Table of Contents Author Guidelines Submit a Manuscript
Neural Plasticity
Volume 2013 (2013), Article ID 452439, 10 pages
http://dx.doi.org/10.1155/2013/452439
Research Article

Altered Functional Connectivity of Cognitive-Related Cerebellar Subregions in Well-Recovered Stroke Patients

1Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin 300052, China
2Cerebrovascular Diseases Research Institute, Xuanwu Hospital of Capital Medical University, Beijing 100053, China

Received 9 March 2013; Revised 3 June 2013; Accepted 4 June 2013

Academic Editor: Bruno Poucet

Copyright © 2013 Wei Li et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. C. Calautti and J.-C. Baron, “Functional neuroimaging studies of motor recovery after stroke in adults: a review,” Stroke, vol. 34, no. 6, pp. 1553–1566, 2003. View at Publisher · View at Google Scholar · View at Scopus
  2. C. Calautti, M. Naccarato, P. S. Jones et al., “The relationship between motor deficit and hemisphere activation balance after stroke: A 3T fMRI Study,” NeuroImage, vol. 34, no. 1, pp. 322–331, 2007. View at Publisher · View at Google Scholar · View at Scopus
  3. S. C. Cramer, G. Nelles, J. D. Schaechter, J. D. Kaplan, S. P. Finklestein, and B. R. Rosen, “A functional MRI study of three motor tasks in the evaluation of stroke recovery,” Neurorehabilitation and Neural Repair, vol. 15, no. 1, pp. 1–8, 2001. View at Google Scholar · View at Scopus
  4. S. Dechaumont-Palacin, P. Marque, X. De Boissezon et al., “Neural correlates of proprioceptive integration in the contralesional hemisphere of very impaired patients shortly after a subcortical stroke: An fMRI Study,” Neurorehabilitation and Neural Repair, vol. 22, no. 2, pp. 154–165, 2008. View at Publisher · View at Google Scholar · View at Scopus
  5. I. Loubinoux, S. Dechaumont-Palacin, E. Castel-Lacanal et al., “Prognostic value of fMRI in recovery of hand function in subcortical stroke patients,” Cerebral Cortex, vol. 17, no. 12, pp. 2980–2987, 2007. View at Publisher · View at Google Scholar · View at Scopus
  6. D. Tombari, I. Loubinoux, J. Pariente et al., “A Longitudinal fMRI Study: in recovering and then in clinically stable sub-cortical stroke patients,” NeuroImage, vol. 23, no. 3, pp. 827–839, 2004. View at Publisher · View at Google Scholar · View at Scopus
  7. S. Pappata, B. Mazoyer, S. Tran Dinh, H. Cambon, M. Levasseur, and J. C. Baron, “Effects of capsular or thalamic stroke on metabolism in the cortex and cerebellum: A Positron Tomography Study,” Stroke, vol. 21, no. 4, pp. 519–524, 1990. View at Google Scholar · View at Scopus
  8. Y. Sakashita, H. Matsuda, K. Kakuda, and M. Takamori, “Hypoperfusion and vasoreactivity in the thalamus and cerebellum after stroke,” Stroke, vol. 24, no. 1, pp. 84–87, 1993. View at Google Scholar · View at Scopus
  9. H. Yamauchi, H. Fukuyama, Y. Nagahama, H. Okazawa, and J. Konishi, “A decrease in regional cerebral blood volume and hematocrit in crossed cerebellar diaschisis,” Stroke, vol. 30, no. 7, pp. 1429–1431, 1999. View at Google Scholar · View at Scopus
  10. M. Kraemer, T. Schormann, G. Hagemann, B. Qi, O. W. Witte, and R. J. Seitz, “Delayed shrinkage of the brain after ischemic stroke: preliminary observations with voxel-guided morphometry,” Journal of Neuroimaging, vol. 14, no. 3, pp. 265–272, 2004. View at Publisher · View at Google Scholar · View at Scopus
  11. J. Kim, S.-K. Lee, J. D. Lee, Y. W. Kim, and D. I. Kim, “Decreased fractional anisotropy of middle cerebellar peduncle in crossed cerebellar diaschisis: diffusion-tensor imaging-positron-emission tomography correlation study,” American Journal of Neuroradiology, vol. 26, no. 9, pp. 2224–2228, 2005. View at Google Scholar · View at Scopus
  12. C. Yu, C. Zhu, Y. Zhang et al., “A longitudinal diffusion tensor imaging study on Wallerian degeneration of corticospinal tract after motor pathway stroke,” NeuroImage, vol. 47, no. 2, pp. 451–458, 2009. View at Publisher · View at Google Scholar · View at Scopus
  13. C. Weiller, F. Chollet, K. J. Friston, R. J. S. Wise, and R. S. J. Frackowiak, “Functional reorganization of the brain in recovery from striatocapsular infarction in man,” Annals of Neurology, vol. 31, no. 5, pp. 463–472, 1992. View at Google Scholar · View at Scopus
