Table of Contents Author Guidelines Submit a Manuscript
Neural Plasticity
Volume 2013, Article ID 456857, 10 pages
http://dx.doi.org/10.1155/2013/456857
Review Article

Bidirectional Microglia-Neuron Communication in the Healthy Brain

Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854, USA

Received 3 June 2013; Accepted 1 August 2013

Academic Editor: Shumin Duan

Copyright © 2013 Ukpong B. Eyo and Long-Jun Wu. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. F. Ginhoux, M. Greter, M. Leboeuf et al., “Fate mapping analysis reveals that adult microglia derive from primitive macrophages,” Science, vol. 330, no. 6005, pp. 841–845, 2010. View at Publisher · View at Google Scholar · View at Scopus
  2. F. Ginhoux, S. Lim, G. Hoeffel, D. Low, and T. Huber, “Origin and differentiation of microglia,” Frontiers in Cellular Neuroscience, vol. 7, p. 45, 2013. View at Google Scholar
  3. M. Greter and M. Merad, “Regulation of microglia development and homeostasis,” Glia, vol. 61, no. 1, pp. 121–127, 2013. View at Publisher · View at Google Scholar
  4. K. Helmut, U. Hanisch, M. Noda, and A. Verkhratsky, “Physiology of microglia,” Physiological Reviews, vol. 91, no. 2, pp. 461–553, 2011. View at Publisher · View at Google Scholar · View at Scopus
  5. K. Biber, J. Vinet, and H. W. G. M. Boddeke, “Neuron-microglia signaling: chemokines as versatile messengers,” Journal of Neuroimmunology, vol. 198, no. 1-2, pp. 69–74, 2008. View at Publisher · View at Google Scholar · View at Scopus
  6. A. H. de Haas, H. R. J. Van Weering, E. K. De Jong, H. W. G. M. Boddeke, and K. P. H. Biber, “Neuronal chemokines: versatile messengers in central nervous system cell interaction,” Molecular Neurobiology, vol. 36, no. 2, pp. 137–151, 2007. View at Publisher · View at Google Scholar · View at Scopus
  7. X. J. Wang, M. Ye, Y. H. Zhang, and S. D. Chen, “CD200-CD200R regulation of microglia activation in the pathogenesis of Parkinson's disease,” Journal of Neuroimmune Pharmacology, vol. 2, no. 3, pp. 259–264, 2007. View at Publisher · View at Google Scholar · View at Scopus
  8. R. M. Hoek, S. R. Ruuls, C. A. Murphy et al., “Down-regulation of the macrophage lineage through interaction with OX2 (CD200),” Science, vol. 290, no. 5497, pp. 1768–1771, 2000. View at Publisher · View at Google Scholar · View at Scopus
  9. C. Broderick, R. M. Hoek, J. V. Forrester, J. Liversidge, J. D. Sedgwick, and A. D. Dick, “Constitutive retinal CD200 expression regulates resident microglia and activation state of inflammatory cells during experimental autoimmune uveoretinitis,” American Journal of Pathology, vol. 161, no. 5, pp. 1669–1677, 2002. View at Google Scholar · View at Scopus
  10. A. D. Dick, D. Carter, M. Robertson et al., “Control of myeloid activity during retinal inflammation,” Journal of Leukocyte Biology, vol. 74, no. 2, pp. 161–166, 2003. View at Publisher · View at Google Scholar · View at Scopus
  11. A. E. Cardona, E. P. Pioro, M. E. Sasse et al., “Control of microglial neurotoxicity by the fractalkine receptor,” Nature Neuroscience, vol. 9, no. 7, pp. 917–924, 2006. View at Publisher · View at Google Scholar · View at Scopus
  12. K. J. Liang, J. E. Lee, Y. D. Wang et al., “Regulation of dynamic behavior of retinal microglia by CX3CR1 signaling,” Investigative Ophthalmology and Visual Science, vol. 50, no. 9, pp. 4444–4451, 2009. View at Publisher · View at Google Scholar · View at Scopus
  13. E. D. Ponomarev, T. Veremeyko, N. Barteneva, A. M. Krichevsky, and H. L. Weiner, “MicroRNA-124 promotes microglia quiescence and suppresses EAE by deactivating macrophages via the C/EBP-α-PU.1 pathway,” Nature Medicine, vol. 17, no. 1, pp. 64–70, 2011. View at Publisher · View at Google Scholar · View at Scopus
