Table of Contents Author Guidelines Submit a Manuscript
Neural Plasticity
Volume 2013 (2013), Article ID 425845, 10 pages
http://dx.doi.org/10.1155/2013/425845
Review Article

Microglia and Synapse: Interactions in Health and Neurodegeneration

1German Center for Neurodegenerative Diseases (DZNE), Ludwig-Erhard-Allee 2, 53175 Bonn, Germany
2Axe Neurosciences, Centre de Recherche du CHU de Québec, Département de Médecine Moléculaire, Université Laval, 2705 Boulevard Laurier, Québec, QC, Canada G1V 4G2

Received 28 May 2013; Revised 30 September 2013; Accepted 19 October 2013

Academic Editor: Beth Stevens

Copyright © 2013 Zuzana Šišková and Marie-Ève Tremblay. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. F. Ginhoux, M. Greter, M. Leboeuf et al., “Fate mapping analysis reveals that adult microglia derive from primitive macrophages,” Science, vol. 330, no. 6005, pp. 841–845, 2010. View at Publisher · View at Google Scholar · View at Scopus
  2. F. Ginhoux, S. Lim, G. Hoeffel, D. Low, and T. Huber, “Origin and differentiation of microglia,” Frontiers in Cellular Neuroscience, vol. 7, article 45, 2013. View at Publisher · View at Google Scholar
  3. K. Kierdorf, D. Erny, T. Goldmann, V. Sander, and C. Schulz, “Microglia emerge from erythromyeloid precursors via Pu.1- and Irf8-dependent pathways,” Nature Neuroscience, vol. 16, pp. 273–280, 2013. View at Publisher · View at Google Scholar
  4. D. Davalos, J. Grutzendler, G. Yang et al., “ATP mediates rapid microglial response to local brain injury in vivo,” Nature Neuroscience, vol. 8, no. 6, pp. 752–758, 2005. View at Publisher · View at Google Scholar · View at Scopus
  5. A. Nimmerjahn, F. Kirchhoff, and F. Helmchen, “Neuroscience: resting microglial cells are highly dynamic surveillants of brain parenchyma in vivo,” Science, vol. 308, no. 5726, pp. 1314–1318, 2005. View at Publisher · View at Google Scholar · View at Scopus
  6. A. M. Fontainhas, M. Wang, K. J. Liang et al., “Microglial morphology and dynamic behavior is regulated by ionotropic glutamatergic and GABAergic neurotransmission,” PLoS ONE, vol. 6, no. 1, Article ID e15973, 2011. View at Publisher · View at Google Scholar · View at Scopus
  7. U. B. Eyo and M. E. Dailey, “Microglia: key elements in neural development, plasticity, and pathology,” Journal of Neuroimmune Pharmacology, vol. 8, no. 3, pp. 494–509, 2013. View at Publisher · View at Google Scholar
  8. P. Dibaj, F. Nadrigny, H. Steffens et al., “NO mediates microglial response to acute spinal cord injury under ATP control in vivo,” Glia, vol. 58, no. 9, pp. 1133–1144, 2010. View at Publisher · View at Google Scholar · View at Scopus
  9. G. W. Kreutzberg, “Microglia: a sensor for pathological events in the CNS,” Trends in Neurosciences, vol. 19, no. 8, pp. 312–318, 1996. View at Publisher · View at Google Scholar · View at Scopus
  10. U.-K. Hanisch and H. Kettenmann, “Microglia: active sensor and versatile effector cells in the normal and pathologic brain,” Nature Neuroscience, vol. 10, no. 11, pp. 1387–1394, 2007. View at Publisher · View at Google Scholar · View at Scopus
  11. R. M. Ransohoff and V. H. Perry, “Microglial physiology: unique stimuli, specialized responses,” Annual Review of Immunology, vol. 27, pp. 119–145, 2009. View at Publisher · View at Google Scholar · View at Scopus
  12. K. Helmut, U.-K. Hanisch, M. Noda, and A. Verkhratsky, “Physiology of microglia,” Physiological Reviews, vol. 91, no. 2, pp. 461–553, 2011. View at Publisher · View at Google Scholar · View at Scopus
