesselt, “Multisensory interplay reveals crossmodal influences on “sensory-specific” brain regions, neural responses, and judgments,” Neuron, vol. 57, no. 1, pp. 11–23, 2008. View at Publisher · View at Google Scholar · View at Scopus
  19. R. C. Kadosh and V. Walsh, “Cognitive neuroscience: rewired or crosswired brains?” Current Biology, vol. 16, no. 22, pp. R962–R963, 2006. View at Publisher · View at Google Scholar · View at Scopus
  20. Q. Q. Sun, J. R. Huguenard, and D. A. Prince, “Barrel cortex microcircuits: thalamocortical feedforward inhibition in spiny stellate cells is mediated by a small number of fast-spiking interneurons,” Journal of Neuroscience, vol. 26, no. 4, pp. 1219–1230, 2006. View at Publisher · View at Google Scholar · View at Scopus
  21. H. A. Swadlow, “Fast-spike interneurons and feedforward inhibition in awake sensory neocortex,” Cerebral Cortex, vol. 13, no. 1, pp. 25–32, 2003. View at Google Scholar · View at Scopus
  22. S. Sugiyama, A. A. Di Nardo, S. Aizawa et al., “Experience-dependent transfer of Otx2 homeoprotein into the visual cortex activates postnatal plasticity,” Cell, vol. 134, no. 3, pp. 508–520, 2008. View at Publisher · View at Google Scholar · View at Scopus
  23. Y. Gonchar and A. Burkhalter, “Differential subcellular localization of forward and feedback interareal inputs to parvalbumin expressing GABAergic neurons in rat visual cortex,” Journal of Comparative Neurology, vol. 406, no. 3, pp. 346–360, 1999. View at Publisher · View at Google Scholar
  24. R. R. Johnson and A. Burkhalter, “Microcircuitry of forward and feedback connections within rat visual cortex,” Journal of Comparative Neurology, vol. 368, no. 3, pp. 383–398, 1996. View at Publisher · View at Google Scholar
  25. A. Yamashita, K. Valkova, Y. Gonchar, and A. Burkhalter, “Rearrangement of synaptic connections with inhibitory neurons in developing mouse visual cortex,” Journal of Comparative Neurology, vol. 464, no. 4, pp. 426–437, 2003. View at Publisher · View at Google Scholar · View at Scopus
  26. E. M. Callaway, “Feedforward, feedback and inhibitory connections in primate visual cortex,” Neural Networks, vol. 17, no. 5-6, pp. 625–632, 2004. View at Publisher · View at Google Scholar · View at Scopus
  27. S. L. Pallas, P. Wenner, C. Gonzalez-Islas et al., “Developmental plasticity of inhibitory circuitry,” Journal of Neuroscience, vol. 26, no. 41, pp. 10358–10361, 2006. View at Publisher · View at Google Scholar · View at Scopus
  28. H. Ni, L. Huang, N. Chen et al., “Upregulation of barrel GABAergic neurons is associated with cross-modal plasticity in olfactory deficit,” PLoS ONE, vol. 5, no. 10, Article ID e13736, 2010. View at Publisher · View at Google Scholar · View at Scopus
  29. S. Desgent, D. Boire, and M. Ptito, “Altered expression of parvalbumin and calbindin in interneurons within the primary visual cortex of neonatal enucleated hamsters,” Neuroscience, vol. 171, no. 4, pp. 1326–1340, 2010. View at Publisher · View at Google Scholar · View at Scopus
  30. S. Desgent, D. Boire, and M. Ptito, Changes in Distribution of Calcium-Binding Proteins in the Visual and Auditory Cortices Following Neonatal Alterations of the Visual System in the Hamster, vol. 4, abstract no. 054.13, Federation of European Neuroscience Societies (FENS), Geneva, Switzerland, 2008.
  31. S. J. Karlen, D. M. Kahn, and L. Krubitzer, “Early blindness results in abnormal corticocortical and thalamocortical connections,” Neuroscience, vol. 142, no. 3, pp. 843–858, 2006. View at Publisher · View at Google Scholar · View at Scopus
  32. D. D. Larsen, J. D. Luu, M. E. Burns, and L. Krubitzer, “What are the effects of severe visual impairment on the cortical organization and connectivity of primary visual cortex?” Frontiers in Neuroanatomy, vol. 3, article 30, 2009. View at Publisher · View at Google Scholar
  33. G. Rebillard, E. Carlier, M. Rebillard, and R. Pujol, “Enhancement of visual responses on the primary auditory cortex of the cat after an early destruction of cochlear receptors,” Brain Research, vol. 129, no. 1, pp. 162–164, 1977. View at Publisher · View at Google Scholar · View at Scopus
  34. D. L. Hunt, E. N. Yamoah, and L. Krubitzer, “Multisensory plasticity in congenitally deaf mice: how are cortical areas functionally specified?” Neuroscience, vol. 139, no. 4, pp. 1507–1524, 2006. View at Publisher · View at Google Scholar · View at Scopus
  35. H. Jiang, F. Lepore, M. Ptito, and J. P. Guillemot, “Sensory modality distribution in the anterior ectosylvian cortex (AEC) of cats,” Experimental Brain Research, vol. 97, no. 3, pp. 404–414, 1994. View at Google Scholar · View at Scopus
  36. J. P. Rauschecker and M. Korte, “Auditory compensation for early blindness in cat cerebral cortex,” Journal of Neuroscience, vol. 13, no. 10, pp. 4538–4548, 1993. View at Google Scholar · View at Scopus
  37. J. P. Rauschecker, “Compensatory plasticity and sensory substitution in the cerebral cortex,” Trends in Neurosciences, vol. 18, no. 1, pp. 36–43, 1995. View at Publisher · View at Google Scholar · View at Scopus
  38. J. P. Rauschecker, “Cortical map plasticity in animals and humans,” Progress in Brain Research, vol. 138, pp. 73–88, 2002. View at Publisher · View at Google Scholar · View at Scopus
  39. J. Toldi, T. Farkas, and B. Volgyi, “Neonatal enucleation induces cross-modal changes in the barrel cortex of rat. A behavioural and electrophysiological study,” Neuroscience Letters, vol. 167, no. 1-2, pp. 1–4, 1994. View at Publisher · View at Google Scholar · View at Scopus
  40. J. Toldi, O. Feher, and J. R. Wolff, “Neuronal plasticity induced by neonatal monocular (and binocular) enucleation,” Progress in Neurobiology, vol. 48, no. 3, pp. 191–218, 1996. View at Publisher · View at Google Scholar · View at Scopus
