Table of Contents Author Guidelines Submit a Manuscript
Neural Plasticity
Volume 2012, Article ID 838672, 10 pages
http://dx.doi.org/10.1155/2012/838672
Review Article

The Corpus Callosum and the Visual Cortex: Plasticity Is a Game for Two

1Laboratory of Neurobiology, Scuola Normale Superiore, Piazza dei Cavalieri 7, 56100 Pisa, Italy
2CNR Neuroscience Institute, Via G. Moruzzi 1, 56124 Pisa, Italy

Received 16 December 2011; Accepted 19 April 2012

Academic Editor: Steve Lomber

Copyright © 2012 Marta Pietrasanta et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. G. Berlucchi, S. Aglioti, C. A. Marzi, and G. Tassinari, “Corpus callosum and simple visuomotor integration,” Neuropsychologia, vol. 33, no. 8, pp. 923–936, 1995. View at Publisher · View at Google Scholar · View at Scopus
  2. G. M. Innocenti, D. Aggoun-Zouaoui, and P. Lehmann, “Cellular aspects of callosal connections and their development,” Neuropsychologia, vol. 33, no. 8, pp. 961–987, 1995. View at Publisher · View at Google Scholar · View at Scopus
  3. M. S. Gazzaniga, “Cerebral specialization and interhemispheric communication. Does the corpus callosum enable the human condition?” Brain, vol. 123, no. 7, pp. 1293–1326, 2000. View at Google Scholar · View at Scopus
  4. J. Tomasch, “Size, distribution, and number of fibres in the human corpus callosum,” The Anatomical Record, vol. 119, no. 1, pp. 119–135, 1954. View at Google Scholar · View at Scopus
  5. J. S. Bloom and G. W. Hynd, “The role of the corpus callosum in interhemispheric transfer of information: excitation or inhibition?” Neuropsychology Review, vol. 15, no. 2, pp. 59–71, 2005. View at Publisher · View at Google Scholar · View at Scopus
  6. L. K. Paul, W. S. Brown, R. Adolphs et al., “Agenesis of the corpus callosum: genetic, developmental and functional aspects of connectivity,” Nature Reviews Neuroscience, vol. 8, no. 4, pp. 287–299, 2007. View at Publisher · View at Google Scholar · View at Scopus
  7. G. Berlucchi and G. Rizzolatti, “Binocularly driven neurons in visual cortex of split-chiasm cats,” Science, vol. 159, no. 3812, pp. 308–310, 1968. View at Google Scholar · View at Scopus
  8. G. M. Innocenti, “The primary visual pathway through the corpus callosum: morphological and functional aspects in the cat,” Archives Italiennes de Biologie, vol. 118, no. 2, pp. 124–188, 1980. View at Google Scholar · View at Scopus
  9. J. C. Houzel and C. Milleret, “Visual inter-hemispheric processing: constraints and potentialities set by axonal morphology,” Journal of Physiology Paris, vol. 93, no. 4, pp. 271–284, 1999. View at Publisher · View at Google Scholar · View at Scopus
  10. V. A. Makarov, K. E. Schmidt, N. P. Castellanos, L. Lopez-Aguado, and G. M. Innocenti, “Stimulus-dependent interaction between the visual areas 17 and 18 of the 2 hemispheres of the ferret (Mustela putorius),” Cerebral Cortex, vol. 18, no. 8, pp. 1951–1960, 2008. View at Publisher · View at Google Scholar · View at Scopus
  11. D. C. Van Essen, W. T. Newsome, and J. L. Bixby, “The pattern of interhemispheric connections and its relationship to extrastriate visual areas in the macaque monkey,” Journal of Neuroscience, vol. 2, no. 3, pp. 265–283, 1982. View at Google Scholar · View at Scopus
  12. S. Clarke and J. Miklossy, “Occipital cortex in man: organization of callosal connections, related myelo- and cytoarchitecture, and putative boundaries of functional visual areas,” Journal of Comparative Neurology, vol. 298, no. 2, pp. 188–214, 1990. View at Publisher · View at Google Scholar · View at Scopus