  13. A. Bessis, C. Béchade, D. Bernard, and A. Roumier, “Microglial control of neuronal death and synaptic properties,” Glia, vol. 55, no. 3, pp. 233–238, 2007. View at Publisher · View at Google Scholar · View at Scopus
  14. J. J. Neher, U. Neniskyte, and G. C. Brown, “Primary phagocytosis of neurons by inflamed microglia: potential roles in neurodegeneration,” Frontiers in Pharmacology, vol. 3, article 27, 2012. View at Publisher · View at Google Scholar
  15. M. Prinz, J. Priller, S. S. Sisodia, and R. M. Ransohoff, “Heterogeneity of CNS myeloid cells and their roles in neurodegeneration,” Nature Neuroscience, vol. 14, no. 10, pp. 1227–1235, 2011. View at Publisher · View at Google Scholar · View at Scopus
  16. B. D. Trapp, J. R. Wujek, G. A. Criste et al., “Evidence for synaptic stripping by cortical microglia,” Glia, vol. 55, no. 4, pp. 360–368, 2007. View at Publisher · View at Google Scholar · View at Scopus
  17. K. Blinzinger and G. Kreutzberg, “Displacement of synaptic terminals from regenerating motoneurons by microglial cells,” Zeitschrift für Zellforschung und Mikroskopische Anatomie, vol. 85, no. 2, pp. 145–157, 1968. View at Publisher · View at Google Scholar · View at Scopus
  18. M.-È. Tremblay, “The role of microglia at synapses in the healthy CNS: novel insights from recent imaging studies,” Neuron Glia Biology, vol. 7, pp. 67–76, 2011. View at Publisher · View at Google Scholar
  19. M.-È. Tremblay, B. Stevens, A. Sierra, H. Wake, A. Bessis, and A. Nimmerjahn, “The role of microglia in the healthy brain,” Journal of Neuroscience, vol. 31, no. 45, pp. 16064–16069, 2011. View at Publisher · View at Google Scholar · View at Scopus
  20. S. Hellwig, A. Heinrich, and K. Biber, “The brain's best friend: microglial neurotoxicity revisited,” Frontiers in Cellular Neuroscience, 2013. View at Publisher · View at Google Scholar
  21. R. C. Paolicelli, G. Bolasco, F. Pagani et al., “Synaptic pruning by microglia is necessary for normal brain development,” Science, vol. 333, no. 6048, pp. 1456–1458, 2011. View at Publisher · View at Google Scholar · View at Scopus
  22. C. L. Cunningham, V. Martinez-Cerdeno, and S. C. Noctor, “Microglia regulate the number of neural precursor cells in the developing cerebral cortex,” Journal of Neuroscience, vol. 33, pp. 4216–4233, 2013. View at Publisher · View at Google Scholar
  23. M. Hoshiko, I. Arnoux, E. Avignone, N. Yamamoto, and E. Audinat, “Deficiency of the microglial receptor CX3CR1 impairs postnatal functional development of thalamocortical synapses in the barrel cortex,” Journal of Neuroscience, vol. 32, pp. 15106–15111, 2012. View at Google Scholar
  24. O. Pascual, S. B. Achour, P. Rostaing, A. Triller, and A. Bessis, “Microglia activation triggers astrocyte-mediated modulation of excitatory neurotransmission,” Proceedings of the National Academy of Sciences of the United States of America, vol. 109, no. 4, pp. E197–E205, 2012. View at Publisher · View at Google Scholar · View at Scopus
  25. Y. Li, X. F. Du, C. S. Liu, Z. L. Wen, and J. L. Du, “Reciprocal regulation between resting microglial dynamics and neuronal activity in vivo,” Developmental Cell, vol. 23, no. 6, pp. 1189–1202, 2012. View at Publisher · View at Google Scholar
  26. A. Sierra, J. M. Encinas, J. J. P. Deudero et al., “Microglia shape adult hippocampal neurogenesis through apoptosis-coupled phagocytosis,” Cell Stem Cell, vol. 7, no. 4, pp. 483–495, 2010. View at Publisher · View at Google Scholar · View at Scopus
  27. C. Bechade, Y. Cantaut-Belarif, and A. Bessis, “Microglial control of neuronal activity,” Frontiers in Cellular Neuroscience, vol. 7, article 32, 2013. View at Google Scholar