  41. G. Bronchti, N. Schonenberger, E. Welker, and H. Van der Loos, “Barrelfield expansion after neonatal eye removal in mice,” NeuroReport, vol. 3, no. 6, pp. 489–492, 1992. View at Google Scholar · View at Scopus
  42. J. R. Newton, R. W. Sikes, and A. A. Skavenski, “Cross-modal plasticity after monocular enucleation of the adult rabbit,” Experimental Brain Research, vol. 144, no. 4, pp. 423–429, 2002. View at Publisher · View at Google Scholar · View at Scopus
  43. J. P. Rauschecker, B. Tian, M. Korte, and U. Egert, “Crossmodal changes in the somatosensory vibrissa/barrel system of visually deprived animals,” Proceedings of the National Academy of Sciences of the United States of America, vol. 89, no. 11, pp. 5063–5067, 1992. View at Publisher · View at Google Scholar · View at Scopus
  44. R. Yaka, U. Yinon, M. Rosner, and Z. Wollberg, “Pathological and experimentally induced blindness induces auditory activity in the cat primary visual cortex,” Experimental Brain Research, vol. 131, no. 1, pp. 144–148, 2000. View at Google Scholar · View at Scopus
  45. R. Yaka, U. Yinon, and Z. Wollberg, “Auditory activation of cortical visual areas in cats after early visual deprivation,” European Journal of Neuroscience, vol. 11, no. 4, pp. 1301–1312, 1999. View at Publisher · View at Google Scholar · View at Scopus
  46. N. Chabot, S. Robert, R. Tremblay, D. Miceli, D. Boire, and G. Bronchti, “Audition differently activates the visual system in neonatally enucleated mice compared with anophthalmic mutants,” European Journal of Neuroscience, vol. 26, no. 8, pp. 2334–2348, 2007. View at Publisher · View at Google Scholar · View at Scopus
  47. R. Izraeli, G. Koay, M. Lamish et al., “Cross-modal neuroplasticity in neonatally enucleated hamsters: structure, electrophysiology and behaviour,” European Journal of Neuroscience, vol. 15, no. 4, pp. 693–712, 2002. View at Publisher · View at Google Scholar · View at Scopus
  48. D. M. Kahn and L. Krubitzer, “Massive cross-modal cortical plasticity and the emergence of a new cortical area in developmentally blind mammals,” Proceedings of the National Academy of Sciences of the United States of America, vol. 99, no. 17, pp. 11429–11434, 2002. View at Publisher · View at Google Scholar · View at Scopus
  49. M. Piche, N. Chabot, G. Bronchti, D. Miceli, F. Lepore, and J. P. Guillemot, “Auditory responses in the visual cortex of neonatally enucleated rats,” Neuroscience, vol. 145, no. 3, pp. 1144–1156, 2007. View at Publisher · View at Google Scholar · View at Scopus
  50. N. Doron and Z. Wollberg, “Cross-modal neuroplasticity in the blind mole rat Spalax ehrenbergi: a WGA-HRP tracing study,” NeuroReport, vol. 5, no. 18, pp. 2697–2701, 1994. View at Google Scholar · View at Scopus
  51. G. Bronchti, P. Heil, R. Sadka, A. Hess, H. Scheich, and Z. Wollberg, “Auditory activation of “visual” cortical areas in the blind mole rat (Spalax ehrenbergi),” European Journal of Neuroscience, vol. 16, no. 2, pp. 311–329, 2002. View at Publisher · View at Google Scholar · View at Scopus
  52. G. Bronchti, P. Heil, H. Scheich, and Z. Wollberg, “Auditory pathway and auditory activation of primary visual targets in the blind mole rat (Spalax ehrenbergi): I. 2-deoxyglucose study of subcortical centers,” Journal of Comparative Neurology, vol. 284, no. 2, pp. 253–274, 1989. View at Google Scholar · View at Scopus
  53. P. Heil, G. Bronchti, Z. Wollberg, and H. Scheich, “Invasion of visual cortex by the auditory system in the naturally blind mole rat,” NeuroReport, vol. 2, no. 12, pp. 735–738, 1991. View at Google Scholar · View at Scopus
  54. I. R. Kaiserman-Abramof, A. M. Graybiel, and W. J. Nauta, “The thalamic projection to cortical area 17 in a congenitally anophthalmic mouse strain,” Neuroscience, vol. 5, no. 1, pp. 41–52, 1980. View at Publisher · View at Google Scholar · View at Scopus
  55. C. Asanuma and B. B. Stanfield, “Induction of somatic sensory inputs to the lateral geniculate nucleus in congenitally blind mice and in phenotypically normal mice,” Neuroscience, vol. 39, no. 3, pp. 533–545, 1990. View at Publisher · View at Google Scholar · View at Scopus
  56. N. Chabot, V. Charbonneau, M. E. Laramée, R. Tremblay, D. Boire, and G. Bronchti, “Subcortical auditory input to the primary visual cortex in anophthalmic mice,” Neuroscience Letters, vol. 433, no. 2, pp. 129–134, 2008. View at Publisher · View at Google Scholar · View at Scopus
  57. M. Piche, S. Robert, D. Miceli, and G. Bronchti, “Environmental enrichment enhances auditory takeover of the occipital cortex in anophthalmic mice,” European Journal of Neuroscience, vol. 20, no. 12, pp. 3463–3472, 2004. View at Publisher · View at Google Scholar · View at Scopus
  58. D. M. Kahn and L. Krubitzer, “Retinofugal projections in the short-tailed opossum (Monodelphis domestica),” Journal of Comparative Neurology, vol. 447, no. 2, pp. 114–127, 2002. View at Publisher · View at Google Scholar · View at Scopus
  59. S. J. Karlen and L. Krubitzer, “Effects of bilateral enucleation on the size of visual and nonvisual areas of the brain,” Cerebral Cortex, vol. 19, no. 6, pp. 1360–1371, 2009. View at Publisher · View at Google Scholar · View at Scopus
  60. M. A. Kingsbury, N. A. Lettman, and B. L. Finlay, “Reduction of early thalamic input alters adult corticocortical connectivity,” Developmental Brain Research, vol. 138, no. 1, pp. 35–43, 2002. View at Publisher · View at Google Scholar · View at Scopus
  61. L. Negyessy, V. Gál, T. Farkas, and J. Toldi, “Cross-modal plasticity of the corticothalamic circuits in rats enucleated on the first postnatal day,” European Journal of Neuroscience, vol. 12, no. 5, pp. 1654–1668, 2000. View at Publisher · View at Google Scholar · View at Scopus
