Table of Contents Author Guidelines Submit a Manuscript
Neural Plasticity
Volume 2013, Article ID 185463, 11 pages
http://dx.doi.org/10.1155/2013/185463
Review Article

The Role of Astrocytes in the Regulation of Synaptic Plasticity and Memory Formation

Neuroscience Program, Skidmore College, 815 N Broadway, Saratoga Springs, NY 12866, USA

Received 31 July 2013; Revised 7 October 2013; Accepted 5 November 2013

Academic Editor: Yann Bernardinelli

Copyright © 2013 Yusuke Ota et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. S. J. Martin, P. D. Grimwood, and R. G. M. Morris, “Synaptic plasticity and memory: an evaluation of the hypothesis,” Annual Review of Neuroscience, vol. 23, no. 1, pp. 649–711, 2000. View at Publisher · View at Google Scholar · View at Scopus
  2. J. S. Bains and S. H. R. Oliet, “Glia: they make your memories stick!,” Trends in Neurosciences, vol. 30, no. 8, pp. 417–424, 2007. View at Publisher · View at Google Scholar · View at Scopus
  3. N. B. Hamilton and D. Attwell, “Do astrocytes really exocytose neurotransmitters?” Nature Reviews, vol. 11, no. 4, pp. 227–238, 2010. View at Publisher · View at Google Scholar · View at Scopus
  4. U. Lalo, A. Verkhratsky, and Y. Pankratov, “Ionotropic ATP receptors in neuronal-glial communication,” Seminars in Cell & Developmental Biology, vol. 22, no. 2, pp. 220–228, 2011. View at Publisher · View at Google Scholar · View at Scopus
  5. A. Volterra and J. Meldolesi, “Astrocytes, from brain glue to communication elements: the revolution continues,” Nature Reviews, vol. 6, no. 8, pp. 626–640, 2005. View at Publisher · View at Google Scholar · View at Scopus
  6. F. A. C. Azevedo, L. R. B. Carvalho, L. T. Grinberg et al., “Equal numbers of neuronal and nonneuronal cells make the human brain an isometrically scaled-up primate brain,” Journal of Comparative Neurology, vol. 513, no. 5, pp. 532–541, 2009. View at Publisher · View at Google Scholar · View at Scopus
  7. S. M. Dombrowski, C. C. Hilgetag, and H. Barbas, “Quantitative architecture distinguishes prefrontal cortical systems in the rhesus monkey,” Cerebral Cortex, vol. 11, no. 10, pp. 975–988, 2001. View at Publisher · View at Google Scholar · View at Scopus
  8. S. Herculano-Houzel and R. Lent, “Isotropic fractionator: a simple, rapid method for the quantification of total cell and neuron numbers in the brain,” The Journal of Neuroscience, vol. 25, no. 10, pp. 2518–2521, 2005. View at Publisher · View at Google Scholar · View at Scopus
  9. C. C. Hilgetag and H. Barbas, “Are there ten times more glia than neurons in the brain?” Brain Structure & Function, vol. 213, no. 4-5, pp. 365–366, 2009. View at Publisher · View at Google Scholar · View at Scopus
  10. E. R. Kandel, J. H. Schwartz, and T. M. Jessell, Principles of Neural Science, Nerve Cells and Behavior, McGraw-Hill, New York, NY, USA, 4th edition, 2000.
  11. A. Nishiyama, Z. Yang, and A. Butt, “Astrocytes and NG2-glia: what's in a name?” Journal of Anatomy, vol. 207, no. 6, pp. 687–693, 2005. View at Publisher · View at Google Scholar · View at Scopus
  12. B. Pakkenberg and H. J. G. Gundersen, “Total number of neurons and glial cells in human brain nuclei estimated by the disector and the fractionator,” Journal of Microscopy, vol. 150, no. 1, pp. 1–20, 1988. View at Google Scholar · View at Scopus
  13. N. A. Oberheim, S. A. Goldman, and M. Nedergaard, “Heterogeneity of astrocytic form and function,” Methods in Molecular Biology, vol. 814, pp. 23–45, 2012. View at Publisher · View at Google Scholar · View at Scopus
  14. A. Derouiche, E. Anlauf, G. Aumann, B. Mühlstädt, and M. Lavialle, “Anatomical aspects of glia-synapse interaction: the perisynaptic glial sheath consists of a specialized astrocyte compartment,” Journal of Physiology, vol. 96, no. 3-4, pp. 177–182, 2002. View at Publisher · View at Google Scholar · View at Scopus
  15. A. Reichenbach, A. Derouiche, and F. Kirchhoff, “Morphology and dynamics of perisynaptic glia,” Brain Research Reviews, vol. 63, no. 1-2, pp. 11–25, 2010. View at Publisher · View at Google Scholar · View at Scopus
  16. A. Verkhratsky and A. Butt, Neuronal-Glial Interactions, in Glial Neurobiology: A Textbook, John Wiley & Sons, Chichester, UK, 2007.
