Table of Contents Author Guidelines Submit a Manuscript
Neural Plasticity
Volume 2013 (2013), Article ID 318521, 11 pages
http://dx.doi.org/10.1155/2013/318521
Research Article

Cortical Plasticity after Cochlear Implantation

1Center for Functionally Integrative Neuroscience, Aarhus University Hospital, Nørrebrogade 44, Building 10G 6th, 8000 Aarhus C, Denmark
2Royal Academy of Music, Skovgaardsgade 2a, 8000 Aarhus C, Denmark
3Department of Neuroscience and Pharmacology, University of Copenhagen, Blegdamsvej 3, 2200 København N, Denmark
4Center for Semiotics, Aarhus University, Building 1485, Office 620, Jens Chr. Skous Vej, 8000 Aarhus C, Denmark

Received 7 July 2013; Accepted 4 October 2013

Academic Editor: Anthony J Hannan

Copyright © 2013 B. Petersen et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. L. M. Friesen, R. V. Shannon, D. Baskent, and X. Wang, “Speech recognition in noise as a function of the number of spectral channels: comparison of acoustic hearing and cochlear implants,” Journal of the Acoustical Society of America, vol. 110, no. 2, pp. 1150–1163, 2001. View at Publisher · View at Google Scholar · View at Scopus
  2. B. S. Wilson and M. F. Dorman, “The surprising performance of present-day cochlear implants,” IEEE Transactions on Biomedical Engineering, vol. 54, no. 6, part 1, pp. 969–972, 2007. View at Publisher · View at Google Scholar · View at Scopus
  3. D. R. Moore and R. V. Shannon, “Beyond cochlear implants: awakening the deafened brain,” Nature Neuroscience, vol. 12, no. 6, pp. 686–691, 2009. View at Publisher · View at Google Scholar · View at Scopus
  4. B. J. Gantz, R. S. Tyler, G. G. Woodworth, N. Tye-Murray, and H. Fryauf-Bertschy, “Results of multichannel cochlear implants in congenital an acquired prelingual deafness in children: five-year follow-up,” American Journal of Otology, vol. 15, supplement 2, pp. 1–7, 1994. View at Google Scholar · View at Scopus
  5. R. S. Tyler, A. J. Parkinson, G. G. Woodworth, M. W. Lowder, and B. J. Gantz, “Performance over time of adult patients using the ineraid or nucleus cochlear implant,” Journal of the Acoustical Society of America, vol. 102, no. 1, pp. 508–522, 1997. View at Publisher · View at Google Scholar · View at Scopus
  6. M. Manrique, F. J. Cervera-Paz, A. Huarte, N. Perez, M. Molina, and R. García-Tapia, “Cerebral auditory plasticity and cochlear implants,” International Journal of Pediatric Otorhinolaryngology, vol. 49, supplement 1, pp. 193–197, 1999. View at Publisher · View at Google Scholar · View at Scopus
  7. A. Caposecco, L. Hickson, and K. Pedley, “Cochlear implant outcomes in adults and adolescents with early-onset hearing loss,” Ear and Hearing, vol. 33, no. 2, pp. 209–220, 2012. View at Publisher · View at Google Scholar · View at Scopus
  8. K. M. J. Green, P. J. Julyan, D. L. Hastings, and R. T. Ramsden, “Auditory cortical activation and speech perception in cochlear implant users: effects of implant experience and duration of deafness,” Hearing Research, vol. 205, no. 1-2, pp. 184–192, 2005. View at Publisher · View at Google Scholar · View at Scopus
  9. L. G. Spivak and S. B. Waltzman, “Performance of cochlear implant patients as a function of time,” Journal of Speech and Hearing Research, vol. 33, no. 3, pp. 511–519, 1990. View at Google Scholar · View at Scopus
  10. C. V. Ruffin, R. S. Tyler, S. A. Witt, C. C. Dunn, B. J. Gantz, and J. T. Rubinstein, “Long-term performance of Clarion 1.0 cochlear implant users,” Laryngoscope, vol. 117, no. 7, pp. 1183–1190, 2007. View at Publisher · View at Google Scholar · View at Scopus
  11. J. Rouger, “Evidence that cochlear-implanted deaf patients are better multisensory integrators,” Proceedings of the National Academy of Sciences of the United States of America, vol. 104, no. 17, pp. 7295–7300, 2007. View at Publisher · View at Google Scholar · View at Scopus
  12. J. S. Lee, D. S. Lee, H. O. Seung et al., “PET evidence of neuroplasticity in adult auditory cortex of postlingual deafness,” The Journal of Nuclear Medicine, vol. 44, no. 9, pp. 1435–1439, 2003. View at Google Scholar · View at Scopus