  13. R. F. Dougherty, M. Ben-Shachar, R. Bammer, A. A. Brewer, and B. A. Wandell, “Functional organization of human occipital-callosal fiber tracts,” Proceedings of the National Academy of Sciences of the United States of America, vol. 102, no. 20, pp. 7350–7355, 2005. View at Publisher · View at Google Scholar · View at Scopus
  14. M. C. Putnam, M. S. Steven, K. W. Doron, A. C. Riggall, and M. S. Gazzaniga, “Cortical projection topography of the human splenium: hemispheric asymmetry and individual differences,” Journal of Cognitive Neuroscience, vol. 22, no. 8, pp. 1662–1669, 2010. View at Publisher · View at Google Scholar · View at Scopus
  15. M. Saenz and I. Fine, “Topographic organization of V1 projections through the corpus callosum in humans,” NeuroImage, vol. 52, no. 4, pp. 1224–1229, 2010. View at Publisher · View at Google Scholar · View at Scopus
  16. J. W. Lewis and J. F. Olavarria, “Two rules for callosal connectivity in striate cortex of the rat,” Journal of Comparative Neurology, vol. 361, no. 1, pp. 119–137, 1995. View at Publisher · View at Google Scholar · View at Scopus
  17. J. F. Olavarría, R. Laing, R. Hiroi, and J. Lasiene, “Topography and axon arbor architecture in the visual callosal pathway: effects of deafferentation and blockade of N-methyl-D-aspartate receptors,” Biological Research, vol. 41, no. 4, pp. 413–424, 2008. View at Google Scholar · View at Scopus
  18. N. L. Rochefort, P. Buzás, N. Quenech'Du et al., “Functional selectivity of interhemispheric connections in cat visual cortex,” Cerebral Cortex, vol. 19, no. 10, pp. 2451–2465, 2009. View at Publisher · View at Google Scholar · View at Scopus
  19. C. Blakemore, Y. Diao, and M. Pu, “Possible functions of the interhemispheric connexions between visual cortical areas in the cat,” Journal of Physiology, vol. 337, pp. 331–349, 1983. View at Google Scholar · View at Scopus
  20. B. R. Payne, “Function of the corpus callosum in the representation of the visual field in cat visual cortex,” Visual Neuroscience, vol. 5, no. 2, pp. 205–211, 1990. View at Google Scholar · View at Scopus
  21. B. R. Payne and D. F. Siwek, “Visual-field map in the callosal recipient zone at the border between areas 17 and 18 in the cat,” Visual Neuroscience, vol. 7, no. 3, pp. 221–236, 1991. View at Google Scholar · View at Scopus
  22. J. F. Olavarria and R. C. Van Sluyters, “Overall pattern of callosal connections in visual cortex of normal and enucleated cats,” Journal of Comparative Neurology, vol. 363, no. 2, pp. 161–176, 1995. View at Publisher · View at Google Scholar · View at Scopus
  23. C. G. Cusick and R. D. Lund, “The distribution of the callosal projection to the occipital visual cortex in rats and mice,” Brain Research, vol. 214, no. 2, pp. 239–259, 1981. View at Publisher · View at Google Scholar · View at Scopus
  24. S. Jacobson, “Distribution of commissural axon terminals in the rat neocortex,” Experimental Neurology, vol. 28, no. 2, pp. 193–205, 1970. View at Google Scholar · View at Scopus
  25. H. Mizuno, T. Hirano, and Y. Tagawa, “Evidence for activity-dependent cortical wiring: formation of interhemispheric connections in neonatal mouse visual cortex requires projection neuron activity,” Journal of Neuroscience, vol. 27, no. 25, pp. 6760–6770, 2007. View at Publisher · View at Google Scholar · View at Scopus
  26. S. Jacobson and J. Q. Trojanowski, “The cells of origin of the corpus callosum in rat, cat and rhesus monkey,” Brain Research, vol. 74, no. 1, pp. 149–155, 1974. View at Publisher · View at Google Scholar · View at Scopus