  17. M. Simard and M. Nedergaard, “The neurobiology of glia in the context of water and ion homeostasis,” Neuroscience, vol. 129, no. 4, pp. 877–896, 2004. View at Publisher · View at Google Scholar · View at Scopus
  18. K. Holthoff and O. W. Witte, “Directed spatial potassium redistribution in rat neocortex,” Glia, vol. 29, no. 3, pp. 288–292, 2000. View at Google Scholar
  19. P. Kofuji and E. A. Newman, “Potassium buffering in the central nervous system,” Neuroscience, vol. 129, no. 4, pp. 1045–1056, 2004. View at Publisher · View at Google Scholar · View at Scopus
  20. R. K. Orkand, J. G. Nicholls, and S. W. Kuffler, “Effect of nerve impulses on the membrane potential of glial cells in the central nervous system of amphibia,” Journal of Neurophysiology, vol. 29, no. 4, pp. 788–806, 1966. View at Google Scholar · View at Scopus
  21. W. Walz, “Role of astrocytes in the clearance of excess extracellular potassium,” Neurochemistry International, vol. 36, no. 4-5, pp. 291–300, 2000. View at Publisher · View at Google Scholar · View at Scopus
  22. A. Araque, V. Parpura, R. P. Sanzgiri, and P. G. Haydon, “Tripartite synapses: glia, the unacknowledged partner,” Trends in Neurosciences, vol. 22, no. 5, pp. 208–215, 1999. View at Publisher · View at Google Scholar · View at Scopus
  23. M. M. Halassa, T. Fellin, and P. G. Haydon, “Tripartite synapses: roles for astrocytic purines in the control of synaptic physiology and behavior,” Neuropharmacology, vol. 57, no. 4, pp. 343–346, 2009. View at Publisher · View at Google Scholar · View at Scopus
  24. M. Santello, C. Calì, and P. Bezzi, “Gliotransmission and the tripartite synapse,” Advances in Experimental Medicine and Biology, vol. 970, pp. 307–331, 2012. View at Publisher · View at Google Scholar · View at Scopus
  25. V. Matyash and H. Kettenmann, “Heterogeneity in astrocyte morphology and physiology,” Brain Research Reviews, vol. 63, no. 1-2, pp. 2–10, 2010. View at Publisher · View at Google Scholar · View at Scopus
  26. M. R. Witcher, S. A. Kirov, and K. M. Harris, “Plasticity of perisynaptic astroglia during synaptogenesis in the mature rat hippocampus,” Glia, vol. 55, no. 1, pp. 13–23, 2007. View at Publisher · View at Google Scholar · View at Scopus
  27. E. A. Bushong, M. E. Martone, Y. Z. Jones, and M. H. Ellisman, “Protoplasmic astrocytes in CA1 stratum radiatum occupy separate anatomical domains,” The Journal of Neuroscience, vol. 22, no. 1, pp. 183–192, 2002. View at Google Scholar · View at Scopus
  28. R. Ventura and K. M. Harris, “Three-dimensional relationships between hippocampal synapses and astrocytes,” The Journal of Neuroscience, vol. 19, no. 16, pp. 6897–6906, 1999. View at Google Scholar · View at Scopus
  29. R. A. Swanson, “Astrocyte neurotransmitter uptake,” in Neuroglia, H. Kettenmann and B. R. Ransom, Eds., pp. 346–354, Oxford University Press, Oxford, UK, 2005. View at Google Scholar
  30. C. Iacovetta, E. Rudloff, and R. Kirby, “The role of aquaporin 4 in the brain,” Veterinary Clinical Pathology, vol. 41, no. 1, pp. 32–44, 2012. View at Publisher · View at Google Scholar · View at Scopus
  31. M. C. Papadopoulos and A. S. Verkman, “Aquaporin water channels in the nervous system,” Nature Reviews, vol. 14, no. 4, pp. 265–277, 2013. View at Google Scholar
  32. H. K. Kimelberg, “Astrocytic swelling in cerebral ischemia as a possible cause of injury and target for therapy,” Glia, vol. 50, no. 4, pp. 389–397, 2005. View at Publisher · View at Google Scholar · View at Scopus
  33. H. K. Kimelberg, S. K. Goderie, S. Higman, S. Pang, and R. A. Waniewski, “Swelling-induced release of glutamate, aspartate, and taurine from astrocyte cultures,” The Journal of Neuroscience, vol. 10, no. 5, pp. 1583–1591, 1990. View at Google Scholar · View at Scopus
  34. E. M. Rutledge and H. K. Kimelberg, “Release of [3H]-D-aspartate from primary astrocyte cultures in response to raised external potassium,” The Journal of Neuroscience, vol. 16, no. 24, pp. 7803–7811, 1999. View at Google Scholar · View at Scopus
  35. M. C. W. Kroes and G. Fernández, “Dynamic neural systems enable adaptive, flexible memories,” Neuroscience & Biobehavioral Reviews, vol. 36, no. 7, pp. 1646–1666, 2012. View at Publisher · View at Google Scholar · View at Scopus
  36. W. B. Scoville and B. Milner, “Loss of recent memory after bilateral hippocampal lesions,” Journal of Neurology, Neurosurgery, and Psychiatry, vol. 20, no. 1, pp. 11–21, 1957. View at Google Scholar · View at Scopus
  37. L. F. Abbott and S. B. Nelson, “Synaptic plasticity: taming the beast,” Nature Neuroscience, vol. 3, no. 11s, pp. 1178–1183, 2000. View at Publisher · View at Google Scholar · View at Scopus