  28. D. P. Schafer, E. K. Lehrman, A. G. Kautzman et al., “Microglia sculpt postnatal neural circuits in an activity and complement-dependent manner,” Neuron, vol. 74, no. 4, pp. 691–705, 2012. View at Publisher · View at Google Scholar
  29. H. Wake, A. J. Moorhouse, S. Jinno, S. Kohsaka, and J. Nabekura, “Resting microglia directly monitor the functional state of synapses in vivo and determine the fate of ischemic terminals,” Journal of Neuroscience, vol. 29, no. 13, pp. 3974–3980, 2009. View at Publisher · View at Google Scholar · View at Scopus
  30. M.-È. Tremblay, R. L. Lowery, and A. K. Majewska, “Microglial interactions with synapses are modulated by visual experience,” PLoS Biology, vol. 8, no. 11, Article ID e1000527, 2010. View at Publisher · View at Google Scholar · View at Scopus
  31. M.-È. Tremblay, M. L. Zettel, J. R. Ison, P. D. Allen, and A. K. Majewska, “Effects of aging and sensory loss on glial cells in mouse visual and auditory cortices,” Glia, vol. 60, no. 4, pp. 541–558, 2012. View at Publisher · View at Google Scholar · View at Scopus
  32. C. J. Sogn, M. Puchades, and V. Gundersen, “Rare contacts between synapses and microglial processes containing high levels of Iba1 and actin—a postembedding immunogold study in the healthy rat brain,” European Journal of Neuroscience, vol. 32, no. 1, pp. 2030–2040, 2013. View at Publisher · View at Google Scholar
  33. H. Neumann, M. R. Kotter, and R. J. M. Franklin, “Debris clearance by microglia: an essential link between degeneration and regeneration,” Brain, vol. 132, no. 2, pp. 288–295, 2009. View at Publisher · View at Google Scholar · View at Scopus
  34. A. Sierra, O. Abiega, A. Shahraz, and H. Neumann, “Janus-faced microglia: beneficial and detrimental consequences of microglial phagocytosis,” Frontiers in Cellular Neuroscience, vol. 7, article 6, 2013. View at Google Scholar
  35. S.-M. Lu, M.-È. Tremblay, I. L. King et al., “HIV-1 Tat-induced microgliosis and synaptic damage via interactions between peripheral and central myeloid cells,” PLoS ONE, vol. 6, no. 9, Article ID e23915, 2011. View at Publisher · View at Google Scholar · View at Scopus
  36. D. F. Marker, M.-È. Tremblay, J. M. Puccini et al., “The new small-molecule mixed-lineage kinase 3 inhibitor URMC-099 is neuroprotective and anti-inflammatory in models of human immunodeficiency virus-associated neurocognitive disorders,” Journal of Neuroscience, vol. 33, no. 24, pp. 9998–10010, 2013. View at Publisher · View at Google Scholar
  37. T. Keck, T. D. Mrsic-Flogel, M. Vaz Afonso, U. T. Eysel, T. Bonhoeffer, and M. Hübener, “Massive restructuring of neuronal circuits during functional reorganization of adult visual cortex,” Nature Neuroscience, vol. 11, no. 10, pp. 1162–1167, 2008. View at Publisher · View at Google Scholar · View at Scopus
  38. A. Majewska and M. Sur, “Motility of dendritic spines in visual cortex in vivo: changes during the critical period and effects of visual deprivation,” Proceedings of the National Academy of Sciences of the United States of America, vol. 100, no. 26, pp. 16024–16029, 2003. View at Publisher · View at Google Scholar · View at Scopus
  39. D. Tropea, A. K. Majewska, R. Garcia, and M. Sur, “Structural dynamics of synapses in vivo correlate with functional changes during experience-dependent plasticity in visual cortex,” Journal of Neuroscience, vol. 30, no. 33, pp. 11086–11095, 2010. View at Publisher · View at Google Scholar · View at Scopus
  40. M. R. Damani, L. Zhao, A. M. Fontainhas, J. Amaral, R. N. Fariss, and W. T. Wong, “Age-related alterations in the dynamic behavior of microglia,” Aging Cell, vol. 10, no. 2, pp. 263–276, 2011. View at Publisher · View at Google Scholar · View at Scopus