  14. B. Weder, U. Knorr, H. Herzog et al., “Tactile exploration of shape after subcortical ischaemic infarction studied with PET,” Brain, vol. 117, no. 3, pp. 593–605, 1994. View at Google Scholar · View at Scopus
  15. N. S. Ward, M. M. Brown, A. J. Thompson, and R. S. J. Frackowiak, “Neural correlates of motor recovery after stroke: A Longitudinal fMRI Study,” Brain, vol. 126, no. 11, pp. 2476–2496, 2003. View at Publisher · View at Google Scholar · View at Scopus
  16. L. Wang, C. Yu, H. Chen et al., “Dynamic functional reorganization of the motor execution network after stroke,” Brain, vol. 133, no. 4, pp. 1224–1238, 2010. View at Publisher · View at Google Scholar · View at Scopus
  17. H. Baillieux, H. J. D. Smet, P. F. Paquier, P. P. De Deyn, and P. Mariën, “Cerebellar neurocognition: insights into the bottom of the brain,” Clinical Neurology and Neurosurgery, vol. 110, no. 8, pp. 763–773, 2008. View at Publisher · View at Google Scholar · View at Scopus
  18. J. E. Desmond, J. D. E. Gabrieli, and G. H. Glover, “Dissociation of frontal and cerebellar activity in a cognitive task: evidence for a distinction between selection and search,” NeuroImage, vol. 7, no. 4, part 1, pp. 368–376, 1998. View at Publisher · View at Google Scholar · View at Scopus
  19. P. Hubrich-Ungureanu, N. Kaemmerer, F. A. Henn, and D. F. Braus, “Lateralized organization of the cerebellum in a silent verbal fluency task: a functional magnetic resonance imaging study in healthy volunteers,” Neuroscience Letters, vol. 319, no. 2, pp. 91–94, 2002. View at Publisher · View at Google Scholar · View at Scopus
  20. M. E. Raichle, J. A. Fiez, T. O. Videen et al., “Practice-related changes in human brain functional anatomy during nonmotor learning,” Cerebral Cortex, vol. 4, no. 1, pp. 8–26, 1994. View at Google Scholar · View at Scopus
  21. J. D. Schmahmann, “From movement to thought: anatomic substrates of the cerebellar contribution to cognitive processing,” Human Brain Maping, vol. 4, no. 3, pp. 174–198, 1996. View at Google Scholar
  22. J. D. Schmahmann and J. C. Sherman, “The cerebellar cognitive affective syndrome,” Brain, vol. 121, no. 4, pp. 561–579, 1998. View at Publisher · View at Google Scholar · View at Scopus
  23. H. Xiang, C. Lin, X. Ma et al., “Involvement of the cerebellum in semantic discrimination: An fMRI Study,” Human Brain Mapping, vol. 18, no. 3, pp. 208–214, 2003. View at Publisher · View at Google Scholar · View at Scopus
  24. L. Sang, W. Qin, Y. Liu et al., “Resting-state functional connectivity of the vermal and hemispheric subregions of the cerebellum with both the cerebral cortical networks and subcortical structures,” NeuroImage, vol. 61, no. 4, pp. 1213–1225, 2012. View at Google Scholar
  25. C. Habas, N. Kamdar, D. Nguyen et al., “Distinct cerebellar contributions to intrinsic connectivity networks,” Journal of Neuroscience, vol. 29, no. 26, pp. 8586–8594, 2009. View at Publisher · View at Google Scholar · View at Scopus
  26. J. D. Schmahmann, “An emerging concept: the cerebellar contribution to higher function,” Archives of Neurology, vol. 48, no. 11, pp. 1178–1187, 1991. View at Google Scholar · View at Scopus
  27. C. J. Stoodley and J. D. Schmahmann, “Functional topography in the human cerebellum: a meta-analysis of neuroimaging studies,” NeuroImage, vol. 44, no. 2, pp. 489–501, 2009. View at Publisher · View at Google Scholar · View at Scopus
  28. C. J. Stoodley and J. D. Schmahmann, “Evidence for topographic organization in the cerebellum of motor control versus cognitive and affective processing,” Cortex, vol. 46, no. 7, pp. 831–844, 2010. View at Publisher · View at Google Scholar · View at Scopus
  29. J. A. Hosp and A. R. Luft, “Cortical plasticity during motor learning and recovery after ischemic stroke,” Neural Plasticity, vol. 2011, Article ID 871296, 9 pages, 2011. View at Publisher · View at Google Scholar · View at Scopus
  30. J. W. Krakauer, “Motor learning: its relevance to stroke recovery and neurorehabilitation,” Current Opinion in Neurology, vol. 19, no. 1, pp. 84–90, 2006. View at Google Scholar · View at Scopus