  38. M. Fu and Y. Zuo, “Experience-dependent structural plasticity in the cortex,” Trends in Neurosciences, vol. 34, no. 4, pp. 177–187, 2011. View at Publisher · View at Google Scholar · View at Scopus
  39. H.-K. Lee, “Synaptic plasticity and phosphorylation,” Pharmacology & Therapeutics, vol. 112, no. 3, pp. 810–832, 2006. View at Publisher · View at Google Scholar · View at Scopus
  40. K. Lehmann, A. Steinecke, and J. Bolz, “GABA through the ages: regulation of cortical function and plasticity by inhibitory interneurons,” Neural Plasticity, vol. 2012, Article ID 892784, 11 pages, 2012. View at Publisher · View at Google Scholar
  41. J. L. Chen and E. Nedivi, “Neuronal structural remodeling: is it all about access?” Current Opinion in Neurobiology, vol. 20, no. 5, pp. 557–562, 2010. View at Publisher · View at Google Scholar · View at Scopus
  42. K. J. Harms and A. Dunaevsky, “Dendritic spine plasticity: looking beyond development,” Brain Research, vol. 1184, no. 1, pp. 65–71, 2007. View at Publisher · View at Google Scholar · View at Scopus
  43. R. Yuste and T. Bonhoeffer, “Morphological changes in dendritic spines associated with long-term synaptic plasticity,” Annual Review of Neuroscience, vol. 24, pp. 1071–1089, 2001. View at Publisher · View at Google Scholar · View at Scopus
  44. K. Okamoto, M. Bosch, and Y. Hayashi, “The roles of CaMKII and F-Actin in the structural plasticity of dendritic spines: a potential molecular identity of a synaptic tag?” Physiology, vol. 24, no. 6, pp. 357–366, 2009. View at Publisher · View at Google Scholar · View at Scopus
  45. K. Deisseroth, H. Bito, and R. W. Tsien, “Signaling from synapse to nucleus: postsynaptic CREB phosphorylation during multiple forms of hippocampal synaptic plasticity,” Neuron, vol. 16, no. 1, pp. 89–101, 1996. View at Publisher · View at Google Scholar · View at Scopus
  46. J. A. Esteban, S.-H. Shi, C. Wilson, M. Nuriya, R. L. Huganir, and R. Malinow, “PKA phosphorylation of AMPA receptor subunits controls synaptic trafficking underlying plasticity,” Nature Neuroscience, vol. 6, no. 2, pp. 136–143, 2003. View at Publisher · View at Google Scholar · View at Scopus
  47. L. A. Raymond, W. G. Tingley, C. D. Blackstone, K. W. Roche, and R. L. Huganir, “Glutamate receptor modulation by protein phosphorylation,” Journal of Physiology, vol. 88, no. 3, pp. 181–192, 1994. View at Publisher · View at Google Scholar · View at Scopus
  48. C. Lüscher, R. A. Nicoll, R. C. Malenka, and D. Muller, “Synaptic plasticity and dynamic modulation of the postsynaptic membrane,” Nature Neuroscience, vol. 3, no. 6, pp. 545–550, 2000. View at Publisher · View at Google Scholar · View at Scopus
  49. N. J. Allen and B. A. Barres, “Signaling between glia and neurons: focus on synaptic plasticity,” Current Opinion in Neurobiology, vol. 15, no. 5, pp. 542–548, 2005. View at Publisher · View at Google Scholar · View at Scopus
  50. R. D. Fields and B. Stevens-Graham, “Neuroscience: new insights into neuron-glia communication,” Science, vol. 298, no. 5593, pp. 556–562, 2002. View at Publisher · View at Google Scholar · View at Scopus
  51. A. Citri and R. C. Malenka, “Synaptic plasticity: multiple forms, functions, and mechanisms,” Neuropsychopharmacology, vol. 33, no. 1, pp. 18–41, 2008. View at Publisher · View at Google Scholar · View at Scopus
  52. T. Lømo, “The discovery of long-term potentiation,” Philosophical Transactions of the Royal Society B, vol. 358, no. 1432, pp. 617–620, 2003. View at Publisher · View at Google Scholar · View at Scopus
  53. G. Barrionuevo, S. R. Kelso, D. Johnston, and T. H. Brown, “Conductance mechanism responsible for long-term potentiation in monosynaptic and isolated excitatory synaptic inputs to hippocampus,” Journal of Neurophysiology, vol. 55, no. 3, pp. 540–550, 1986. View at Google Scholar · View at Scopus
  54. G. L. Collingridge, S. J. Kehl, and H. McLennan, “Excitatory amino acids in synaptic transmission in the Schaffer collateral-commissural pathway of the rat hippocampus,” Journal of Physiology, vol. 334, pp. 33–46, 1983. View at Google Scholar · View at Scopus
  55. E. W. Harris and C. W. Cotman, “Long-term potentiation of guinea pig mossy fiber responses is not blocked by N-methyl D-aspartate antagonists,” Neuroscience Letters, vol. 70, no. 1, pp. 132–137, 1986. View at Google Scholar · View at Scopus
  56. E. W. Harris, A. H. Ganong, and C. W. Cotman, “Long-term potentiation in the hippocampus involves activation of N-methyl-D-aspartate receptors,” Brain Research, vol. 323, no. 1, pp. 132–137, 1984. View at Publisher · View at Google Scholar · View at Scopus