  27. E. H. Buhl and W. Singer, “The callosal projection in cat visual cortex as revealed by a combination of retrograde tracing and intracellular injection,” Experimental Brain Research, vol. 75, no. 3, pp. 470–476, 1989. View at Google Scholar · View at Scopus
  28. T. Voigt, S. LeVay, and M. A. Stamnes, “Morphological and immunocytochemical observations on the visual callosal projections in the cat,” Journal of Comparative Neurology, vol. 272, no. 3, pp. 450–460, 1988. View at Google Scholar · View at Scopus
  29. A. J. Elberger, “Selective labeling of visual corpus callosum connections with aspartate in cat and rat,” Visual Neuroscience, vol. 2, no. 1, pp. 81–85, 1989. View at Google Scholar · View at Scopus
  30. A. Peters, B. R. Payne, and K. Josephson, “Transcallosal non-pyramidal cell projections from visual cortex in the cat,” Journal of Comparative Neurology, vol. 302, no. 1, pp. 124–142, 1990. View at Publisher · View at Google Scholar · View at Scopus
  31. F. Kimura, “GABAergic transcallosal neurons in developing rat neocortex,” European Journal of Neuroscience, vol. 9, no. 6, pp. 1137–1143, 1997. View at Publisher · View at Google Scholar · View at Scopus
  32. L. Restani, C. Cerri, M. Pietrasanta, L. Gianfranceschi, L. Maffei, and M. Caleo, “Functional masking of deprived eye responses by callosal input during ocular dominance plasticity,” Neuron, vol. 64, no. 5, pp. 707–718, 2009. View at Publisher · View at Google Scholar · View at Scopus
  33. R. Caminiti, H. Ghaziri, R. Galuske, P. R. Hof, and G. M. Innocenti, “Evolution amplified processing with temporally dispersed slow neuronal connectivity in primates,” Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 46, pp. 19551–19556, 2009. View at Publisher · View at Google Scholar · View at Scopus
  34. S. Tomasi, R. Caminiti, and G. M. Innocenti, “Areal differences in diameter and length of corticofugal projections,” Cerebral Cortex, vol. 22, no. 6, pp. 1463–1472, 2012. View at Google Scholar
  35. B. R. Payne, D. F. Siwek, and S. G. Lomber, “Complex transcallosal interactions in visual cortex,” Visual Neuroscience, vol. 6, no. 3, pp. 283–289, 1991. View at Google Scholar · View at Scopus
  36. J. S. Sun, B. Li, M. H. Ma, and Y. C. Diao, “Transcallosal circuitry revealed by blocking and disinhibiting callosal input in the cat,” Visual Neuroscience, vol. 11, no. 2, pp. 189–197, 1994. View at Google Scholar · View at Scopus
  37. K. Toyama, K. Matsunami, T. Ohno, and S. Tokashiki, “An intracellular study of neuronal organization in the visual cortex,” Experimental Brain Research, vol. 21, no. 1, pp. 45–66, 1974. View at Google Scholar · View at Scopus
  38. K. E. Schmidt, S. G. Lomber, and G. M. Innocenti, “Specificity of neuronal responses in primary visual cortex is modulated by interhemispheric corticocortical input,” Cerebral Cortex, vol. 20, no. 12, pp. 2776–2786, 2010. View at Publisher · View at Google Scholar · View at Scopus
  39. M. H. J. Munk, L. G. Nowak, J. I. Nelson, and J. Bullier, “Structural basis of cortical synchronization II. Effects of cortical lesions,” Journal of Neurophysiology, vol. 74, no. 6, pp. 2401–2414, 1995. View at Google Scholar · View at Scopus
  40. M. G. Knyazeva, D. C. Kiper, V. Y. Vildavski, P. A. Despland, M. Maeder-Ingvar, and G. M. Innocenti, “Visual stimulus-dependent changes in interhemispheric EEG coherence in humans,” Journal of Neurophysiology, vol. 82, no. 6, pp. 3095–3107, 1999. View at Google Scholar · View at Scopus
  41. A. K. Engel, P. Konig, A. K. Kreiter, and W. Singer, “Interhemispheric synchronization of oscillatory neuronal responses in cat visual cortex,” Science, vol. 252, no. 5010, pp. 1177–1179, 1991. View at Google Scholar · View at Scopus