  13. A. L. Giraud, E. Truy, and R. Frackowiak, “Imaging plasticity in cochlear implant patients,” Audiology and Neuro-Otology, vol. 6, no. 6, pp. 381–393, 2001. View at Publisher · View at Google Scholar · View at Scopus
  14. R. Rettenbach and G. Diller, “Do deaf people see better? Texture segmentation and visual search compensate in adult but not in juvenile subjects,” Journal of Cognitive Neuroscience, vol. 11, no. 5, pp. 560–583, 1999. View at Publisher · View at Google Scholar · View at Scopus
  15. D. Bavelier, A. Tomann, C. Hutton et al., “Visual attention to the periphery is enhanced in congenitally deaf individuals,” The Journal of Neuroscience, vol. 20, no. 17, p. RC93, 2000. View at Google Scholar · View at Scopus
  16. B. Röder, W. Teder-Sälejärvi, A. Sterr, F. Rösler, S. A. Hillyard, and H. J. Neville, “Improved auditory spatial tuning in blind humans,” Nature, vol. 400, no. 6740, pp. 162–166, 1999. View at Publisher · View at Google Scholar · View at Scopus
  17. R. Weeks, B. Horwitz, A. Aziz-Sultan et al., “A positron emission tomographic study of auditory localization in the congenitally blind,” The Journal of Neuroscience, vol. 20, no. 7, pp. 2664–2672, 2000. View at Google Scholar · View at Scopus
  18. K. Ito, “Cortical activation shortly after cochlear implantation,” Audiology and Neuro-Otology, vol. 9, no. 5, pp. 282–293, 2004. View at Google Scholar · View at Scopus
  19. R. A. Poldrack, A. D. Wagner, M. W. Prull, J. E. Desmond, G. H. Glover, and J. D. E. Gabrieli, “Functional specialization for semantic and phonological processing in the left inferior prefrontal cortex,” NeuroImage, vol. 10, no. 1, pp. 15–35, 1999. View at Publisher · View at Google Scholar · View at Scopus
  20. K. Amunts and K. Zilles, “Architecture and organizational principles of Broca's region,” Trends in Cognitive Sciences, vol. 16, no. 8, pp. 418–426, 2012. View at Google Scholar
  21. J. Harasty, J. R. Binder, J. A. Frost et al., “Language processing in both sexes: evidence from brain studies (multiple letters),” Brain, vol. 123, no. 2, pp. 404–406, 2000. View at Google Scholar · View at Scopus
  22. M. H. Davis and I. S. Johnsrude, “Hierarchical processing in spoken language comprehension,” The Journal of Neuroscience, vol. 23, no. 8, pp. 3423–3431, 2003. View at Google Scholar · View at Scopus
  23. M. Wallentin, A. Roepstorff, R. Glover, and N. Burgess, “Parallel memory systems for talking about location and age in precuneus, caudate and Broca's region,” NeuroImage, vol. 32, no. 4, pp. 1850–1864, 2006. View at Publisher · View at Google Scholar · View at Scopus
  24. K. R. Christensen and M. Wallentin, “The locative alternation: distinguishing linguistic processing cost from error signals in Broca's region,” NeuroImage, vol. 56, no. 3, pp. 1622–1631, 2011. View at Publisher · View at Google Scholar · View at Scopus
  25. L. Burholt Kristensen, E. Engberg-Pedersen, A. Højlund Nielsen, and M. Wallentin, “The influence of context on word order processing: an fMRI study,” Journal of Neurolinguistics, vol. 26, no. 1, pp. 73–88, 2013. View at Google Scholar
  26. C. J. Price, R. J. S. Wise, E. A. Warburton et al., “Hearing and saying. The functional neuro-anatomy of auditory word processing,” Brain, vol. 119, no. 3, pp. 919–931, 1996. View at Publisher · View at Google Scholar · View at Scopus
  27. A. D. Friederici, B. Opitz, and D. Y. von Cramon, “Segregating semantic and syntactic aspects of processing in the human brain: an fMRI investigation of different word types,” Cerebral Cortex, vol. 10, no. 7, pp. 698–705, 2000. View at Google Scholar · View at Scopus
  28. M. L. Seghier, C. Boëx, F. Lazeyras, A. Sigrist, and M. Pelizzone, “fMRI evidence for activation of multiple cortical regions in the primary auditory cortex of deaf subjects users of multichannel cochlear implants,” Cerebral Cortex, vol. 15, no. 1, pp. 40–48, 2005. View at Publisher · View at Google Scholar · View at Scopus