  57. R. C. Malenka and M. F. Bear, “LTP and LTD: an embarrassment of riches,” Neuron, vol. 44, no. 1, pp. 5–21, 2004. View at Publisher · View at Google Scholar · View at Scopus
  58. D. M. Bannerman, M. A. Good, S. P. Butcher, M. Ramsay, and R. G. M. Morris, “Distinct components of spatial learning revealed by prior training and NMDA receptor blockade,” Nature, vol. 378, no. 6553, pp. 182–186, 1995. View at Google Scholar · View at Scopus
  59. I. Lee and R. P. Kesner, “Differential contribution of NMDA receptors in hippocampal subregions to spatial working memory,” Nature Neuroscience, vol. 5, no. 2, pp. 162–168, 2002. View at Publisher · View at Google Scholar · View at Scopus
  60. K. Nakazawa, M. C. Quirk, R. A. Chitwood et al., “Requirement for hippocampal CA3 NMDA receptors in associative memory recall,” Science, vol. 297, no. 5579, pp. 211–218, 2002. View at Publisher · View at Google Scholar · View at Scopus
  61. J. Z. Tsien, P. T. Huerta, and S. Tonegawa, “The essential role of hippocampal CA1 NMDA receptor-dependent synaptic plasticity in spatial memory,” Cell, vol. 87, no. 7, pp. 1327–1338, 1996. View at Publisher · View at Google Scholar · View at Scopus
  62. E. R. Kandel, “The molecular biology of memory storage: a dialogue between genes and synapses,” Science, vol. 294, no. 5544, pp. 1030–1038, 2001. View at Publisher · View at Google Scholar · View at Scopus
  63. M. Mayford, S. A. Siegelbaum, and E. Kandel, “Synapses and memory storage,” Cold Spring Harbor Perspectives in Biology, vol. 4, no. 6, 2012. View at Google Scholar
  64. E. Miyamoto, “Molecular mechanism of neuronal plasticity: Induction and maintenance of long-term potentiation in the hippocampus,” Journal of Pharmacological Sciences, vol. 100, no. 5, pp. 433–442, 2006. View at Publisher · View at Google Scholar · View at Scopus
  65. D. T. Theodosis, D. A. Poulain, and S. H. R. Oliet, “Activity-dependent structural and functional plasticity of astrocyte-neuron interactions,” Physiological Reviews, vol. 88, no. 3, pp. 983–1008, 2008. View at Publisher · View at Google Scholar · View at Scopus
  66. A. H. Cornell-Bell, P. G. Thomas, and S. J. Smith, “The excitatory neurotransmitter glutamate causes filopodia formation in cultured hippocampal astrocytes,” Glia, vol. 3, no. 5, pp. 322–334, 1990. View at Google Scholar · View at Scopus
  67. S. R. Glaum, J. A. Holzwarth, and R. J. Miller, “Glutamate receptors activate Ca2+ mobilization and Ca2+ influx into astrocytes,” Proceedings of the National Academy of Sciences of the United States of America, vol. 87, no. 9, pp. 3454–3458, 1990. View at Publisher · View at Google Scholar · View at Scopus
  68. D. E. Bergles and C. E. Jahr, “Synaptic activation of glutamate transporters in hippocampal astrocytes,” Neuron, vol. 19, no. 6, pp. 1297–1308, 1997. View at Publisher · View at Google Scholar · View at Scopus
  69. D. A. Rusakov, K. Zheng, and C. Henneberger, “Astrocytes as regulators of synaptic function: a quest for the Ca2+ master Key,” Neuroscientist, vol. 17, no. 5, pp. 513–523, 2011. View at Publisher · View at Google Scholar · View at Scopus
  70. F. Conti, S. DeBiasi, A. Minelli, and M. Melone, “Expression of NR1 and NR2A/B subunits of the NMDA receptor in cortical astrocytes,” Glia, vol. 17, no. 3, pp. 254–258, 1998. View at Google Scholar
  71. U. Lalo, Y. Pankratov, F. Kirchhoff, R. A. North, and A. Verkhratsky, “NMDA receptors mediate neuron-to-glia signaling in mouse cortical astrocytes,” The Journal of Neuroscience, vol. 26, no. 10, pp. 2673–2683, 2006. View at Publisher · View at Google Scholar · View at Scopus
  72. C. Steinhäuser and V. Gallo, “News on glutamate receptors in glial cells,” Trends in Neurosciences, vol. 19, no. 8, pp. 339–345, 1996. View at Publisher · View at Google Scholar · View at Scopus
  73. D. Fan, S. Y. Grooms, R. C. Araneda et al., “AMPA receptor protein expression and function in astrocytes cultured from hippocampus,” Journal of Neuroscience Research, vol. 57, pp. 557–571, 1999. View at Google Scholar
  74. M. Zhou and H. K. Kimelberg, “Freshly isolated hippocampal CA1 astrocytes comprise two populations differing in glutamate transporter and AMPA receptor expression,” The Journal of Neuroscience, vol. 21, no. 20, pp. 7901–7908, 2001. View at Google Scholar · View at Scopus
  75. G. Seifert, M. Zhou, and C. Steinhäuser, “Analysis of AMPA receptor properties during postnatal development of mouse hippocampal astrocytes,” Journal of Neurophysiology, vol. 78, no. 6, pp. 2916–2923, 1997. View at Google Scholar · View at Scopus