  62. K. S. Rockland and H. Ojima, “Multisensory convergence in calcarine visual areas in macaque monkey,” International Journal of Psychophysiology, vol. 50, no. 1-2, pp. 19–26, 2003. View at Publisher · View at Google Scholar · View at Scopus
  63. G. M. Imnocentri, P. Berbel, and S. Clarke, “Development of projections from auditory to visual areas in the cat,” Journal of Comparative Neurology, vol. 272, no. 2, pp. 242–259, 1988. View at Google Scholar · View at Scopus
  64. S. Clavagnier, A. Falchier, and H. Kennedy, “Long-distance feedback projections to area V1: implications for multisensory integration, spatial awareness, and visual consciousness,” Cognitive, Affective and Behavioral Neuroscience, vol. 4, no. 2, pp. 117–126, 2004. View at Google Scholar · View at Scopus
  65. A. Falchier, S. Clavagnier, P. Barone, and H. Kennedy, “Anatomical evidence of multimodal integration in primate striate cortex,” Journal of Neuroscience, vol. 22, no. 13, pp. 5749–5759, 2002. View at Google Scholar · View at Scopus
  66. A. J. Hall and S. G. Lomber, “Auditory cortex projections target the peripheral field representation of primary visual cortex,” Experimental Brain Research, vol. 190, no. 4, pp. 413–430, 2008. View at Publisher · View at Google Scholar · View at Scopus
  67. E. Vaudano, C. R. Legg, and M. Glickstein, “Afferent and efferent connections of temporal association cortex in the rat: a horseradish peroxidase study,” European Journal of Neuroscience, vol. 3, no. 4, pp. 317–330, 1991. View at Google Scholar · View at Scopus
  68. E. Budinger, P. Heil, A. Hess, and H. Scheich, “Multisensory processing via early cortical stages: connections of the primary auditory cortical field with other sensory systems,” Neuroscience, vol. 143, no. 4, pp. 1065–1083, 2006. View at Publisher · View at Google Scholar · View at Scopus
  69. J. K. Bizley, F. R. Nodal, V. M. Bajo, I. Nelken, and A. J. King, “Physiological and anatomical evidence for multisensory interactions in auditory cortex,” Cerebral Cortex, vol. 17, no. 9, pp. 2172–2189, 2007. View at Publisher · View at Google Scholar · View at Scopus
  70. M. E. Laramee, T. Kurotani, K. S. Rockland, G. Bronchti, and D. Boire, “Indirect pathway between the primary auditory and visual cortices through layer V pyramidal neurons in V2L in mouse and the effects of bilateral enucleation,” European Journal of Neuroscience, vol. 34, no. 1, pp. 65–78, 2011. View at Publisher · View at Google Scholar · View at Scopus
  71. G. E. Schneider, “Early lesions of superior colliculus: factors affecting the formation of abnormal retinal projections,” Brain, Behavior and Evolution, vol. 8, no. 1-2, pp. 73–109, 1973. View at Google Scholar · View at Scopus
  72. B. J. Crain and W. C. Hall, “The normal organization of the lateral posterior nucleusin the golden hamster and its reorganization after neonatal superior colliculus lesions,” Behavioural Brain Research, vol. 3, no. 2, pp. 223–238, 1981. View at Google Scholar · View at Scopus
  73. C. Ling, S. Jhaveri, and G. E. Schneider, “Target- as well as source-derived factors direct the morphogenesis of anomalous retino-thalamic projections,” Journal of Comparative Neurology, vol. 388, no. 3, pp. 454–466, 1997. View at Publisher · View at Google Scholar
  74. M. Sur, P. E. Garraghty, and A. W. Roe, “Experimentally induced visual projections into auditory thalamus and cortex,” Science, vol. 242, no. 4884, pp. 1437–1441, 1988. View at Google Scholar · View at Scopus
  75. D. O. Frost, “Orderly anomalous retinal projections to the medial geniculate, ventrobasal, and lateral posterior nuclei of the hamster,” Journal of Comparative Neurology, vol. 203, no. 2, pp. 227–256, 1981. View at Google Scholar · View at Scopus
  76. D. O. Frost, “Anomalous visual connections to somatosensory and auditory systems following brain lesions in early life,” Brain Research, vol. 255, no. 4, pp. 627–635, 1982. View at Google Scholar · View at Scopus
  77. D. O. Frost, “Axonal growth and target selection during development: retinal projections to the ventrobasal complex and other “nonvisual” structures in neonatal syrian hamsters,” Journal of Comparative Neurology, vol. 230, no. 4, pp. 576–592, 1984. View at Google Scholar · View at Scopus
  78. D. O. Frost, “Development of anomalous retinal projections to nonvisual thalamic nuclei in syrian hamsters: a quantitative study,” Journal of Comparative Neurology, vol. 252, no. 1, pp. 95–105, 1986. View at Google Scholar · View at Scopus
  79. P. G. Bhide and D. O. Frost, “Axon substitution in the reorganization of developing neural connections,” Proceedings of the National Academy of Sciences of the United States of America, vol. 89, no. 24, pp. 11847–11851, 1992. View at Publisher · View at Google Scholar · View at Scopus
  80. P. G. Bhide and D. O. Frost, “Intrinsic determinants of retinal axon collateralization and arborization patterns,” Journal of Comparative Neurology, vol. 411, no. 1, pp. 119–129, 1999. View at Publisher · View at Google Scholar
  81. G. Campbell and D. O. Frost, “Target-controlled differentiation of axon terminals and synaptic organization,” Proceedings of the National Academy of Sciences of the United States of America, vol. 84, no. 19, pp. 6929–6933, 1987. View at Google Scholar · View at Scopus
  82. G. Campbell and D. O. Frost, “Synaptic organization of anomalous retinal projections to the somatosensory and auditory thalamus: target-controlled morphogenesis of axon terminals and synaptic glomeruli,” Journal of Comparative Neurology, vol. 272, no. 3, pp. 383–408, 1988. View at Google Scholar · View at Scopus
  83. C. Metin and D. O. Frost, “Visual responses of neurons in somatosensory cortex of hamsters with experimentally induced retinal projections to somatosensory thalamus,” Proceedings of the National Academy of Sciences of the United States of America, vol. 86, no. 1, pp. 357–361, 1989. View at Google Scholar · View at Scopus