  29. Y. Naito, S. Hirano, I. Honjo et al., “Sound-induced activation of auditory cortices in cochlear implant users with post- and prelingual deafness demonstrated by Positron Emission Tomography,” Acta Oto-Laryngologica, vol. 117, no. 4, pp. 490–496, 1997. View at Google Scholar · View at Scopus
  30. D. Wong, R. T. Miyamoto, D. B. Pisoni, M. Sehgal, and G. D. Hutchins, “PET imaging of cochlear-implant and normal-hearing subjects listening to speech and nonspeech,” Hearing Research, vol. 132, no. 1-2, pp. 34–42, 1999. View at Publisher · View at Google Scholar · View at Scopus
  31. Y. Naito, I. Tateya, N. Fujiki et al., “Increased cortical activation during hearing of speech in cochlear implant users,” Hearing Research, vol. 143, no. 1-2, pp. 139–146, 2000. View at Publisher · View at Google Scholar · View at Scopus
  32. A. Giraud, E. Truy, R. S. J. Frackowiak, M. Grégoire, J. Pujol, and L. Collet, “Differential recruitment of the speech processing system in healthy subjects and rehabilitated cochlear implant patients,” Brain, vol. 123, part 7, pp. 1391–1402, 2000. View at Google Scholar · View at Scopus
  33. A. Giraud, C. J. Price, J. M. Graham, E. Truy, and R. S. J. Frackowiak, “Cross-modal plasticity underpins language recovery after cochlear implantation,” Neuron, vol. 30, no. 3, pp. 657–663, 2001. View at Publisher · View at Google Scholar · View at Scopus
  34. A. L. Giraud, C. J. Price, J. M. Graham, and R. S. J. Frackowiak, “Functional plasticity of language-related brain areas after cochlear implantation,” Brain, vol. 124, part 7, pp. 1307–1316, 2001. View at Google Scholar · View at Scopus
  35. A. Gjedde, “Gradients of the brain,” Brain, vol. 122, no. 11, pp. 2013–2014, 1999. View at Publisher · View at Google Scholar · View at Scopus
  36. Y. Naito, H. Okazawa, I. Honjo et al., “Cortical activation with sound stimulation in cochlear implant users demonstrated by positron emission tomography,” Cognitive Brain Research, vol. 2, no. 3, pp. 207–214, 1995. View at Publisher · View at Google Scholar · View at Scopus
  37. M. V. Mortensen, F. Mirz, and A. Gjedde, “Restored speech comprehension linked to activity in left inferior prefrontal and right temporal cortices in postlingual deafness,” NeuroImage, vol. 31, no. 2, pp. 842–852, 2006. View at Publisher · View at Google Scholar · View at Scopus
  38. J. Rouger, S. Lagleyre, J. Démonet, B. Fraysse, O. Deguine, and P. Barone, “Evolution of crossmodal reorganization of the voice area in cochlear-implanted deaf patients,” Human Brain Mapping, vol. 33, no. 8, pp. 1929–1940, 2012. View at Publisher · View at Google Scholar · View at Scopus
  39. K. Strelnikov, J. Rouger, J.-F. Demonet et al., “Does brain activity at rest reflect adaptive strategies? evidence from speech processing after cochlear implantation,” Cerebral Cortex, vol. 20, no. 5, pp. 1217–1222, 2010. View at Publisher · View at Google Scholar · View at Scopus
  40. P. Sandmann, N. Dillier, T. Eichele et al., “Visual activation of auditory cortex reflects maladaptive plasticity in cochlear implant users,” Brain, vol. 135, part 2, pp. 555–568, 2012. View at Publisher · View at Google Scholar · View at Scopus
  41. K. A. Buckley and E. A. Tobey, “Cross-modal plasticity and speech perception in pre- and postlingually deaf cochlear implant users,” Ear and Hearing, vol. 32, no. 1, pp. 2–15, 2011. View at Publisher · View at Google Scholar · View at Scopus
  42. M. Wallentin, “Putative sex differences in verbal abilities and language cortex: a critical review,” Brain and Language, vol. 108, no. 3, pp. 175–183, 2009. View at Publisher · View at Google Scholar · View at Scopus
  43. K. Wagener, J. L. Josvassen, and R. Ardenkjaer, “Design, optimization and evaluation of a Danish sentence test in noise,” International Journal of Audiology, vol. 42, no. 1, pp. 10–17, 2003. View at Google Scholar
  44. ICRA, ICRA Noise Signals Ver. 0. 3., International Collegium of Rehabilitative Audiology, 1997.
  45. C. Elberling, C. Ludvigsen, and P. E. Lyregaard, “Dantale: a new Danish speech material,” Scandinavian Audiology, vol. 18, no. 3, pp. 169–175, 2010. View at Google Scholar · View at Scopus