  41. A. Sierra, A. C. Gottfried-Blackmore, B. S. Mcewen, and K. Bulloch, “Microglia derived from aging mice exhibit an altered inflammatory profile,” Glia, vol. 55, no. 4, pp. 412–424, 2007. View at Publisher · View at Google Scholar · View at Scopus
  42. X.-G. Luo, J.-Q. Ding, and S.-D. Chen, “Microglia in the aging brain: relevance to neurodegeneration,” Molecular Neurodegeneration, vol. 5, no. 1, article 12, 2010. View at Publisher · View at Google Scholar · View at Scopus
  43. H. Kettenmann, F. Kirchhoff, and A. Verkhratsky, “Microglia: new roles for the synaptic stripper,” Neuron, vol. 77, pp. 10–18, 2013. View at Google Scholar
  44. W. T. Wong, “Microglial aging in the healthy CNS: phenotypes, drivers, and rejuvenation,” Frontiers in Cellular Neuroscience, vol. 7, article 22, 2013. View at Google Scholar
  45. D. J. Selkoe, “Cell biology of protein misfolding: the examples of Alzheimer's and Parkinson's diseases,” Nature Cell Biology, vol. 6, no. 11, pp. 1054–1061, 2004. View at Publisher · View at Google Scholar · View at Scopus
  46. C. Haass and D. J. Selkoe, “Soluble protein oligomers in neurodegeneration: lessons from the Alzheimer's amyloid β-peptide,” Nature Reviews Molecular Cell Biology, vol. 8, no. 2, pp. 101–112, 2007. View at Publisher · View at Google Scholar · View at Scopus
  47. D. M. Walsh, I. Klyubin, J. V. Fadeeva et al., “Naturally secreted oligomers of amyloid β protein potently inhibit hippocampal long-term potentiation in vivo,” Nature, vol. 416, no. 6880, pp. 535–539, 2002. View at Publisher · View at Google Scholar · View at Scopus
  48. M. Townsend, G. M. Shankar, T. Mehta, D. M. Walsh, and D. J. Selkoe, “Effects of secreted oligomers of amyloid β-protein on hippocampal synaptic plasticity: a potent role for trimers,” Journal of Physiology, vol. 572, no. 2, pp. 477–492, 2006. View at Publisher · View at Google Scholar · View at Scopus
  49. R. D. Terry, E. Masliah, D. P. Salmon et al., “Physical basis of cognitive alterations in Alzheimer's disease: synapse loss is the major correlate of cognitive impairment,” Annals of Neurology, vol. 30, no. 4, pp. 572–580, 1991. View at Publisher · View at Google Scholar · View at Scopus
  50. S. W. Scheff, D. A. Price, F. A. Schmitt, and E. J. Mufson, “Hippocampal synaptic loss in early Alzheimer's disease and mild cognitive impairment,” Neurobiology of Aging, vol. 27, no. 10, pp. 1372–1384, 2006. View at Publisher · View at Google Scholar · View at Scopus
  51. R. Malinow, “New developments on the role of NMDA receptors in Alzheimer's disease,” Current Opinion in Neurobiology, vol. 22, no. 3, pp. 559–563, 2012. View at Publisher · View at Google Scholar
  52. E. G. McGeer and P. L. McGeer, “Brain inflammation in Alzheimer disease and the therapeutic implications,” Current Pharmaceutical Design, vol. 5, no. 10, pp. 821–836, 1999. View at Google Scholar · View at Scopus
  53. M. Meyer-Luehmann, T. L. Spires-Jones, C. Prada et al., “Rapid appearance and local toxicity of amyloid-β plaques in a mouse model of Alzheimer's disease,” Nature, vol. 451, no. 7179, pp. 720–724, 2008. View at Publisher · View at Google Scholar · View at Scopus
  54. A. R. Simard and S. Rivest, “Bone marrow stem cells have the ability to populate the entire central nervous system into fully differentiated parenchymal microglia,” FASEB Journal, vol. 18, no. 9, pp. 998–1000, 2004. View at Publisher · View at Google Scholar · View at Scopus
  55. W. Q. Qiu, Z. Ye, D. Kholodenko, P. Seubert, and D. J. Selkoe, “Degradation of amyloid β-protein by a metalloprotease secreted by microglia and other neural and non-neural cells,” Journal of Biological Chemistry, vol. 272, no. 10, pp. 6641–6646, 1997. View at Publisher · View at Google Scholar · View at Scopus