  76. M. Amiri, F. Bahrami, and M. Janahmadi, “Functional contributions of astrocytes in synchronization of a neuronal network model,” Journal of Theoretical Biology, vol. 292, pp. 60–70, 2012. View at Publisher · View at Google Scholar · View at Scopus
  77. M. Amiri, N. Hosseinmardi, F. Bahrami, and M. Janahmadi, “Astrocyte-neuron interaction as a mechanism responsible for generation of neural synchrony: a study based on modeling and experiments,” Journal of Computational Neuroscience, vol. 34, no. 3, pp. 489–504, 2013. View at Google Scholar
  78. M. C. Angulo, A. S. Kozlov, S. Charpak, and E. Audinat, “Glutamate released from glial cells synchronizes neuronal activity in the hippocampus,” The Journal of Neuroscience, vol. 24, no. 31, pp. 6920–6927, 2004. View at Publisher · View at Google Scholar · View at Scopus
  79. L. K. Bekar, M. E. Loewen, K. Cao et al., “Complex expression and localization of inactivating Kv channels in cultured hippocampal astrocytes,” Journal of Neurophysiology, vol. 93, no. 3, pp. 1699–1709, 2005. View at Publisher · View at Google Scholar · View at Scopus
  80. P. Jourdain, L. H. Bergersen, K. Bhaukaurally et al., “Glutamate exocytosis from astrocytes controls synaptic strength,” Nature Neuroscience, vol. 10, no. 3, pp. 331–339, 2007. View at Publisher · View at Google Scholar · View at Scopus
  81. C. Henneberger, T. Papouin, S. H. R. Oliet, and D. A. Rusakov, “Long-term potentiation depends on release of D-serine from astrocytes,” Nature, vol. 463, no. 7278, pp. 232–236, 2010. View at Publisher · View at Google Scholar · View at Scopus
  82. J.-P. Mothet, A. T. Parent, H. Wolosker et al., “D-serine is an endogenous ligand for the glycine site of the N-methyl-D-aspartate receptor,” Proceedings of the National Academy of Sciences of the United States of America, vol. 97, no. 9, pp. 4926–4931, 2000. View at Google Scholar · View at Scopus
  83. M. J. Schell, M. E. Molliver, and S. H. Snyder, “D-serine, an endogenous synaptic modulator: Localization to astrocytes and glutamate-stimulated release,” Proceedings of the National Academy of Sciences of the United States of America, vol. 92, no. 9, pp. 3948–3952, 1995. View at Google Scholar · View at Scopus
  84. M. Shleper, E. Kartvelishvily, and H. Wolosker, “D-serine is the dominant endogenous coagonist for NMDA receptor neurotoxicity in organotypic hippocampal slices,” The Journal of Neuroscience, vol. 25, no. 41, pp. 9413–9417, 2005. View at Publisher · View at Google Scholar · View at Scopus
  85. M. Bernstein, T. Behnisch, D. Balschun, K. G. Reymann, and G. Reiser, “Pharmacological characterisation of metabotropic glutamatergic and purinergic receptors linked to Ca2+ signalling in hippocampal astrocytes,” Neuropharmacology, vol. 37, no. 2, pp. 169–178, 1998. View at Publisher · View at Google Scholar · View at Scopus
  86. M. E. Gibbs and D. N. Bowser, “Astrocytes and interneurons in memory processing in the chick hippocampus: roles for G-coupled protein receptors, GABA(B) and mGluR1,” Neurochemical Research, vol. 34, no. 10, pp. 1712–1720, 2009. View at Publisher · View at Google Scholar · View at Scopus
  87. Z. Cai, G. P. Schools, and H. K. Kimelbert, “Metabotropic glutamate receptors in acutely isolated hippocampal astrocytes: developmental changes of mGluR5 mRNA and functional expression,” Glia, vol. 29, pp. 70–80, 2000. View at Google Scholar
  88. R. J. Cormier, S. Mennerick, H. Melbostad, and C. F. Zorumski, “Basal levels of adenosine modulate mGluR5 on rat hippocampal astrocytes,” Glia, vol. 33, no. 1, pp. 24–35, 2001. View at Google Scholar
  89. E. Aronica, J. A. Gorter, H. Ijlst-Keizers et al., “Expression and functional role of mGluR3 and mGluR5 in human astrocytes and glioma cells: Opposite regulation of glutamate transporter proteins,” European Journal of Neuroscience, vol. 17, no. 10, pp. 2106–2118, 2003. View at Publisher · View at Google Scholar · View at Scopus
  90. W. Sun, E. McConnell, J. F. Pare et al., “Glutamate-dependent neuroglial calcium signaling differs between young and adult brain,” Science, vol. 339, no. 6116, pp. 197–200, 2013. View at Google Scholar
  91. S. B. Achour, L. Pont-Lezica, C. Béchade, and O. Pascual, “Is astrocyte calcium signaling relevant for synaptic plasticity?” Neuron Glia Biology, vol. 6, no. 3, pp. 147–155, 2010. View at Publisher · View at Google Scholar · View at Scopus
  92. V. Parpura and R. Zorec, “Gliotransmission: exocytotic release from astrocytes,” Brain Research Reviews, vol. 63, no. 1-2, pp. 83–92, 2010. View at Publisher · View at Google Scholar · View at Scopus