  42. C. Carmeli, L. Lopez-Aguadao, K. E. Schmidt, O. De Feo, and G. M. Innocenti, “A novel interhemispheric interaction: modulation of neuronal cooperativity in the visual areas,” PLoS ONE, vol. 2, no. 12, article e1287, 2007. View at Publisher · View at Google Scholar · View at Scopus
  43. N. Berardi, S. Bisti, A. Fiorentini, and L. Maffei, “The transfer of visual information across the corpus callosum in cats, monekys and humans: spatial and temporal properties,” Progress in Brain Research, vol. 75, pp. 181–185, 1988. View at Google Scholar · View at Scopus
  44. L. Maffei, N. Berardi, and S. Bisti, “Interocular transfer of adaptation after effect in neurons of area 17 and 18 of split chiasm cats,” Journal of Neurophysiology, vol. 55, no. 5, pp. 966–976, 1986. View at Google Scholar · View at Scopus
  45. D. E. Mitchell and C. Blakemore, “Binocular depth perception and the corpus callosum,” Vision Research, vol. 10, no. 1, pp. 49–54, 1970. View at Google Scholar · View at Scopus
  46. T. Bocci, M. Caleo, E. Giorli et al., “Transcallosal inhibition dampens neural responses to high contrast stimuli in human visual cortex,” Neuroscience, vol. 187, pp. 43–51, 2011. View at Publisher · View at Google Scholar · View at Scopus
  47. J. B. Hellige, Hemispheric Asymmetry: What's Right and What's Left, Harvard University Press, Cambridge, Mass, USA, 1993.
  48. H. Kennedy and C. Dehay, “Functional implications of the anatomical organization of the callosal projections of visual areas V1 and V2 in the macaque monkey,” Behavioural Brain Research, vol. 29, no. 3, pp. 225–236, 1988. View at Google Scholar · View at Scopus
  49. M. A. Yates and J. M. Juraska, “Increases in size and myelination of the rat corpus callosum during adulthood are maintained into old age,” Brain Research, vol. 1142, no. 1, pp. 13–18, 2007. View at Publisher · View at Google Scholar · View at Scopus
  50. G. M. Innocenti and R. Caminiti, “Postnatal shaping of callosal connections from sensory areas,” Experimental Brain Research, vol. 38, no. 4, pp. 381–394, 1980. View at Google Scholar · View at Scopus
  51. G. M. Innocenti, “Growth and reshaping of axons in the establishment of visual callosal connections,” Science, vol. 212, no. 4496, pp. 824–827, 1981. View at Google Scholar · View at Scopus
  52. D. D. O'Leary, B. B. Stanfield, and W. M. Cowan, “Evidence that the early postnatal restriction of the cells of origin of the callosal projection is due to the elimination of axonal collaterals rather than to the death of neurons,” Brain Research, vol. 227, no. 4, pp. 607–617, 1981. View at Google Scholar · View at Scopus
  53. G. M. Innocenti and D. J. Price, “Exuberance in the development of cortical networks,” Nature Reviews Neuroscience, vol. 6, no. 12, pp. 955–965, 2005. View at Publisher · View at Google Scholar · View at Scopus
  54. M. Caleo, L. Restani, L. Gianfranceschi et al., “Transient synaptic silencing of developing striate cortex has persistent effects on visual function and plasticity,” Journal of Neuroscience, vol. 27, no. 17, pp. 4530–4540, 2007. View at Publisher · View at Google Scholar · View at Scopus
  55. C. Cerri, L. Restani, and M. Caleo, “Callosal contribution to ocular dominance in rat primary visual cortex,” European Journal of Neuroscience, vol. 32, no. 7, pp. 1163–1169, 2010. View at Publisher · View at Google Scholar · View at Scopus
  56. G. M. Innocenti, S. Clarke, and R. Kraftsik, “Intercharge of callosal and association projections in the developing visual cortex,” Journal of Neuroscience, vol. 6, no. 5, pp. 1384–1409, 1986. View at Google Scholar · View at Scopus