  56. D. M. Paresce, R. N. Ghosh, and F. R. Maxfield, “Microglial cells internalize aggregates of the Alzheimer's disease amyloid β-protein via a scavenger receptor,” Neuron, vol. 17, no. 3, pp. 553–565, 1996. View at Publisher · View at Google Scholar · View at Scopus
  57. J. El Khoury, S. E. Hickman, C. A. Thomas, L. Cao, S. C. Silverstein, and J. D. Loike, “Scavenger receptor-mediated adhesion of microglia to β-amyloid fibrils,” Nature, vol. 382, no. 6593, pp. 716–719, 1996. View at Publisher · View at Google Scholar · View at Scopus
  58. J. Koenigsknecht and G. Landreth, “Microglial phagocytosis of fibrillar β-amyloid through a β1 integrin-dependent mechanism,” Journal of Neuroscience, vol. 24, no. 44, pp. 9838–9846, 2004. View at Publisher · View at Google Scholar · View at Scopus
  59. J. El Khoury, M. Toft, S. E. Hickman et al., “Ccr2 deficiency impairs microglial accumulation and accelerates progression of Alzheimer-like disease,” Nature Medicine, vol. 13, no. 4, pp. 432–438, 2007. View at Publisher · View at Google Scholar · View at Scopus
  60. J. A. Nicoll, E. Barton, D. Boche et al., “Abeta species removal after Aβ42 immunization,” Journal of Neuropathology and Experimental Neurology, vol. 65, 11, pp. 1040–1048, 2006. View at Publisher · View at Google Scholar
  61. P. E. Cramer, J. R. Cirrito, D. W. Wesson et al., “ApoE-directed therapeutics rapidly clear β-amyloid and reverse deficits in AD mouse models,” Science, vol. 335, no. 6075, pp. 1503–1506, 2012. View at Publisher · View at Google Scholar · View at Scopus
  62. M. T. Heneka, M. P. Kummer, A. Stutz et al., “NLRP3 is activated in Alzheimer's disease and contributes to pathology in APP/PS1 mice,” Nature, vol. 493, pp. 674–678, 2013. View at Publisher · View at Google Scholar
  63. G. Naert and S. Rivest, “CC chemokine receptor 2 deficiency aggravates cognitive impairments and amyloid pathology in a transgenic mouse model of Alzheimer's disease,” Journal of Neuroscience, vol. 31, no. 16, pp. 6208–6220, 2011. View at Publisher · View at Google Scholar · View at Scopus
  64. S. A. Grathwohl, R. E. Kälin, T. Bolmont et al., “Formation and maintenance of Alzheimer's disease β-amyloid plaques in the absence of microglia,” Nature Neuroscience, vol. 12, no. 11, pp. 1361–1363, 2009. View at Publisher · View at Google Scholar · View at Scopus
  65. S. Hellwig, A. Heinrich, and K. Biber, “The brain's best friend: microglial neurotoxicity revisited,” Frontiers in Cellular Neuroscience, vol. 7, pp. 1–11, 2013. View at Google Scholar
  66. N. H. Varvel, S. A. Grathwohl, F. Baumann et al., “Microglial repopulation model reveals a robust homeostatic process for replacing CNS myeloid cells,” Proceedings of the National Academy of Sciences of the United States of America, vol. 109, no. 44, pp. 18150–18155, 2012. View at Google Scholar
  67. S. D. Yan, X. Chen, J. Fu et al., “RAGE and amyloid-β peptide neurotoxicity in Alzheimer's disease,” Nature, vol. 382, no. 6593, pp. 685–691, 1996. View at Publisher · View at Google Scholar · View at Scopus
  68. D. T. Weldon, S. D. Rogers, J. R. Ghilardi et al., “Fibrillar β-amyloid induces microglial phagocytosis, expression of inducible nitric oxide synthase, and loss of a select population of neurons in the rat CNS in vivo,” Journal of Neuroscience, vol. 18, no. 6, pp. 2161–2173, 1998. View at Google Scholar · View at Scopus