  93. Q. Zhang, T. Pangršič, M. Kreft et al., “Fusion-related release of glutamate from astrocytes,” Journal of Biological Chemistry, vol. 279, no. 13, pp. 12724–12733, 2004. View at Publisher · View at Google Scholar · View at Scopus
  94. M. Martineau, T. Shi, J. Puyal et al., “Storage and uptake of D-serine into astrocytic synaptic like vesicles specify gliotranmission,” The Journal of Neuroscience, vol. 33, no. 8, pp. 3413–3423, 2013. View at Google Scholar
  95. A. Wilhelm, W. Volknandt, D. Langer, C. Nolte, H. Kettenmann, and H. Zimmermann, “Localization of SNARE proteins and secretory organelle proteins in astrocytes in vitro and in situ,” Neuroscience Research, vol. 48, no. 3, pp. 249–257, 2004. View at Publisher · View at Google Scholar · View at Scopus
  96. P. B. Guthrie, J. Knappenberger, M. Segal, M. V. L. Bennett, A. C. Charles, and S. B. Kater, “ATP released from astrocytes mediates glial calcium waves,” The Journal of Neuroscience, vol. 8, pp. 1078–1086, 1999. View at Google Scholar
  97. E. A. Newman, “Glial cell inhibition of neurons by release of ATP,” The Journal of Neuroscience, vol. 23, no. 5, pp. 1659–1666, 2003. View at Google Scholar · View at Scopus
  98. C. Calì and P. Bezzi, “CXCR4-mediated glutamate exocytosis from astrocytes,” Journal of Neuroimmunology, vol. 224, no. 1-2, pp. 13–21, 2010. View at Publisher · View at Google Scholar · View at Scopus
  99. E. C. Beattie, D. Stellwagen, W. Morishita et al., “Control of synaptic strength by glial TNFα,” Science, vol. 295, no. 5563, pp. 2282–2285, 2002. View at Publisher · View at Google Scholar · View at Scopus
  100. M. Santello, P. Bezzi, and A. Volterra, “TNFα controls glutamatergic gliotransmission in the hippocampal dentate gyrus,” Neuron, vol. 69, no. 5, pp. 988–1001, 2011. View at Publisher · View at Google Scholar · View at Scopus
  101. Y.-J. Gao and R.-R. Ji, “Chemokines, neuronal-glial interactions, and central processing of neuropathic pain,” Pharmacology & Therapeutics, vol. 126, no. 1, pp. 56–68, 2010. View at Publisher · View at Google Scholar · View at Scopus
  102. C. Agulhon, T. A. Fiacco, and K. D. McCarthy, “Hippocampal short- and long-term plasticity are not modulated by astrocyte Ca2+ signaling,” Science, vol. 327, no. 5970, pp. 1250–1254, 2010. View at Publisher · View at Google Scholar · View at Scopus
  103. T. A. Fiacco, C. Agulhon, S. R. Taves et al., “Selective stimulation of astrocyte calcium in situ does not affect neuronal excitatory synaptic activity,” Neuron, vol. 54, no. 4, pp. 611–626, 2007. View at Publisher · View at Google Scholar · View at Scopus
  104. J. Petravicz, T. A. Fiacco, and K. D. McCarthy, “Loss of IP3 receptor-dependent Ca2+ increases in hippocampal astrocytes does not affect baseline CA1 pyramidal neuron synaptic activity,” The Journal of Neuroscience, vol. 28, no. 19, pp. 4967–4973, 2008. View at Publisher · View at Google Scholar · View at Scopus
  105. M. E. Gibbs and L. Hertz, “Inhibition of astrocytic energy metabolism by D-lactate exposure impairs memory,” Neurochemistry International, vol. 52, no. 6, pp. 1012–1018, 2008. View at Publisher · View at Google Scholar · View at Scopus
  106. L. A. Newman, D. L. Korol, and P. E. Gold, “Lactate produced by glycogenolysis in astrocytes regulates memory processing,” PLoS ONE, vol. 6, no. 12, Article ID e28427, 2011. View at Publisher · View at Google Scholar · View at Scopus
  107. A. Suzuki, S. A. Stern, O. Bozdagi et al., “Astrocyte-neuron lactate transport is required for long-term memory formation,” Cell, vol. 144, no. 5, pp. 810–823, 2011. View at Publisher · View at Google Scholar · View at Scopus
  108. C. Bourgin, K. K. Murai, M. Richter, and E. B. Pasquale, “The EphA4 receptor regulates dendritic spine remodeling by affecting β1-integrin signaling pathways,” Journal of Cell Biology, vol. 178, no. 7, pp. 1295–1307, 2007. View at Publisher · View at Google Scholar · View at Scopus
  109. M. Hruska and M. B. Dalva, “Ephrin regulation of synapse formation, function and plasticity,” Molecular and Cellular Neuroscience, vol. 50, no. 1, pp. 35–44, 2012. View at Publisher · View at Google Scholar · View at Scopus
  110. R. Klein, “Eph/ephrin signaling in morphogenesis, neural development and plasticity,” Current Opinion in Cell Biology, vol. 16, no. 5, pp. 580–589, 2004. View at Publisher · View at Google Scholar · View at Scopus
  111. A. Martínez and E. Soriano, “Functions of ephrin/Eph interactions in the development of the nervous system: emphasis on the hippocampal system,” Brain Research Reviews, vol. 49, no. 2, pp. 211–226, 2005. View at Publisher · View at Google Scholar · View at Scopus