  57. S. A. Sorensen, T. A. Jones, and J. F. Olavarria, “Neonatal enucleation reduces the proportion of callosal boutons forming multiple synaptic contacts in rat striate cortex,” Neuroscience Letters, vol. 351, no. 1, pp. 17–20, 2003. View at Publisher · View at Google Scholar · View at Scopus
  58. J. F. Olavarria and R. Hiroi, “Retinal influences specify cortico-cortical maps by postnatal day six in rats and mice,” Journal of Comparative Neurology, vol. 459, no. 2, pp. 156–172, 2003. View at Publisher · View at Google Scholar · View at Scopus
  59. B. Chen, S. S. Wang, A. M. Hattox, H. Rayburn, S. B. Nelson, and S. K. McConnell, “The Fezf2-Ctip2 genetic pathway regulates the fate choice of subcortical projection neurons in the developing cerebral cortex,” Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 32, pp. 11382–11387, 2008. View at Publisher · View at Google Scholar · View at Scopus
  60. A. M. Hattox and S. B. Nelson, “Layer V neurons in mouse cortex projecting to different targets have distinct physiological properties,” Journal of Neurophysiology, vol. 98, no. 6, pp. 3330–3340, 2007. View at Publisher · View at Google Scholar · View at Scopus
  61. S. Lodato, C. Rouaux, K. B. Quast et al., “Excitatory projection neuron subtypes control the distribution of local inhibitory interneurons in the cerebral cortex,” Neuron, vol. 69, no. 4, pp. 763–779, 2011. View at Publisher · View at Google Scholar · View at Scopus
  62. D. O. Frost and Y. P. Moy, “Effects of dark rearing on the development of visual callosal connections,” Experimental Brain Research, vol. 78, no. 1, pp. 203–213, 1989. View at Google Scholar · View at Scopus
  63. R. D. Lund and D. E. Mitchell, “The effects of dark-rearing on visual callosal connections of cats,” Brain Research, vol. 167, no. 1, pp. 172–175, 1979. View at Publisher · View at Google Scholar · View at Scopus
  64. G. M. Innocenti, D. O. Frost, and J. Illes, “Maturation of visual callosal connections in visually deprived kittens: a challenging critical period,” Journal of Neuroscience, vol. 5, no. 2, pp. 255–267, 1985. View at Google Scholar · View at Scopus
  65. C. Milleret, “Visual callosal connections and strabismus,” Behavioural Brain Research, vol. 64, no. 1-2, pp. 85–95, 1994. View at Publisher · View at Google Scholar · View at Scopus
  66. N. E. Berman and B. R. Payne, “Alterations in connections of the corpus callosum following convergent and divergent strabismus,” Brain Research, vol. 274, no. 2, pp. 201–212, 1983. View at Publisher · View at Google Scholar · View at Scopus
  67. G. M. Innocenti and D. O. Frost, “Effects of visual experience on the maturation of the efferent system to the corpus callosum,” Nature, vol. 280, no. 5719, pp. 231–234, 1979. View at Google Scholar · View at Scopus
  68. D. O. Frost, Y. P. Moy, and D. C. Smith, “Effects of alternating monocular occlusion on the development of visual callosal connections,” Experimental Brain Research, vol. 83, no. 1, pp. 200–209, 1990. View at Google Scholar · View at Scopus
  69. L. Watroba, P. Buser, and C. Milleret, “Impairment of binocular vision in the adult cat induces plastic changes in the callosal cortical map,” European Journal of Neuroscience, vol. 14, no. 6, pp. 1021–1029, 2001. View at Publisher · View at Google Scholar · View at Scopus
  70. N. Berardi, T. Pizzorusso, and L. Maffei, “Critical periods during sensory development,” Current Opinion in Neurobiology, vol. 10, no. 1, pp. 138–145, 2000. View at Publisher · View at Google Scholar · View at Scopus