  14. K. I. Mosher, R. H. Andres, T. Fukuhara et al., “Neural progenitor cells regulate microglia functions and activity,” Nature Neuroscience, vol. 15, no. 11, pp. 1485–1487, 2012. View at Publisher · View at Google Scholar
  15. H. Wake, A. J. Moorhouse, S. Jinno, S. Kohsaka, and J. Nabekura, “Resting microglia directly monitor the functional state of synapses in vivo and determine the fate of ischemic terminals,” Journal of Neuroscience, vol. 29, no. 13, pp. 3974–3980, 2009. View at Publisher · View at Google Scholar · View at Scopus
  16. M. E. Tremblay, R. L. Lowery, and A. K. Majewska, “Microglial interactions with synapses are modulated by visual experience,” PLoS Biology, vol. 8, no. 11, Article ID e1000527, 2010. View at Publisher · View at Google Scholar · View at Scopus
  17. Y. Li, X. F. Du, C. S. Liu, Z. L. Wen, and J. L. Du, “Reciprocal regulation between resting microglial dynamics and neuronal activity in vivo,” Developmental Cell, vol. 23, no. 6, pp. 1189–1202, 2012. View at Publisher · View at Google Scholar
  18. A. Nimmerjahn, F. Kirchhoff, and F. Helmchen, “Neuroscience: resting microglial cells are highly dynamic surveillants of brain parenchyma in vivo,” Science, vol. 308, no. 5726, pp. 1314–1318, 2005. View at Publisher · View at Google Scholar · View at Scopus
  19. T. Chen, K. Koga, X. Li, and M. Zhuo, “Spinal microglial motility is independent of neuronal activity and plasticity in adult mice,” Molecular Pain, vol. 6, p. 19, 2010. View at Publisher · View at Google Scholar · View at Scopus
  20. L. J. Wu and M. Zhuo, “Resting microglial motility is independent of synaptic plasticity in mammalian brain,” Journal of Neurophysiology, vol. 99, no. 4, pp. 2026–2032, 2008. View at Publisher · View at Google Scholar · View at Scopus
  21. A. M. Fontainhas, M. Wang, K. J. Liang et al., “Microglial morphology and dynamic behavior is regulated by ionotropic glutamatergic and GABAergic neurotransmission,” PLoS ONE, vol. 6, no. 1, Article ID e15973, 2011. View at Publisher · View at Google Scholar · View at Scopus
  22. W. Sun, E. McConnell, J. F. Pare et al., “Glutamate-dependent neuroglial calcium signaling differs between young and adult brain,” Science, vol. 339, no. 6116, pp. 197–200, 2013. View at Publisher · View at Google Scholar
  23. G. J. Liu, R. Nagarajah, R. B. Banati, and M. R. Bennett, “Glutamate induces directed chemotaxis of microglia,” European Journal of Neuroscience, vol. 29, no. 6, pp. 1108–1118, 2009. View at Publisher · View at Google Scholar · View at Scopus
  24. G. Burnstock, U. Krügel, M. P. Abbracchio, and P. Illes, “Purinergic signalling: from normal behaviour to pathological brain function,” Progress in Neurobiology, vol. 95, no. 2, pp. 229–274, 2011. View at Publisher · View at Google Scholar · View at Scopus
  25. K. Inoue, “Purinergic systems in microglia,” Cellular and Molecular Life Sciences, vol. 65, no. 19, pp. 3074–3080, 2008. View at Publisher · View at Google Scholar · View at Scopus
  26. D. Ferrari, M. Villalba, P. Chiozzi, S. Falzoni, P. Ricciardi-Castagnoli, and F. Di Virgilio, “Mouse microglial cells express a plasma membrane pore gated by extracellular ATP,” Journal of Immunology, vol. 156, no. 4, pp. 1531–1539, 1996. View at Google Scholar · View at Scopus
  27. D. Ferrari, P. Chiozzi, S. Falzoni et al., “ATP-mediated cytotoxicity in microglial cells,” Neuropharmacology, vol. 36, no. 9, pp. 1295–1301, 1997. View at Publisher · View at Google Scholar · View at Scopus