  112. K. K. Murai, L. N. Nguyen, F. Irie, Y. Yu, and E. B. Pasquale, “Control of hippocampal dendritic spine morphology through ephrin-A3/EphA4 signaling,” Nature Neuroscience, vol. 6, no. 2, pp. 153–160, 2003. View at Publisher · View at Google Scholar · View at Scopus
  113. P. A. Yates, A. L. Roskies, T. McLaughlin, and D. D. M. O'Leary, “Topographic-specific axon branching controlled by ephrin-As is the critical event in retinotectal map development,” The Journal of Neuroscience, vol. 21, no. 21, pp. 8548–8563, 2001. View at Google Scholar · View at Scopus
  114. L. Zhou, S. J. Martinez, M. Haber et al., “EphA4 signaling regulates phospholipase Cγ1 activation, cofilin membrane association, and dendritic spine morphology,” The Journal of Neuroscience, vol. 27, no. 19, pp. 5127–5138, 2007. View at Publisher · View at Google Scholar · View at Scopus
  115. M. A. Carmona, K. K. Murai, L. Wang, A. J. Roberts, and E. B. Pasqualea, “Glial ephrin-A3 regulates hippocampal dendritic spine morphology and glutamate transport,” Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 30, pp. 12524–12529, 2009. View at Publisher · View at Google Scholar · View at Scopus
  116. L. E. Clarke and B. A. Barres, “Emerging roles of astrocytes in neural circuit development,” Nature Reviews, vol. 14, pp. 311–321, 2013. View at Google Scholar
  117. A. Filosa, S. Paixo, S. D. Honsek et al., “Neuron-glia communication via EphA4/ephrin-A3 modulates LTP through glial glutamate transport,” Nature Neuroscience, vol. 12, no. 10, pp. 1285–1292, 2009. View at Publisher · View at Google Scholar · View at Scopus
  118. S. Paixao and R. Klein, “Neuron-astrocyte communication and synaptic plasticity,” Signaling Mechanisms, vol. 20, no. 4, pp. 466–473, 2010. View at Google Scholar
  119. Z. Zhuang, B. Yang, M. H. Theus et al., “EphrinBs regulate D-serine synthesis and release in astrocytes,” The Journal of Neuroscience, vol. 30, no. 47, pp. 16015–16024, 2010. View at Publisher · View at Google Scholar · View at Scopus
  120. C. T. Blits-Huizinga, C. M. Nelersa, A. Malhotra, and D. J. Liebl, “Ephrins and their receptors: binding versus biology,” IUBMB Life, vol. 56, no. 5, pp. 257–265, 2004. View at Publisher · View at Google Scholar · View at Scopus
  121. C. M. Hernandez and A. V. Terry Jr., “Repeated nicotine exposure in rats: effects on memory function, cholinergic markers and nerve growth factor,” Neuroscience, vol. 130, no. 4, pp. 997–1012, 2005. View at Publisher · View at Google Scholar · View at Scopus
  122. A. N. Placzek, T. A. Zhang, and J. A. Dani, “Nicotinic mechanisms influencing synaptic plasticity in the hippocampus,” Acta Pharmacologica Sinica, vol. 30, no. 6, pp. 752–760, 2009. View at Publisher · View at Google Scholar · View at Scopus
  123. G. Sharma and S. Vijayaraghavan, “Nicotinic receptor signaling in nonexcitable cells,” Journal of Neurobiology, vol. 53, no. 4, pp. 524–534, 2002. View at Publisher · View at Google Scholar · View at Scopus
  124. P. Newhouse, K. Kellar, P. Aisen et al., “Nicotine treatment of mild cognitive impairment: a 6-month double-blind pilot clinical trial,” Neurology, vol. 78, no. 2, pp. 91–101, 2012. View at Publisher · View at Google Scholar · View at Scopus
  125. M. López-Hidalgo, K. Salgado-Puga, R. Alvarado-Martínez et al., “Nicotine uses neuron-glia communication to enhance hippocampal synaptic transmission and long-term memory,” PLoS ONE, vol. 7, no. 11, 2012. View at Google Scholar
  126. M. Navarrete, G. Perea, D. F. de Sevilla et al., “Astrocytes mediate in vivo cholinergic-induced synaptic plasticity,” PLoS Biology, vol. 10, no. 2, Article ID e1001259, 2012. View at Publisher · View at Google Scholar · View at Scopus
  127. M. K. Shelton and K. D. McCarthy, “Hippocampal astrocytes exhibit Ca2+-elevating muscarinic cholinergic and histaminergic receptors in situ,” Journal of Neurochemistry, vol. 74, no. 2, pp. 555–563, 2000. View at Publisher · View at Google Scholar · View at Scopus
  128. N. Takata, T. Mishima, C. Hisatsune et al., “Astrocyte calcium signaling transforms cholinergic modulation to cortical plasticity in vivo,” The Journal of Neuroscience, vol. 31, no. 49, pp. 18155–18165, 2011. View at Publisher · View at Google Scholar · View at Scopus
  129. C. Florian, C. G. Vecsey, M. M. Halassa, P. G. Haydon, and T. Abel, “Astrocyte-derived adenosine and A1 receptor activity contribute to sleep loss-induced deficits in hippocampal synaptic plasticity and memory in mice,” The Journal of Neuroscience, vol. 31, no. 19, pp. 6956–6962, 2011. View at Publisher · View at Google Scholar · View at Scopus