  84. D. O. Frost, “Functional organization of surgically created visual circuits,” Restorative Neurology and Neuroscience, vol. 15, no. 2-3, pp. 107–113, 1999. View at Google Scholar · View at Scopus
  85. S. L. Pallas, J. Hahm, and M. Sur, “Morphology of retinal axons induced to arborize in a novel target, the medial geniculate nucleus. I. Comparison with arbors in normal targets,” Journal of Comparative Neurology, vol. 349, no. 3, pp. 343–362, 1994. View at Publisher · View at Google Scholar · View at Scopus
  86. S. L. Pallas and M. Sur, “Morphology of retinal axon arbors induced to arborize in a novel target, the medial geniculate nucleus. II. Comparison with axons from the inferior colliculus,” Journal of Comparative Neurology, vol. 349, no. 3, pp. 363–376, 1994. View at Publisher · View at Google Scholar · View at Scopus
  87. A. Angelucci, F. Clascá, E. Bricolo, K. S. Cramer, and M. Sur, “Experimentally induced retinal projections to the ferret auditory thalamus: development of clustered eye-specific patterns in a novel target,” Journal of Neuroscience, vol. 17, no. 6, pp. 2040–2055, 1997. View at Google Scholar · View at Scopus
  88. A. W. Roe, P. E. Garraghty, M. Esguerra, and M. Sur, “Experimentally induced visual projections to the auditory thalamus in ferrets: evidence for a W cell pathway,” Journal of Comparative Neurology, vol. 334, no. 2, pp. 263–280, 1993. View at Google Scholar · View at Scopus
  89. S. L. Pallas, A. W. Roe, and M. Sur, “Visual projections induced into the auditory pathway of ferrets. I. Novel inputs to primary auditory cortex (AI) from the LP/pulvinar comples and the topography of the MGN-AI projection,” Journal of Comparative Neurology, vol. 298, no. 1, pp. 50–68, 1990. View at Publisher · View at Google Scholar · View at Scopus
  90. S. L. Pallas and M. Sur, “Visual projections induced into the auditory pathway of ferrets: II. Corticocortical connections of primary auditory cortex,” Journal of Comparative Neurology, vol. 337, no. 2, pp. 317–333, 1993. View at Publisher · View at Google Scholar · View at Scopus
  91. W. J. Gao and S. L. Pallas, “Cross-modal reorganization of horizontal connectivity in auditory cortex without altering thalamocortical projections,” Journal of Neuroscience, vol. 19, no. 18, pp. 7940–7950, 1999. View at Google Scholar · View at Scopus
  92. S. L. Pallas, T. Littman, and D. R. Moore, “Cross-modal reorganization of callosal connectivity without altering thalamocortical projections,” Proceedings of the National Academy of Sciences of the United States of America, vol. 96, no. 15, pp. 8751–8756, 1999. View at Publisher · View at Google Scholar · View at Scopus
  93. D. O. Frost, “Sensory processing by novel, experimentally induced cross-modal circuits,” Annals of the New York Academy of Sciences, vol. 608, pp. 92–109, 1990, discussion 109–112. View at Google Scholar
  94. D. O. Frost and C. Metin, “Induction of functional retinal projections to the somatosensory system,” Nature, vol. 317, no. 6033, pp. 162–164, 1985. View at Google Scholar · View at Scopus
  95. M. Ptito, J. F. Giguère, D. Boire, D. O. Frost, and C. Casanova, “When the auditory cortex turns visual,” Progress in Brain Research, vol. 134, pp. 447–458, 2001. View at Publisher · View at Google Scholar · View at Scopus
  96. A. W. Roe, S. L. Pallas, J. O. Hahm, and M. Sur, “A map of visual space induced in primary auditory cortex,” Science, vol. 250, no. 4982, pp. 818–820, 1990. View at Google Scholar · View at Scopus
  97. A. W. Roe, S. L. Pallas, Y. H. Kwon, and M. Sur, “Visual projections routed to the auditory pathway in ferrets: receptive fields of visual neurons in primary auditory cortex,” Journal of Neuroscience, vol. 12, no. 9, pp. 3651–3664, 1992. View at Google Scholar · View at Scopus
  98. J. Sharma, A. Angelucci, and M. Sur, “Induction of visual orientation modules in auditory cortex,” Nature, vol. 404, no. 6780, pp. 841–847, 2000. View at Publisher · View at Google Scholar · View at Scopus
  99. M. Sur, A. Angelucci, and J. Sharma, “Rewiring cortex: the role of patterned activity in development and plasticity of neocortical circuits,” Journal of Neurobiology, vol. 41, no. 1, pp. 33–43, 1999. View at Publisher · View at Google Scholar
  100. M. Sur and C. A. Leamey, “Development and plasticity of cortical areas and networks,” Nature Reviews Neuroscience, vol. 2, no. 4, pp. 251–262, 2001. View at Publisher · View at Google Scholar · View at Scopus
  101. S. H. Horng and M. Sur, “Visual activity and cortical rewiring: activity-dependent plasticity of cortical networks,” Progress in Brain Research, vol. 157, pp. 3–11, 2006. View at Publisher · View at Google Scholar · View at Scopus
  102. A. W. Lyckman and M. Sur, “Role of afferent activity in the development of cortical specification,” Results and Problems in Cell Differentiation, vol. 39, pp. 139–156, 2002. View at Google Scholar · View at Scopus
  103. D. O. Frost, D. Boire, G. Gingras, and M. Ptito, “Surgically created neural pathways mediate visual pattern discrimination,” Proceedings of the National Academy of Sciences of the United States of America, vol. 97, no. 20, pp. 11068–11073, 2000. View at Google Scholar · View at Scopus
  104. L. von Melchner, S. L. Pallas, and M. Sur, “Visual behaviour mediated by retinal projections directed to the auditory pathway,” Nature, vol. 404, no. 6780, pp. 871–876, 2000. View at Publisher · View at Google Scholar · View at Scopus
  105. S. L. Pallas, “Cross-modal plasticity as a tool for understanding the ontogeny and phylogeny of cerebral cortex,” in Cortical Areas: Unity and Diversity, A. Schuz and R. Miller, Eds., pp. 245–271, Taylor and Francis, New York, NY, USA, 2002. View at Google Scholar