  28. S. Honda, Y. Sasaki, K. Ohsawa et al., “Extracellular ATP or ADP induce chemotaxis of cultured microglia through Gi/o-coupled P2Y receptors,” Journal of Neuroscience, vol. 21, no. 6, pp. 1975–1982, 2001. View at Google Scholar · View at Scopus
  29. D. Davalos, J. Grutzendler, G. Yang et al., “ATP mediates rapid microglial response to local brain injury in vivo,” Nature Neuroscience, vol. 8, no. 6, pp. 752–758, 2005. View at Publisher · View at Google Scholar · View at Scopus
  30. L. Wu, K. I. Vadakkan, and M. Zhuo, “ATP-induced chemotaxis of microglial processes requires P2Y receptor-activated initiation of outward potassium currents,” GLIA, vol. 55, no. 8, pp. 810–821, 2007. View at Publisher · View at Google Scholar · View at Scopus
  31. D. Kurpius, E. P. Nolley, and M. E. Dailey, “Purines induce directed migration and rapid homing of microglia to injured pyramidal neurons in developing hippocampus,” GLIA, vol. 55, no. 8, pp. 873–884, 2007. View at Publisher · View at Google Scholar · View at Scopus
  32. P. Dibaj, F. Nadrigny, H. Steffens et al., “NO mediates microglial response to acute spinal cord injury under ATP control in vivo,” GLIA, vol. 58, no. 9, pp. 1133–1144, 2010. View at Publisher · View at Google Scholar · View at Scopus
  33. F. Peri and C. Nüsslein-Volhard, “Live imaging of neuronal degradation by microglia reveals a role for v0-ATPase a1 in phagosomal fusion in vivo,” Cell, vol. 133, no. 5, pp. 916–927, 2008. View at Publisher · View at Google Scholar · View at Scopus
  34. Y. Duan, C. L. Sahley, and K. J. Muller, “ATP and NO dually control migration of microglia to nerve lesions,” Developmental Neurobiology, vol. 69, no. 1, pp. 60–72, 2009. View at Publisher · View at Google Scholar · View at Scopus
  35. S. E. Haynes, G. Hollopeter, G. Yang et al., “The P2Y12 receptor regulates microglial activation by extracellular nucleotides,” Nature Neuroscience, vol. 9, no. 12, pp. 1512–1519, 2006. View at Publisher · View at Google Scholar · View at Scopus
  36. K. Färber, S. Markworth, U. Pannasch et al., “The ectonucleotidase cd39/ENTPDase1 modulates purinergic-mediated microglial migration,” GLIA, vol. 56, no. 3, pp. 331–341, 2008. View at Publisher · View at Google Scholar · View at Scopus
  37. K. Ohsawa, T. Sanagi, Y. Nakamura, E. Suzuki, K. Inoue, and S. Kohsaka, “Adenosine A3 receptor is involved in ADP-induced microglial process extension and migration,” Journal of Neurochemistry, vol. 121, no. 2, pp. 217–227, 2012. View at Publisher · View at Google Scholar · View at Scopus
  38. A. G. Orr, A. L. Orr, X. Li, R. E. Gross, and S. F. Traynelis, “Adenosine A2A receptor mediates microglial process retraction,” Nature Neuroscience, vol. 12, no. 7, pp. 872–878, 2009. View at Publisher · View at Google Scholar · View at Scopus
  39. W. Penfield, “Microglia and the process of phagocytosis in gliomas,” American Journal of Pathology, vol. 1, no. 1, pp. 77–90, 1925. View at Google Scholar
  40. H. Wake, A. J. Moorhouse, and J. Nabekura, “Functions of microglia in the central nervous system—beyond the immune response,” Neuron Glia Biology, vol. 7, no. 1, pp. 47–53, 2011. View at Publisher · View at Google Scholar
  41. M. Tremblay, M. L. Zettel, J. R. Ison, P. D. Allen, and A. K. Majewska, “Effects of aging and sensory loss on glial cells in mouse visual and auditory cortices,” GLIA, vol. 60, no. 4, pp. 541–558, 2012. View at Publisher · View at Google Scholar · View at Scopus
  42. R. C. Paolicelli, G. Bolasco, F. Pagani et al., “Synaptic pruning by microglia is necessary for normal brain development,” Science, vol. 333, no. 6048, pp. 1456–1458, 2011. View at Publisher · View at Google Scholar · View at Scopus