  46. J. Talairach and P. Tournoux, A Co-Planar Stereotaxic Atlas of the Human Brain, Thieme, New York, NY, USA, 1988.
  47. G. Grabner, A. L. Janke, M. M. Budge, D. Smith, J. Pruessner, and D. L. Collins, “Symmetric atlasing and model based segmentation: an application to the hippocampus in older adults,” Medical Image Computing and Computer-Assisted Intervention, vol. 9, part 2, pp. 58–66, 2006. View at Google Scholar
  48. N. Tzourio-Mazoyer, B. Landeau, D. Papathanassiou et al., “Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain,” NeuroImage, vol. 15, no. 1, pp. 273–289, 2002. View at Publisher · View at Google Scholar · View at Scopus
  49. O. Creutzfeldt, G. Ojemann, and E. Lettich, “Neuronal activity in the human lateral temporal lobe. I. Responses to speech,” Experimental Brain Research, vol. 77, no. 3, pp. 451–475, 1989. View at Google Scholar · View at Scopus
  50. D. Howard, K. Patterson, R. Wise et al., “The cortical localization of the lexicons. Positron emission tomography evidence,” Brain, vol. 115, no. 6, pp. 1769–1782, 1992. View at Google Scholar · View at Scopus
  51. S. Hirano, Y. Naito, H. Okazawa et al., “Cortical activation by monaural speech sound stimulation demonstrated by positron emission tomography,” Experimental Brain Research, vol. 113, no. 1, pp. 75–80, 1997. View at Publisher · View at Google Scholar · View at Scopus
  52. N. Fujiki, Y. Naito, S. Hirano et al., “Correlation between rCBF and speech perception in cochlear implant users,” Auris Nasus Larynx, vol. 26, no. 3, pp. 229–236, 1999. View at Publisher · View at Google Scholar · View at Scopus
  53. H. Okazawa, Y. Naito, Y. Yonekura et al., “Cochlear implant efficiency in pre- and postlingually deaf subjects. A study with H215O and PET,” Brain, vol. 119, no. 4, pp. 1297–1306, 1996. View at Google Scholar · View at Scopus
  54. A. Sharma and M. F. Dorman, “Central auditory development in children with cochlear implants: clinical implications,” Advances in Oto-Rhino-Laryngology, vol. 64, pp. 66–88, 2006. View at Google Scholar · View at Scopus
  55. A. Sharma, M. F. Dorman, and A. Kral, “The influence of a sensitive period on central auditory development in children with unilateral and bilateral cochlear implants,” Hearing Research, vol. 203, no. 1-2, pp. 134–143, 2005. View at Publisher · View at Google Scholar · View at Scopus
  56. L. I. Zhang, “Persistent and specific influences of early acoustic environments on primary auditory cortex,” Nature Neuroscience, vol. 4, no. 11, pp. 1123–1130, 2001. View at Publisher · View at Google Scholar · View at Scopus
  57. M. V. Mortensen, S. Madsen, and A. Gjedde, “Cortical responses to promontorial stimulation in postlingual deafness,” Hearing Research, vol. 209, no. 1-2, pp. 32–41, 2005. View at Publisher · View at Google Scholar · View at Scopus
  58. I. Honjo, “Brain function of cochlear implant users,” Advances in Oto-Rhino-Laryngology, vol. 57, pp. 42–44, 2000. View at Google Scholar · View at Scopus
  59. H. Lee, A. Giraud, E. Kang et al., “Cortical activity at rest predicts cochlear implantation outcome,” Cerebral Cortex, vol. 17, no. 4, pp. 909–917, 2007. View at Publisher · View at Google Scholar · View at Scopus
  60. P. Johannsen, J. Jakobsen, P. Bruhn, and A. Gjedde, “Cortical responses to sustained and divided attention in Alzheimer's disease,” NeuroImage, vol. 10, no. 3 I, pp. 269–281, 1999. View at Publisher · View at Google Scholar · View at Scopus
  61. J. D. E. Gabrieli, “Cognitive neuroscience of human memory,” Annual Review of Psychology, vol. 49, pp. 87–115, 1998. View at Google Scholar · View at Scopus
  62. B. Petersen, M. V. Mortensen, M. Hansen, and P. Vuust, “Singing in the key of life: a study on effects of musical ear training after cochlear implantation,” Psychomusicology, vol. 22, no. 2, pp. 134–151, 2012. View at Google Scholar
  63. V. Looi and J. She, “Music perception of cochlear implant users: a questionnaire, and its implications for a music training program,” International Journal of Audiology, vol. 49, no. 2, pp. 116–128, 2010. View at Publisher · View at Google Scholar · View at Scopus