  106. S. L. Pallas, M. Xu, and K. A. Razak, “Influence of thalamocortical activity on sensory cortical development and plasticity,” in Development and Plasticity in Sensory Thalamus and Cortex, R. Erzurumlu, W. Guido, and Z. Molnar, Eds., pp. 121–137, Springer, Singapore, 2006. View at Google Scholar
  107. M. C. Fishman and C. R. Michael, “Integration of auditory information in the cat's visual cortex,” Vision Research, vol. 13, no. 8, pp. 1415–1419, 1973. View at Publisher · View at Google Scholar · View at Scopus
  108. M. T. Wallace, R. Ramachandran, and B. E. Stein, “A revised view of sensory cortical parcellation,” Proceedings of the National Academy of Sciences of the United States of America, vol. 101, no. 7, pp. 2167–2172, 2004. View at Publisher · View at Google Scholar · View at Scopus
  109. M. Brosch, E. Selezneva, and H. Scheich, “Nonauditory events of a behavioral procedure activate auditory cortex of highly trained monkeys,” Journal of Neuroscience, vol. 25, no. 29, pp. 6797–6806, 2005. View at Publisher · View at Google Scholar · View at Scopus
  110. A. A. Ghazanfar and C. E. Schroeder, “Is neocortex essentially multisensory?” Trends in Cognitive Sciences, vol. 10, no. 6, pp. 278–285, 2006. View at Publisher · View at Google Scholar · View at Scopus
  111. C. Kayser and N. K. Logothetis, “Do early sensory cortices integrate cross-modal information?” Brain Structure and Function, vol. 212, no. 2, pp. 121–132, 2007. View at Publisher · View at Google Scholar · View at Scopus
  112. G. A. Ascoli, L. Alonso-Nanclares, S. A. Anderson et al., “Petilla terminology: nomenclature of features of GABAergic interneurons of the cerebral cortex,” Nature Reviews Neuroscience, vol. 9, no. 7, pp. 557–568, 2008. View at Publisher · View at Google Scholar
  113. H. Markram, M. Toledo-Rodriguez, Y. Wang, A. Gupta, G. Silberberg, and C. Wu, “Interneurons of the neocortical inhibitory system,” Nature Reviews Neuroscience, vol. 5, no. 10, pp. 793–807, 2004. View at Publisher · View at Google Scholar · View at Scopus
  114. W. Kilb, “Development of the GABAergic system from birth toadolescence,” submitted to Neuroscientist.
  115. R. Druga, “Neocortical inhibitory system,” Folia Biologica, vol. 55, no. 6, pp. 201–217, 2009. View at Google Scholar · View at Scopus
  116. G. Di Cristo, “Development of cortical GABAergic circuits and its implications for neurodevelopmental disorders,” Clinical Genetics, vol. 72, no. 1, pp. 1–8, 2007. View at Publisher · View at Google Scholar · View at Scopus
  117. J. DeFelipe, G. N. Elston, I. Fujita et al., “Neocortical circuits: evolutionary aspects and specificity versus non-specificity of synaptic connections. Remarks, main conclusions and general comments and discussion,” Journal of Neurocytology, vol. 31, no. 3–5, pp. 387–416, 2002. View at Publisher · View at Google Scholar · View at Scopus
  118. P. R. Hof, I. I. Glezer, E. A. Nimchinsky, and J. M. Erwin, “Neurochemical and cellular specializations in the mammalian neocortex reflect phylogenetic relationships: evidence from primates, cetaceans, and artiodactyls,” Brain, Behavior and Evolution, vol. 55, no. 6, pp. 300–310, 2000. View at Google Scholar · View at Scopus
  119. J. DeFelipe, “Cortical interneurons: from Cajal to 2001,” Progress in Brain Research, vol. 136, pp. 215–238, 2002. View at Publisher · View at Google Scholar · View at Scopus
  120. P. R. Moult, “Neuronal glutamate and GABAA receptor function in health and disease,” Biochemical Society Transactions, vol. 37, part 6, pp. 1317–1322, 2009. View at Publisher · View at Google Scholar · View at Scopus
  121. E. Rossignol, “Genetics and function of neocortical GABAergic interneurons in neurodevelopmental disorders,” Neural Plasticity, vol. 2011, Article ID 649325, 2011. View at Publisher · View at Google Scholar
  122. J. T. Porter, C. K. Johnson, and A. Agmon, “Diverse types of interneurons generate thalamus-evoked feedforward inhibition in the mouse barrel cortex,” Journal of Neuroscience, vol. 21, no. 8, pp. 2699–2710, 2001. View at Google Scholar · View at Scopus
  123. J. F. Staiger, K. Zilles, and T. F. Freund, “Distribution of GABAergic elements ppstsynaptic to ventroposteromedial thalamic projections in layer IV of rat barrel cortex,” European Journal of Neuroscience, vol. 8, no. 11, pp. 2273–2285, 1996. View at Google Scholar · View at Scopus
  124. M. Beierlein, J. R. Gibson, and B. W. Connors, “Two dynamically distinct inhibitory networks in layer 4 of the neocortex,” Journal of Neurophysiology, vol. 90, no. 5, pp. 2987–3000, 2003. View at Publisher · View at Google Scholar · View at Scopus
  125. H. A. Swadlow and A. G. Gusev, “Receptive-field construction in cortical inhibitory interneurons,” Nature Neuroscience, vol. 5, no. 5, pp. 403–404, 2002. View at Publisher · View at Google Scholar · View at Scopus
  126. T. K. Hensch, M. Fagiolini, N. Mataga, M. P. Stryker, S. Baekkeskov, and S. F. Kash, “Local GABA circuit control of experience-dependent plasticity in developing visual cortex,” Science, vol. 282, no. 5393, pp. 1504–1508, 1998. View at Google Scholar · View at Scopus
  127. R. Mao, J. Schummers, U. Knoblich et al., “Influence of a subtype of inhibitory interneuron on stimulus-specific responses in visual cortex,” Cerebral Cortex, vol. 22, no. 3, pp. 493–508, 2012. View at Publisher · View at Google Scholar
  128. J. A. Heimel, D. van Versendaal, and C. N. Levelt, “The role of GABAergic inhibition in ocular dominance plasticity,” Neural Plasticity, vol. 2011, Article ID 391763, 2011. View at Publisher · View at Google Scholar
  129. T. K. Hensch, “Critical period plasticity in local cortical circuits,” Nature Reviews Neuroscience, vol. 6, no. 11, pp. 877–888, 2005. View at Publisher · View at Google Scholar · View at Scopus
