Table of Contents Author Guidelines Submit a Manuscript
Neural Plasticity
Volume 2012 (2012), Article ID 838672, 10 pages
http://dx.doi.org/10.1155/2012/838672
Review Article

The Corpus Callosum and the Visual Cortex: Plasticity Is a Game for Two

1Laboratory of Neurobiology, Scuola Normale Superiore, Piazza dei Cavalieri 7, 56100 Pisa, Italy
2CNR Neuroscience Institute, Via G. Moruzzi 1, 56124 Pisa, Italy

Received 16 December 2011; Accepted 19 April 2012

Academic Editor: Steve Lomber

Copyright © 2012 Marta Pietrasanta et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Throughout life, experience shapes and selects the most appropriate brain functional connectivity to adapt to a changing environment. An ideal system to study experience-dependent plasticity is the visual cortex, because visual experience can be easily manipulated. In this paper, we focus on the role of interhemispheric, transcallosal projections in experience-dependent plasticity of the visual cortex. We review data showing that deprivation of sensory experience can modify the morphology of callosal fibres, thus altering the communication between the two hemispheres. More importantly, manipulation of callosal input activity during an early critical period alters developmental maturation of functional properties in visual cortex and modifies its ability to remodel in response to experience. We also discuss recent data in rat visual cortex, demonstrating that the corpus callosum plays a role in binocularity of cortical neurons and is involved in the plastic shift of eye preference that follows a period of monocular eyelid suture (monocular deprivation) in early age. Thus, experience can modify the fine connectivity of the corpus callosum, and callosal connections represent a major pathway through which experience can mediate functional maturation and plastic rearrangements in the visual cortex.