  130. D. J. Hines, L. I. Schmitt, R. M. Hines, S. J. Moss, and P. G. Haydon, “Antidepressant effects of sleep deprivation require astrocyte-dependent adenosine mediated signaling,” Translational Psychiatry, vol. 3, article e212, 2013. View at Google Scholar
  131. A. Nadjar, T. Blutstein, A. Aubert, S. Laye, and P. G. Haydon, “Astrocyte-derived adenosine modulates increased sleep pressure during inflammatory response,” Glia, vol. 61, pp. 724–731, 2013. View at Google Scholar
  132. A. Avital, I. Goshen, A. Kamsler et al., “Impaired interleukin-1 signaling is associated with deficits in hippocampal memory processes and neural plasticity,” Hippocampus, vol. 13, no. 7, pp. 826–834, 2003. View at Publisher · View at Google Scholar · View at Scopus
  133. I. Goshen, T. Kreisel, H. Ounallah-Saad et al., “A dual role for interleukin-1 in hippocampal-dependent memory processes,” Psychoneuroendocrinology, vol. 32, no. 8-10, pp. 1106–1115, 2007. View at Publisher · View at Google Scholar · View at Scopus
  134. O. Ben Menachem-Zidon, I. Goshen, T. Kreisel et al., “Intrahippocampal transplantation of transgenic neural precursor cells overexpressing interleukin-1 receptor antagonist blocks chronic isolation-induced impairment in memory and neurogenesis,” Neuropsychopharmacology, vol. 33, no. 9, pp. 2251–2262, 2008. View at Publisher · View at Google Scholar · View at Scopus
  135. R. Yirmiya, G. Winocur, and I. Goshen, “Brain interleukin-1 is involved in spatial memory and passive avoidance conditioning,” Neurobiology of Learning and Memory, vol. 78, no. 2, pp. 379–389, 2002. View at Publisher · View at Google Scholar · View at Scopus
  136. E. M. Ban, L. L. Sarlieve, and F. G. Haour, “Interleukin-1 binding sites on astrocytes,” Neuroscience, vol. 52, no. 3, pp. 725–733, 1993. View at Publisher · View at Google Scholar · View at Scopus
  137. E. T. Cunningham Jr., E. Wada, D. B. Carter, D. E. Tracey, J. F. Battey, and E. B. De Souza, “In situ histochemical localization of type I interleukin-1 receptor messenger RNA in the central nervous system, pituitary, and adrenal gland of the mouse,” The Journal of Neuroscience, vol. 12, no. 3, pp. 1101–1114, 1992. View at Google Scholar · View at Scopus
  138. W. J. Friedman, “Cytokines regulate expression of the type 1 interleukin-1 receptor in rat hippocampal neurons and glia,” Experimental Neurology, vol. 168, no. 1, pp. 23–31, 2001. View at Publisher · View at Google Scholar · View at Scopus
  139. O. Ben Menachem-Zidon, A. Avital, Y. Ben-Menahem et al., “Astrocytes support hippocampal-dependent memory and long-term potentiation via interleukin-1 signaling,” Brain, Behavior, and Immunity, vol. 25, no. 5, pp. 1008–1016, 2011. View at Publisher · View at Google Scholar · View at Scopus
  140. T. Toshihiro, D. E. Tracey, W. M. Mitchell, and E. B. De Souza, “Interleukin-1 receptors in mouse brain: characterization and neuronal localization,” Endocrinology, vol. 127, no. 6, pp. 3070–3078, 1990. View at Google Scholar · View at Scopus
  141. O. Pascual, K. B. Casper, C. Kubera et al., “Neurobiology: astrocytic purinergic signaling coordinates synaptic networks,” Science, vol. 310, no. 5745, pp. 113–116, 2005. View at Publisher · View at Google Scholar · View at Scopus
  142. J. W. Dani, A. Chernjavsky, and S. J. Smith, “Neuronal activity triggers calcium waves in hippocampal astrocyte networks,” Neuron, vol. 8, no. 3, pp. 429–440, 1992. View at Publisher · View at Google Scholar · View at Scopus
  143. J. T. Porter and K. D. McCarthy, “Hippocampal astrocytes in situ respond to glutamate released from synaptic terminals,” The Journal of Neuroscience, vol. 16, no. 16, pp. 5073–5081, 1996. View at Google Scholar · View at Scopus
  144. M. A. di Castro, J. Chuquet, N. Liaudet et al., “Local Ca2+ detection and modulation of synaptic release by astrocytes,” Nature Neuroscience, vol. 14, no. 10, pp. 1276–1284, 2011. View at Publisher · View at Google Scholar · View at Scopus
  145. A. Panatier, J. Vallée, M. Haber, K. K. Murai, J.-C. Lacaille, and R. Robitaille, “Astrocytes are endogenous regulators of basal transmission at central synapses,” Cell, vol. 146, no. 5, pp. 785–798, 2011. View at Publisher · View at Google Scholar · View at Scopus
  146. X. Han, M. Chen, F. Wang et al., “Forebrain engraftment by human glial progenitor cells enhances synaptic plasticity and learning in adult mice,” Cell Stem Cell, vol. 12, no. 3, pp. 342–353, 2013. View at Google Scholar