  130. L. A. Benevento, B. W. Bakkum, and R. S. Cohen, “Gamma-aminobutyric acid and somatostatin immunoreactivity in the visual cortex of normal and dark-reared rats,” Brain Research, vol. 689, no. 2, pp. 172–182, 1995. View at Publisher · View at Google Scholar · View at Scopus
  131. J. M. Blasco-Ibanez, F. J. Martinez-Guijarro, and C. Lopez-Garcia, “Changes in GABA and parvalbumin immunoreactivities in the cerebral cortex of lizards after narine occlusion,” Brain Research, vol. 652, no. 2, pp. 334–340, 1994. View at Publisher · View at Google Scholar · View at Scopus
  132. S. Chaudhury, T. C. Nag, and S. Wadhwa, “Prenatal acoustic stimulation influences neuronal size and the expression of calcium-binding proteins (calbindin D-28K and parvalbumin) in chick hippocampus,” Journal of Chemical Neuroanatomy, vol. 32, no. 2–4, pp. 117–126, 2006. View at Publisher · View at Google Scholar · View at Scopus
  133. S. Chaudhury, T. C. Nag, and S. Wadhwa, “Calbindin D-28K and parvalbumin expression in embryonic chick hippocampus is enhanced by prenatal auditory stimulation,” Brain Research, vol. 1191, pp. 96–106, 2008. View at Publisher · View at Google Scholar · View at Scopus
  134. Y. Jiao, C. Zhang, Y. Yanagawa, and Q. Q. Sun, “Major effects of sensory experiences on the neocortical inhibitory circuits,” Journal of Neuroscience, vol. 26, no. 34, pp. 8691–8701, 2006. View at Publisher · View at Google Scholar · View at Scopus
  135. B. D. Philpot, J. H. Lim, and P. C. Brunjes, “Activity-dependent regulation of calcium-binding proteins in the developing rat olfactory bulb,” Journal of Comparative Neurology, vol. 387, no. 1, pp. 12–26, 1997. View at Publisher · View at Google Scholar
  136. E. de Villers-Sidani, K. L. Simpson, Y. F. Lu, R. C. S. Lin, and M. M. Merzenich, “Manipulating critical period closure across different sectors of the primary auditory cortex,” Nature Neuroscience, vol. 11, no. 8, pp. 957–965, 2008. View at Publisher · View at Google Scholar · View at Scopus
  137. M. V. Barbado, J. G. Brión, E. Weruaga et al., “Changes in immunoreactivity to calcium-binding proteins in the anterior olfactory nucleus of the rat after neonatal olfactory deprivation,” Experimental Neurology, vol. 177, no. 1, pp. 133–150, 2002. View at Publisher · View at Google Scholar · View at Scopus
  138. Y. Jiao, Z. Zhang, C. Zhang et al., “A key mechanism underlying sensory experience-dependent maturation of neocortical GABAergic circuits in vivo,” Proceedings of the National Academy of Sciences of the United States of America, vol. 108, no. 29, pp. 12131–12136, 2011. View at Publisher · View at Google Scholar · View at Scopus
  139. S. Alcantara, E. Soriano, and I. Ferrer, “Thalamic and basal forebrain afferents modulate the development of parvalbumin and calbindin D28k immunoreactivity in the barrel cortex of the rat,” European Journal of Neuroscience, vol. 8, no. 7, pp. 1522–1534, 1996. View at Publisher · View at Google Scholar · View at Scopus
  140. I. Blumcke, E. Weruaga, S. Kasas, A. E. Hendrickson, and M. R. Celio, “Discrete reduction patterns of parvalbumin and calbindin D-28k immunoreactivity in the dorsal lateral geniculate nucleus and the striate cortex of adult macaque monkeys after monocular enucleation,” Visual Neuroscience, vol. 11, no. 1, pp. 1–11, 1994. View at Google Scholar · View at Scopus
  141. R. K. Carder, S. S. Leclerc, and S. H. Hendry, “Regulation of calcium-binding protein immunoreactivity in GABA neurons of macaque primary visual cortex,” Cerebral Cortex, vol. 6, no. 2, pp. 271–287, 1996. View at Publisher · View at Google Scholar · View at Scopus
  142. A. Cellerino, R. Siciliano, L. Domenici, and L. Maffei, “Parvalbumin immunoreactivity: a reliable marker for the effects of monocular deprivation in the rat visual cortex,” Neuroscience, vol. 51, no. 4, pp. 749–753, 1992. View at Publisher · View at Google Scholar · View at Scopus
  143. E. P. Botelho, J. Guimarães Martins Soares, S. da Silva Pereira, M. Fiorani, and R. Gattass, “Distribution of calbindin-28kD and parvalbumin in V1 in normal adult Cebus apella monkeys and in monkeys with retinal lesions,” Brain Research, vol. 1117, no. 1, pp. 1–11, 2006. View at Publisher · View at Google Scholar · View at Scopus
  144. D. Tropea, G. Kreiman, A. Lyckman et al., “Gene expression changes and molecular pathways mediating activity-dependent plasticity in visual cortex,” Nature Neuroscience, vol. 9, no. 5, pp. 660–668, 2006. View at Publisher · View at Google Scholar · View at Scopus
  145. M. V. Sanchez-Vives, L. G. Nowak, V. F. Descalzo, J. V. Garcia-Velasco, R. Gallego, and P. Berbel, “Crossmodal audio-visual interactions in the primary visual cortex of the visually deprived cat: a physiological and anatomical study,” Progress in Brain Research, vol. 155, pp. 287–311, 2006. View at Publisher · View at Google Scholar · View at Scopus
  146. E. G. Jones, “GABAergic neurons and their role in cortical plasticity in primates,” Cerebral Cortex, vol. 3, no. 5, pp. 361–372, 1993. View at Google Scholar · View at Scopus
  147. N. Berardi, L. Domenici, V. Parisi, T. Pizzorusso, A. Cellerino, and L. Maffei, “Monocular deprivation effects in the rat visual cortex and lateral geniculate nucleus are prevented by nerve growth factor (NGF): I. Visual cortex,” Proceedings of the Royal Society B, vol. 251, no. 1330, pp. 17–23, 1993. View at Google Scholar · View at Scopus
  148. M. Mainardi, S. Landi, N. Berardi, L. Maffei, and T. Pizzorusso, “Reduced responsiveness to long-term monocular deprivation of parvalbumin neurons assessed by c-Fos staining in rat visual cortex,” PLoS ONE, vol. 4, no. 2, Article ID e4342, 2009. View at Publisher · View at Google Scholar · View at Scopus
  149. Y. Goldshmit, S. Galley, D. Foo, E. Sernagor, and J. A. Bourne, “Anatomical changes in the primary visual cortex of the congenitally blind Crx- / - mouse,” Neuroscience, vol. 166, no. 3, pp. 886–898, 2010. View at Publisher · View at Google Scholar · View at Scopus