  69. J. K. Harrison, Y. Jiang, S. Chen et al., “Role for neuronally derived fractalkine in mediating interactions between neurons and CX3CR1-expressing microglia,” Proceedings of the National Academy of Sciences of the United States of America, vol. 95, no. 18, pp. 10896–10901, 1998. View at Publisher · View at Google Scholar · View at Scopus
  70. M. Fuhrmann, T. Bittner, C. K. E. Jung et al., “Microglial Cx3cr1 knockout prevents neuron loss in a mouse model of Alzheimer's disease,” Nature Neuroscience, vol. 13, no. 4, pp. 411–413, 2010. View at Publisher · View at Google Scholar · View at Scopus
  71. Y. Yoshiyama, M. Higuchi, B. Zhang et al., “Synapse loss and microglial activation precede tangles in a P301S tauopathy mouse model,” Neuron, vol. 53, no. 3, pp. 337–351, 2007. View at Publisher · View at Google Scholar · View at Scopus
  72. D. A. Fraser, K. Pisalyaput, and A. J. Tenner, “C1q enhances microglial clearance of apoptotic neurons and neuronal blebs, and modulates subsequent inflammatory cytokine production,” Journal of Neurochemistry, vol. 112, no. 3, pp. 733–743, 2010. View at Publisher · View at Google Scholar · View at Scopus
  73. S. B. Prusiner and S. J. DeArmond, “Prion diseases and neurodegeneration,” Annual Review of Neuroscience, vol. 17, pp. 311–339, 1994. View at Google Scholar · View at Scopus
  74. A. R. Johnston, C. Black, J. Fraser, and N. MacLeod, “Scrapie infection alters the membrane and synaptic properties of mouse hippocampal CA1 pyramidal neurones,” Journal of Physiology, vol. 500, part 1, pp. 1–15, 1997. View at Google Scholar · View at Scopus
  75. P. V. Belichenko, D. Brown, M. Jeffrey, and J. R. Fraser, “Dendritic and synaptic alterations of hippocampal pyramidal neurones in scrapie-infected mice,” Neuropathology and Applied Neurobiology, vol. 26, no. 2, pp. 143–149, 2000. View at Publisher · View at Google Scholar · View at Scopus
  76. R. N. Hogan, J. R. Baringer, and S. B. Prusiner, “Scrapie infection diminishes spines and increases varicosities of dendrites in hamsters: a quantitative Golgi analysis,” Journal of Neuropathology and Experimental Neurology, vol. 46, no. 4, pp. 461–473, 1987. View at Google Scholar · View at Scopus
  77. D. M. D. Landis, R. S. Williams, and C. L. Masters, “Golgi and electron microscopic studies of spongiform encephalopathy,” Neurology, vol. 31, no. 5, pp. 538–549, 1981. View at Google Scholar · View at Scopus
  78. B. Caughey and G. S. Baron, “Prions and their partners in crime,” Nature, vol. 443, no. 7113, pp. 803–810, 2006. View at Publisher · View at Google Scholar · View at Scopus
  79. M. Jeffrey, W. G. Halliday, J. Bell et al., “Synapse loss associated with abnormal PrP precedes neuronal degeneration in the scrapie-infected murine hippocampus,” Neuropathology and Applied Neurobiology, vol. 26, no. 1, pp. 41–54, 2000. View at Publisher · View at Google Scholar · View at Scopus
  80. C. Cunningham, R. Deacon, H. Wells et al., “Synaptic changes characterize early behavioural signs in the ME7 model of murine prion disease,” European Journal of Neuroscience, vol. 17, no. 10, pp. 2147–2155, 2003. View at Publisher · View at Google Scholar · View at Scopus
  81. B. C. Gray, Z. Siskova, V. H. Perry, and V. O'Connor, “Selective presynaptic degeneration in the synaptopathy associated with ME7-induced hippocampal pathology,” Neurobiology of Disease, vol. 35, no. 1, pp. 63–74, 2009. View at Publisher · View at Google Scholar · View at Scopus
  82. T. Kitamoto, R.-W. Shin, K. Doh-ura et al., “Abnormal isoform of prion proteins accumulates in the synaptic structures of the central nervous system in patients with Creutzfeldt-Jakob disease,” American Journal of Pathology, vol. 140, no. 6, pp. 1285–1294, 1992. View at Google Scholar · View at Scopus