  31. L. Shmuelof and J. W. Krakauer, “Are we ready for a natural history of motor learning?” Neuron, vol. 72, no. 3, pp. 469–476, 2011. View at Publisher · View at Google Scholar · View at Scopus
  32. J. Diedrichsen, J. H. Balsters, J. Flavell, E. Cussans, and N. Ramnani, “A probabilistic MR atlas of the human cerebellum,” NeuroImage, vol. 46, no. 1, pp. 39–46, 2009. View at Publisher · View at Google Scholar · View at Scopus
  33. K. Murphy, R. M. Birn, D. A. Handwerker, T. B. Jones, and P. A. Bandettini, “The impact of global signal regression on resting state correlations: are anti-correlated networks introduced?” NeuroImage, vol. 44, no. 3, pp. 893–905, 2009. View at Publisher · View at Google Scholar · View at Scopus
  34. A. Weissenbacher, C. Kasess, F. Gerstl, R. Lanzenberger, E. Moser, and C. Windischberger, “Correlations and anticorrelations in resting-state functional connectivity MRI: a quantitative comparison of preprocessing strategies,” NeuroImage, vol. 47, no. 4, pp. 1408–1416, 2009. View at Publisher · View at Google Scholar · View at Scopus
  35. M. Hampson, N. Driesen, J. K. Roth, J. C. Gore, and R. T. Constable, “Functional connectivity between task-positive and task-negative brain areas and its relation to working memory performance,” Magnetic Resonance Imaging, vol. 28, no. 8, pp. 1051–1057, 2010. View at Publisher · View at Google Scholar · View at Scopus
  36. R. L. Buckner, F. M. Krienen, A. Castellanos, J. C. Diaz, and B. T. Yeo, “The organization of the human cerebellum estimated by intrinsic functional connectivity,” Journal of Neurophysiology, vol. 106, no. 5, pp. 2322–2345, 2011. View at Publisher · View at Google Scholar · View at Scopus
  37. F. M. Krienen and R. L. Buckner, “Segregated fronto-cerebellar circuits revealed by intrinsic functional connectivity,” Cerebral Cortex, vol. 19, no. 10, pp. 2485–2497, 2009. View at Publisher · View at Google Scholar · View at Scopus
  38. J. X. O'Reilly, C. F. Beckmann, V. Tomassini, N. Ramnani, and H. Johansen-Berg, “Distinct and overlapping functional zones in the cerebellum defined by resting state functional connectivity,” Cerebral Cortex, vol. 20, no. 4, pp. 953–965, 2010. View at Publisher · View at Google Scholar · View at Scopus
  39. R. M. Kelly and P. L. Strick, “Cerebellar loops with motor cortex and prefrontal cortex of a nonhuman primate,” Journal of Neuroscience, vol. 23, no. 23, pp. 8432–8444, 2003. View at Google Scholar · View at Scopus
  40. S. H. A. Chen and J. E. Desmond, “Cerebrocerebellar networks during articulatory rehearsal and verbal working memory tasks,” NeuroImage, vol. 24, no. 2, pp. 332–338, 2005. View at Publisher · View at Google Scholar · View at Scopus
  41. S. H. A. Chen and J. E. Desmond, “Temporal dynamics of cerebro-cerebellar network recruitment during a cognitive task,” Neuropsychologia, vol. 43, no. 9, pp. 1227–1237, 2005. View at Publisher · View at Google Scholar · View at Scopus
  42. D. A. Gusnard and M. E. Raichle, “Searching for a baseline: functional imaging and the resting human brain,” Nature Reviews Neuroscience, vol. 2, no. 10, pp. 685–694, 2001. View at Publisher · View at Google Scholar · View at Scopus
  43. S. G. Horovitz, A. R. Braun, W. S. Carr et al., “Decoupling of the brain's default mode network during deep sleep,” Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 27, pp. 11376–11381, 2009. View at Publisher · View at Google Scholar · View at Scopus
  44. K. Christoff, A. M. Gordon, J. Smallwood, R. Smith, and J. W. Schooler, “Experience sampling during fMRI reveals default network and executive system contributions to mind wandering,” Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 21, pp. 8719–8724, 2009. View at Publisher · View at Google Scholar · View at Scopus
  45. M. D. Greicius, B. Krasnow, A. L. Reiss, and V. Menon, “Functional connectivity in the resting brain: a network analysis of the default mode hypothesis,” Proceedings of the National Academy of Sciences of the United States of America, vol. 100, no. 1, pp. 253–258, 2003. View at Publisher · View at Google Scholar · View at Scopus