  150. M. Fagiolini and T. K. Hensch, “Inhibitory threshold for critical-period activation in primary visual cortex,” Nature, vol. 404, no. 6774, pp. 183–186, 2000. View at Publisher · View at Google Scholar · View at Scopus
  151. T. K. Hensch, “Critical period mechanisms in developing visual cortex,” Current Topics in Developmental Biology, vol. 69, pp. 215–237, 2005. View at Publisher · View at Google Scholar · View at Scopus
  152. T. K. Hensch and M. Fagiolini, “Excitatory-inhibitory balance and critical period plasticity in developing visual cortex,” Progress in Brain Research, vol. 147, pp. 115–124, 2005. View at Publisher · View at Google Scholar · View at Scopus
  153. Z. J. Huang, A. Kirkwood, T. Pizzorusso et al., “BDNF regulates the maturation of inhibition and the critical period of plasticity in mouse visual cortex,” Cell, vol. 98, no. 6, pp. 739–755, 1999. View at Publisher · View at Google Scholar · View at Scopus
  154. Y. Iwai, M. Fagiolini, K. Obata, and T. K. Hensch, “Rapid critical period induction by tonic inhibition in visual cortex,” Journal of Neuroscience, vol. 23, no. 17, pp. 6695–6702, 2003. View at Google Scholar · View at Scopus
  155. M. Fagiolini, J. M. Fritschy, K. Löw, H. Möhler, U. Rudolph, and T. K. Hensch, “Specific GABAA circuits for visual cortical plasticity,” Science, vol. 303, no. 5664, pp. 1681–1683, 2004. View at Publisher · View at Google Scholar · View at Scopus
  156. H. Katagiri, M. Fagiolini, and T. K. Hensch, “Optimization of somatic inhibition at critical period onset in mouse visual cortex,” Neuron, vol. 53, no. 6, pp. 805–812, 2007. View at Publisher · View at Google Scholar · View at Scopus
  157. J. L. Hanover, Z. J. Huang, S. Tonegawa, and M. P. Stryker, “Brain-derived neurotrophic factor overexpression induces precocious critical period in mouse visual cortex,” The Journal of Neuroscience, vol. 19, no. 22, article RC40, 1999. View at Google Scholar · View at Scopus
  158. L. Gianfranceschi, R. Siciliano, J. Walls et al., “Visual cortex is rescued from the effects of dark rearing by overexpression of BDNF,” Proceedings of the National Academy of Sciences of the United States of America, vol. 100, no. 21, pp. 12486–12491, 2003. View at Publisher · View at Google Scholar · View at Scopus
  159. Y. Hata, T. Tsumoto, and M. P. Stryker, “Selective pruning of more active afferents when cat visual cortex is pharmacologically inhibited,” Neuron, vol. 22, no. 2, pp. 375–381, 1999. View at Google Scholar · View at Scopus
  160. H. O. Reiter and M. P. Stryker, “Neural plasticity without postsynaptic action potentials: less-active inputs become dominant when kitten visual cortical cells are pharmacologically inhibited,” Proceedings of the National Academy of Sciences of the United States of America, vol. 85, no. 10, pp. 3623–3627, 1988. View at Google Scholar · View at Scopus
  161. T. K. Hensch and M. P. Stryker, “Columnar architecture sculpted by GABA circuits developing cat visual cortex,” Science, vol. 303, no. 5664, pp. 1678–1681, 2004. View at Publisher · View at Google Scholar · View at Scopus
  162. J. F. M. Vetencourt, M. Vetencourt, A. Sale et al., “The antidepressant fluoxetine restores plasticity in the adult visual cortex,” Science, vol. 320, no. 5874, pp. 385–388, 2008. View at Google Scholar
  163. A. Harauzov, M. Spolidoro, G. DiCristo et al., “Reducing intracortical inhibition in the adult visual cortex promotes ocular dominance plasticity,” Journal of Neuroscience, vol. 30, no. 1, pp. 361–371, 2010. View at Publisher · View at Google Scholar · View at Scopus
  164. A. Sale, J. F. Maya Vetencourt, P. Medini et al., “Environmental enrichment in adulthood promotes amblyopia recovery through a reduction of intracortical inhibition,” Nature Neuroscience, vol. 10, no. 6, pp. 679–681, 2007. View at Publisher · View at Google Scholar · View at Scopus
  165. A. Maffei, M. E. Lambo, and G. G. Turrigiano, “Critical period for inhibitory plasticity in rodent binocular V1,” Journal of Neuroscience, vol. 30, no. 9, pp. 3304–3309, 2010. View at Publisher · View at Google Scholar · View at Scopus
  166. A. Maffei and G. G. Turrigiano, “Multiple modes of network homeostasis in visual cortical layer 2/3,” Journal of Neuroscience, vol. 28, no. 17, pp. 4377–4384, 2008. View at Publisher · View at Google Scholar · View at Scopus
  167. A. Maffei and G. Turrigiano, “The age of plasticity: developmental regulation of synaptic plasticity in neocortical microcircuits,” Progress in Brain Research, vol. 169, pp. 211–223, 2008. View at Publisher · View at Google Scholar · View at Scopus
  168. A. Maffei, K. Nataraj, S. B. Nelson, and G. G. Turrigiano, “Potentiation of cortical inhibition by visual deprivation,” Nature, vol. 443, no. 7107, pp. 81–84, 2006. View at Publisher · View at Google Scholar · View at Scopus
  169. A. Maffei, S. B. Nelson, and G. G. Turrigiano, “Selective reconfiguration of layer 4 visual cortical circuitry by visual deprivation,” Nature Neuroscience, vol. 7, no. 12, pp. 1353–1359, 2004. View at Publisher · View at Google Scholar · View at Scopus
  170. M. S. Lazarus and Z. J. Huang, “Distinct maturation profiles of perisomatic and dendritic targeting GABAergic interneurons in the mouse primary visual cortex during the critical period of ocular dominance plasticity,” Journal of Neurophysiology, vol. 106, no. 2, pp. 775–787, 2011. View at Publisher · View at Google Scholar
  171. C. E. Ribak and R. T. Robertson, “Effects of neonatal monocular enucleation on the number of GAD-positive puncta in rat visual cortex,” Experimental Brain Research, vol. 62, no. 1, pp. 203–206, 1986. View at Google Scholar · View at Scopus