  83. K. Williams, E. Ulvestad, and J. Antel, “Immune regulatory and effector properties of human adult microglia studied in vitro and in situ,” Advances in Neuroimmunology, vol. 4, no. 3, pp. 273–281, 1994. View at Google Scholar · View at Scopus
  84. L. Manuelidis, W. Fritch, and Y.-G. Xi, “Evolution of a strain of CJD that induces BSE-like plaques,” Science, vol. 277, no. 5322, pp. 94–98, 1997. View at Publisher · View at Google Scholar · View at Scopus
  85. T. A. Baker, “Protein unfolding: trapped in the act,” Nature, vol. 401, no. 6748, pp. 29–30, 1999. View at Publisher · View at Google Scholar · View at Scopus
  86. D. Boche, C. Cunningham, F. Docagne, H. Scott, and V. H. Perry, “TGFβ1 regulates the inflammatory response during chronic neurodegeneration,” Neurobiology of Disease, vol. 22, no. 3, pp. 638–650, 2006. View at Publisher · View at Google Scholar · View at Scopus
  87. V. A. Fadok and G. Chimini, “The phagocytosis of apoptotic cells,” Seminars in Immunology, vol. 13, no. 6, pp. 365–372, 2001. View at Publisher · View at Google Scholar · View at Scopus
  88. K. Guenther, R. M. J. Deacon, V. H. Perry, and J. N. P. Rawlins, “Early behavioural changes in scrapie-affected mice and the influence of dapsone,” European Journal of Neuroscience, vol. 14, no. 2, pp. 401–409, 2001. View at Publisher · View at Google Scholar · View at Scopus
  89. Z. Šišková, A. Page, V. O'Connor, and V. H. Perry, “Degenerating synaptic boutons in prion disease: microglia activation without synaptic stripping,” American Journal of Pathology, vol. 175, no. 4, pp. 1610–1621, 2009. View at Publisher · View at Google Scholar · View at Scopus
  90. Z. Siskova, R. A. Reynolds, V. O'Connor, and V. H. Perry, “Brain region specific pre-synaptic and post-synaptic degeneration are early components of neuropathology in prion disease,” PLoS ONE, vol. 8, no. 1, Article ID e55004, 2013. View at Publisher · View at Google Scholar
  91. Z. Sisková, N. K. Sanyal, A. Orban, V. O'Connor, and V. H. Perry, “Reactive hypertrophy of synaptic varicosities within the hippocampus of prion-infected mice,” Biochemical Society Transactions, vol. 38, no. 2, pp. 471–475, 2010. View at Publisher · View at Google Scholar · View at Scopus
  92. C. Bertoni-Freddari, P. Fattoretti, T. Casoli, W. Meier-Ruge, and J. Ulrich, “Morphological adaptive response of the synaptic junctional zones in the human dentate gyrus during aging and Alzheimer's disease,” Brain Research, vol. 517, no. 1-2, pp. 69–75, 1990. View at Publisher · View at Google Scholar · View at Scopus
  93. S. T. DeKosky and S. W. Scheff, “Synapse loss in frontal cortex biopsies in Alzheimer's disease: correlation with cognitive severity,” Annals of Neurology, vol. 27, no. 5, pp. 457–464, 1990. View at Google Scholar · View at Scopus
  94. L. O. Ronnevi, “Spontaneous phagocytosis of C-type synaptic terminals by spinal α-motoneurons in newborn kittens. An electron microscopic study,” Brain Research, vol. 162, no. 2, pp. 189–199, 1979. View at Publisher · View at Google Scholar · View at Scopus
  95. M. Fuhrmann, G. Mitteregger, H. Kretzschmar, and J. Herms, “Dendritic pathology in prion disease starts at the synaptic spine,” Journal of Neuroscience, vol. 27, no. 23, pp. 6224–6233, 2007. View at Publisher · View at Google Scholar · View at Scopus
  96. V. H. Perry and J. Teeling, “Microglia and macrophages of the central nervous system: the contribution of microglia priming and systemic inflammation to chronic neurodegeneration,” Seminars in Immunopathology, vol. 35, no. 5, pp. 601–612, 2013. View at Publisher · View at Google Scholar