  46. N. Filippini, B. J. MacIntosh, M. G. Hough et al., “Distinct patterns of brain activity in young carriers of the APOE-ε4 allele,” Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 17, pp. 7209–7214, 2009. View at Publisher · View at Google Scholar · View at Scopus
  47. M. A. Foulkes, P. A. Wolf, T. R. Price, J. P. Mohr, and D. B. Hier, “The Stroke Data Bank: design, methods, and baseline characteristics,” Stroke, vol. 19, no. 5, pp. 547–554, 1988. View at Google Scholar · View at Scopus
  48. M. D. Fox, A. Z. Snyder, J. L. Vincent, M. Corbetta, D. C. Van Essen, and M. E. Raichle, “The human brain is intrinsically organized into dynamic, anticorrelated functional networks,” Proceedings of the National Academy of Sciences of the United States of America, vol. 102, no. 27, pp. 9673–9678, 2005. View at Publisher · View at Google Scholar · View at Scopus
  49. D. Sridharan, D. J. Levitin, and V. Menon, “A critical role for the right fronto-insular cortex in switching between central-executive and default-mode networks,” Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 34, pp. 12569–12574, 2008. View at Publisher · View at Google Scholar · View at Scopus
  50. C. M. Cirstea, A. Ptito, and M. F. Levin, “Feedback and cognition in arm motor skill reacquisition after stroke,” Stroke, vol. 37, no. 5, pp. 1237–1242, 2006. View at Publisher · View at Google Scholar · View at Scopus
  51. N. C. Foley, R. W. Teasell, S. K. Bhogal, and M. R. Speechley, “Stroke rehabilitation evidence-based review: methodology,” Topics in Stroke Rehabilitation, vol. 10, no. 1, pp. 1–7, 2003. View at Publisher · View at Google Scholar · View at Scopus
  52. A. W. S. Leung, S. K. W. Cheng, A. K. Y. Mak, K.-K. Leung, L. S. W. Li, and T. M. C. Lee, “Functional gain in hemorrhagic stroke patients is predicted by functional level and cognitive abilities measured at hospital admission,” NeuroRehabilitation, vol. 27, no. 4, pp. 351–358, 2010. View at Publisher · View at Google Scholar · View at Scopus
  53. K. Oneş, E. Y. Yalçinkaya, B. C. Toklu, and N. Caǧlar, “Effects of age, gender, and cognitive, functional and motor status on functional outcomes of stroke rehabilitation,” NeuroRehabilitation, vol. 25, no. 4, pp. 241–249, 2009. View at Google Scholar · View at Scopus
  54. S. E. McEwen, M. P. J. Huijbregts, J. D. Ryan, and H. J. Polatajko, “Cognitive strategy use to enhance motor skill acquisition post-stroke: a critical review,” Brain Injury, vol. 23, no. 4, pp. 263–277, 2009. View at Publisher · View at Google Scholar · View at Scopus
  55. F. Fan, C. Zhu, H. Chen et al., “Dynamic brain structural changes after left hemisphere subcortical stroke,” Human Brain Mapping, 2012. View at Publisher · View at Google Scholar · View at Scopus
  56. L. V. Gauthier, E. Taub, C. Perkins, M. Ortmann, V. W. Mark, and G. Uswatte, “Remodeling the brain: plastic structural brain changes produced by different motor therapies after stroke,” Stroke, vol. 39, no. 5, pp. 1520–1525, 2008. View at Publisher · View at Google Scholar · View at Scopus
  57. R. F. Gottesman and A. E. Hillis, “Predictors and assessment of cognitive dysfunction resulting from ischaemic stroke,” The Lancet Neurology, vol. 9, no. 9, pp. 895–905, 2010. View at Publisher · View at Google Scholar · View at Scopus
  58. G. T. Stebbins, D. L. Nyenhuis, C. Wang et al., “Gray matter atrophy in patients with ischemic stroke with cognitive impairment,” Stroke, vol. 39, no. 3, pp. 785–793, 2008. View at Publisher · View at Google Scholar · View at Scopus
  59. S. Lassalle-Lagadec, I. Sibon, B. Dilharreguy, P. Renou, O. Fleury, and M. Allard, “Subacute default mode network dysfunction in the prediction of post-stroke depression severity,” Radiology, vol. 264, no. 1, pp. 218–224, 2012. View at Google Scholar
  60. E. M. Nomura, C. Gratton, R. M. Visser, A. Kayser, F. Perez, and M. D'Esposito, “Double dissociation of two cognitive control networks in patients with focal brain lesions,” Proceedings of the National Academy of Sciences of the United States of America, vol. 107, no. 26, pp. 12017–12022, 2010. View at Publisher · View at Google Scholar · View at Scopus