  71. M. Fagiolini, T. Pizzorusso, N. Berardi, L. Domenici, and L. Maffei, “Functional postnatal development of the rat primary visual cortex and the role of visual experience: dark rearing and monocular deprivation,” Vision Research, vol. 34, no. 6, pp. 709–720, 1994. View at Publisher · View at Google Scholar · View at Scopus
  72. L. C. Katz and C. J. Shatz, “Synaptic activity and the construction of cortical circuits,” Science, vol. 274, no. 5290, pp. 1133–1138, 1996. View at Publisher · View at Google Scholar · View at Scopus
  73. S. M. Sherman and P. D. Spear, “Organization of visual pathways in normal and visually deprived cats,” Physiological Reviews, vol. 62, no. 2, pp. 738–855, 1982. View at Google Scholar · View at Scopus
  74. G. Schiavo, M. Matteoli, and C. Montecucco, “Neurotoxins affecting neuroexocytosis,” Physiological Reviews, vol. 80, no. 2, pp. 717–766, 2000. View at Google Scholar · View at Scopus
  75. B. Davletov, M. Bajohrs, and T. Binz, “Beyond BOTOX: advantages and limitations of individual botulinum neurotoxins,” Trends in Neurosciences, vol. 28, no. 8, pp. 446–452, 2005. View at Publisher · View at Google Scholar · View at Scopus
  76. Y. Bozzi, L. Costantin, F. Antonucci, and M. Caleo, “Action of botulinum neurotoxins in the central nervous system: antiepileptic effects,” Neurotoxicity Research, vol. 9, no. 2-3, pp. 197–203, 2006. View at Publisher · View at Google Scholar · View at Scopus
  77. G. Berlucchi, “What is callosal plasticity?” in Cortical Plasticity, L. M. Chalupa et al., Ed., pp. 235–246, MIT Press, 2011. View at Google Scholar
  78. L. Pinto, D. Drechsel, M. T. Schmid et al., “AP2γ regulates basal progenitor fate in a region- and layer-specific manner in the developing cortex,” Nature Neuroscience, vol. 12, no. 10, pp. 1229–1237, 2009. View at Publisher · View at Google Scholar · View at Scopus
  79. A. J. Elberger, “The existence of a separate, brief critical period for the corpus callosum to affect visual development,” Behavioural Brain Research, vol. 11, no. 3, pp. 223–231, 1984. View at Publisher · View at Google Scholar · View at Scopus
  80. T. Moore, H. R. Rodman, A. B. Repp, C. G. Gross, and R. S. Mezrich, “Greater residual vision in monkeys after striate cortex damage in infancy,” Journal of Neurophysiology, vol. 76, no. 6, pp. 3928–3933, 1996. View at Google Scholar · View at Scopus
  81. S. Lindqvist, J. Skranes, L. Eikenes, and et al, “Visual function and white matter microstructure in very-low-birth-weight (VLBW) adolescents–a DTI study,” Vision Research, vol. 51, no. 18, pp. 2063–2070, 2011. View at Google Scholar
  82. S. R. Afraz, L. Montaser-Kouhsari, M. Vaziri-Pashkam, and F. Moradi, “Interhemispheric visual interaction in a patient with posterior callosectomy,” Neuropsychologia, vol. 41, no. 5, pp. 597–604, 2003. View at Publisher · View at Google Scholar · View at Scopus
  83. B. Chapman and M. P. Stryker, “Development of orientation selectivity in ferret visual cortex and effects of deprivation,” Journal of Neuroscience, vol. 13, no. 12, pp. 5251–5262, 1993. View at Google Scholar · View at Scopus
  84. M. Rizzo and D. A. Robin, “Bilateral effects of unilateral visual cortex lesions in human,” Brain, vol. 119, no. 3, pp. 951–963, 1996. View at Publisher · View at Google Scholar · View at Scopus
  85. R. F. Hess and J. S. Pointer, “Spatial and temporal contrast sensitivity in hemianopia: a comparative study of the sighted and blind hemifields,” Brain, vol. 112, no. 4, pp. 871–894, 1989. View at Google Scholar · View at Scopus
  86. G. V. Paramei and B. A. Sabel, “Contour-integration deficits on the intact side of the visual field in hemianopia patients,” Behavioural Brain Research, vol. 188, no. 1, pp. 109–124, 2008. View at Publisher · View at Google Scholar · View at Scopus