  172. K. D. Micheva and C. Beaulieu, “Development and plasticity of the inhibitory neocortical circuitry with an emphasis on the rodent barrel field cortex: a review,” Canadian Journal of Physiology and Pharmacology, vol. 75, no. 5, pp. 470–478, 1997. View at Publisher · View at Google Scholar · View at Scopus
  173. G. W. Knott, C. Quairiaux, C. Genoud, and E. Welker, “Formation of dendritic spines with GABAergic synapses induced by whisker stimulation in adult mice,” Neuron, vol. 34, no. 2, pp. 265–273, 2002. View at Publisher · View at Google Scholar · View at Scopus
  174. S. H. Hendry and E. G. Jones, “Reduction in numbers of immunostained GABAergic neurones in deprived-eye dominance columns of monkey area 17,” Nature, vol. 320, no. 6064, pp. 750–753, 1986. View at Google Scholar · View at Scopus
  175. S. H. Hendry and E. G. Jones, “Activity-dependent regulation of GABA expression in the visual cortex of adult monkeys,” Neuron, vol. 1, no. 8, pp. 701–712, 1988. View at Google Scholar · View at Scopus
  176. S. H. Hendry and K. L. Miller, “Selective expression and rapid regulation of GABAA receptor subunits in geniculocortical neurons of macaque dorsal lateral geniculate nucleus,” Visual Neuroscience, vol. 13, no. 2, pp. 223–235, 1996. View at Google Scholar · View at Scopus
  177. B. Morales, S. Y. Choi, and A. Kirkwood, “Dark rearing alters the development of GABAergic transmission in visual cortex,” Journal of Neuroscience, vol. 22, no. 18, pp. 8084–8090, 2002. View at Google Scholar · View at Scopus
  178. B. Chattopadhyaya, G. Di Cristo, H. Higashiyama et al., “Experience and activity-dependent maturation of perisomatic GABAergic innervation in primary visual cortex during a postnatal critical period,” Journal of Neuroscience, vol. 24, no. 43, pp. 9598–9611, 2004. View at Publisher · View at Google Scholar · View at Scopus
  179. Q. Q. Sun, “The missing piece in the “use it or lose it” puzzle: is inhibition regulated by activity or does it act on its own accord?” Reviews in the Neurosciences, vol. 18, no. 3-4, pp. 295–310, 2007. View at Google Scholar · View at Scopus
  180. G. Di Cristo, B. Chattopadhyaya, S. J. Kuhlman et al., “Activity-dependent PSA expression regulates inhibitory maturation and onset of critical period plasticity,” Nature Neuroscience, vol. 10, no. 12, pp. 1569–1577, 2007. View at Publisher · View at Google Scholar · View at Scopus
  181. B. Chattopadhyaya, “Molecular mechanisms underlying activity-dependent GABAergic synapse development and plasticity and its implications for neurodevelopmental disorders,” Neural Plasticity, vol. 2011, Article ID 734231, 2011. View at Publisher · View at Google Scholar
  182. Z. J. Huang, “Activity-dependent development of inhibitory synapses and innervation pattern: role of GABA signalling and beyond,” Journal of Physiology, vol. 587, part 9, pp. 1881–1888, 2009. View at Publisher · View at Google Scholar · View at Scopus
  183. Z. J. Huang, G. Di Cristo, and F. Ango, “Development of GABA innervation in the cerebral and cerebellar cortices,” Nature Reviews Neuroscience, vol. 8, no. 9, pp. 673–686, 2007. View at Publisher · View at Google Scholar · View at Scopus
  184. T. Pizzorusso, P. Medini, S. Landi, S. Baldini, N. Berardi, and L. Maffei, “Structural and functional recovery from early monocular deprivation in adult rats,” Proceedings of the National Academy of Sciences of the United States of America, vol. 103, no. 22, pp. 8517–8522, 2006. View at Publisher · View at Google Scholar · View at Scopus
  185. S. Sugiyama, A. Prochiantz, and T. K. Hensch, “From brain formation to plasticity: insights on Otx2 homeoprotein,” Development Growth and Differentiation, vol. 51, no. 3, pp. 369–377, 2009. View at Publisher · View at Google Scholar · View at Scopus
  186. S. Desgent, D. Boire, and M. Ptito, “Distribution of calcium binding proteins in visual and auditory cortices of hamsters,” Experimental Brain Research, vol. 163, no. 2, pp. 159–172, 2005. View at Publisher · View at Google Scholar · View at Scopus
  187. R. W. Guillery, “Anatomical evidence concerning the role of the thalamus in corticocortical communication: a brief review,” Journal of Anatomy, vol. 187, part 3, pp. 583–592, 1995. View at Google Scholar · View at Scopus
  188. R. W. Guillery and S. M. Sherman, “Thalamic relay functions and their role in corticocortical communication: generalizations from the visual system,” Neuron, vol. 33, no. 2, pp. 163–175, 2002. View at Publisher · View at Google Scholar · View at Scopus
  189. O. Caillard, H. Moreno, B. Schwaller, I. Llano, M. R. Celio, and A. Marty, “Role of the calcium-binding protein parvalbumin in short-term synaptic plasticity,” Proceedings of the National Academy of Sciences of the United States of America, vol. 97, no. 24, pp. 13372–13377, 2000. View at Publisher · View at Google Scholar · View at Scopus
  190. S. Patz, J. Grabert, T. Gorba, M. J. Wirth, and P. Wahle, “Parvalbumin expression in visual cortical interneurons depends on neuronal activity and TrkB ligands during an early period of postnatal development,” Cerebral Cortex, vol. 14, no. 3, pp. 342–351, 2004. View at Publisher · View at Google Scholar · View at Scopus
  191. M. Vreugdenhil, J. G. R. Jefferys, M. R. Celio, and B. Schwaller, “Parvalbumin-deficiency facilitates repetitive IPSCs and gamma oscillations in the hippocampus,” Journal of Neurophysiology, vol. 89, no. 3, pp. 1414–1422, 2003. View at Publisher · View at Google Scholar · View at Scopus
  192. T. K. Hensch, “Recovery in the blink of an eye,” Neuron, vol. 48, no. 2, pp. 166–168, 2005. View at Publisher · View at Google Scholar · View at Scopus
  193. Z. J. Huang and G. Di Cristo, “Time to change: retina sends a messenger to promote plasticity in visual cortex,” Neuron, vol. 59, no. 3, pp. 355–358, 2008. View at Publisher · View at Google Scholar · View at Scopus