  87. D. H. Hubel and T. N. Wiesel, “Cortical and callosal connections concerned with the vertical meridian of visual fields in the cat,” Journal of Neurophysiology, vol. 30, no. 6, pp. 1561–1573, 1967. View at Google Scholar · View at Scopus
  88. D. Minciacchi and A. Antonini, “Binocularity in the visual cortex of the adult cat does not depend on the integrity of the corpus callosum,” Behavioural Brain Research, vol. 13, no. 2, pp. 183–192, 1984. View at Publisher · View at Google Scholar · View at Scopus
  89. B. R. Payne, A. J. Elberger, N. Berman, and E. H. Murphy, “Binocularity in the cat visual cortex is reduced by sectioning the corpus callosum,” Science, vol. 207, no. 4435, pp. 1097–1099, 1980. View at Google Scholar · View at Scopus
  90. A. J. Elberger and E. L. Smith III, “The critical period for corpus callosum section to affect cortical binocularity,” Experimental Brain Research, vol. 57, no. 2, pp. 213–223, 1985. View at Google Scholar · View at Scopus
  91. U. Yinon, M. Chen, and S. Gelerstein, “Binocularity and excitability loss in visual cortex cells of corpus callosum transected kittens and cats,” Brain Research Bulletin, vol. 29, no. 5, pp. 541–552, 1992. View at Publisher · View at Google Scholar · View at Scopus
  92. J. A. Gordon and M. P. Stryker, “Experience-dependent plasticity of binocular responses in the primary visual cortex of the mouse,” Journal of Neuroscience, vol. 16, no. 10, pp. 3274–3286, 1996. View at Google Scholar · View at Scopus
  93. T. K. Hensch, M. Fagiolini, N. Mataga, M. P. Stryker, S. Baekkeskov, and S. F. Kash, “Local GABA circuit control of experience-dependent plasticity in developing visual cortex,” Science, vol. 282, no. 5393, pp. 1504–1508, 1998. View at Google Scholar · View at Scopus
  94. N. B. Sawtell, M. Y. Frenkel, B. D. Philpot, K. Nakazawa, S. Tonegawa, and M. F. Bear, “NMDA receptor-dependent ocular dominance plasticity in adult visual cortex,” Neuron, vol. 38, no. 6, pp. 977–985, 2003. View at Publisher · View at Google Scholar · View at Scopus
  95. A. Sefton and B. Dreher, “Visual system,” in The Rat Nervous System, G. Paxinos, Ed., pp. 833–898, Academic Press, 1995. View at Google Scholar
  96. M. Caleo, C. Lodovichi, T. Pizzorusso, and L. Maffei, “Expression of the transcription factor Zif268 in the visual cortex of monocularly deprived rats: effects of nerve growth factor,” Neuroscience, vol. 91, no. 3, pp. 1017–1026, 1999. View at Publisher · View at Google Scholar · View at Scopus
  97. Y. C. Diao, Y. K. Wang, and M. L. Pu, “Binocular responses of cortical cells and the callosal projection in the albino rat,” Experimental Brain Research, vol. 49, no. 3, pp. 410–418, 1983. View at Google Scholar · View at Scopus
  98. W. Zheng and E. I. Knudsen, “GABAergic inhibition antagonizes adaptive adjustment of the owl's auditory space map during the initial phase of plasticity,” Journal of Neuroscience, vol. 21, no. 12, pp. 4356–4365, 2001. View at Google Scholar · View at Scopus
  99. A. Maffei, K. Nataraj, S. B. Nelson, and G. G. Turrigiano, “Potentiation of cortical inhibition by visual deprivation,” Nature, vol. 443, no. 7107, pp. 81–84, 2006. View at Publisher · View at Google Scholar · View at Scopus
  100. S. Fecteau, A. Pascual-Leone, and H. Théoret, “Paradoxical facilitation of attention in healthy humans,” Behavioural Neurology, vol. 17, no. 3-4, pp. 159–162, 2006. View at Google Scholar · View at Scopus
  101. B. Fierro, F. Brighina, and E. Bisiach, “Improving neglect by TMS,” Behavioural Neurology, vol. 17, no. 3-4, pp. 169–176, 2006. View at Google Scholar · View at Scopus