  43. D. P. Schafer, E. K. Lehrman, A. G. Kautzman et al., “Microglia sculpt postnatal neural circuits in an activity and complement-dependent manner,” Neuron, vol. 74, no. 4, pp. 691–705, 2012. View at Publisher · View at Google Scholar
  44. M. Hoshiko, I. Arnoux, E. Avignone, N. Yamamoto, and E. Audinat, “Deficiency of the microglial receptor CX3CR1 impairs postnatal functional development of thalamocortical synapses in the barrel cortex,” Journal of Neuroscience, vol. 32, no. 43, pp. 15106–15111, 2012. View at Publisher · View at Google Scholar
  45. J. T. Rogers, J. M. Morganti, A. D. Bachstetter et al., “CX3CR1 deficiency leads to impairment of hippocampal cognitive function and synaptic plasticity,” Journal of Neuroscience, vol. 31, no. 45, pp. 16241–16250, 2011. View at Publisher · View at Google Scholar · View at Scopus
  46. L. Maggi, M. Scianni, I. Branchi et al., “CX(3)CR1 deficiency alters hippocampal-dependent plasticity phenomena blunting the effects of enriched environment,” Frontiers in Cellular Neuroscience, vol. 5, p. 22, 2011. View at Google Scholar
  47. B. Stevens, N. J. Allen, L. E. Vazquez et al., “The classical complement cascade mediates CNS synapse elimination,” Cell, vol. 131, no. 6, pp. 1164–1178, 2007. View at Publisher · View at Google Scholar · View at Scopus
  48. A. Roumier, C. Béchade, J. Poncer et al., “Impaired synaptic function in the microglial KARAP/DAP12-deficient mouse,” Journal of Neuroscience, vol. 24, no. 50, pp. 11421–11428, 2004. View at Publisher · View at Google Scholar · View at Scopus
  49. S. Wakselman, C. Béchade, A. Roumier, D. Bernard, A. Triller, and A. Bessis, “Developmental neuronal death in hippocampus requires the microglial CD11b integrin and DAP12 immunoreceptor,” Journal of Neuroscience, vol. 28, no. 32, pp. 8138–8143, 2008. View at Publisher · View at Google Scholar · View at Scopus
  50. C. L. Hsieh, M. Koike, S. C. Spusta et al., “A role for TREM2 ligands in the phagocytosis of apoptotic neuronal cells by microglia,” Journal of Neurochemistry, vol. 109, no. 4, pp. 1144–1156, 2009. View at Publisher · View at Google Scholar · View at Scopus
  51. A. Kiialainen, K. Hovanes, J. Paloneva, O. Kopra, and L. Peltonen, “Dap12 and Trem2, molecules involved in innate immunity and neurodegeneration, are co-expressed in the CNS,” Neurobiology of Disease, vol. 18, no. 2, pp. 314–322, 2005. View at Publisher · View at Google Scholar · View at Scopus
  52. D. W. McVicar, L. S. Taylor, P. Gosselin et al., “DAP12-mediated signal transduction in natural killer cells: a dominant role for the Syk protein-tyrosine kinase,” Journal of Biological Chemistry, vol. 273, no. 49, pp. 32934–32942, 1998. View at Publisher · View at Google Scholar · View at Scopus
  53. S. K. Chen, P. Tvrdik, E. Peden et al., “Hematopoietic origin of pathological grooming in Hoxb8 mutant mice,” Cell, vol. 141, no. 5, pp. 775–785, 2010. View at Publisher · View at Google Scholar · View at Scopus
  54. N. C. Derecki, J. C. Cronk, Z. Lu et al., “Wild-type microglia arrest pathology in a mouse model of Rett syndrome,” Nature, vol. 484, no. 7392, pp. 105–109, 2012. View at Publisher · View at Google Scholar · View at Scopus
  55. K. M. Lenz, B. M. Nugent, R. Haliyur, and M. M. McCarthy, “Microglia are essential to masculinization of brain and behavior,” Journal of Neuroscience, vol. 33, no. 7, pp. 2761–2772, 2013. View at Publisher · View at Google Scholar
  56. F. L. Heppner, M. Greter, D. Marino et al., “Experimental autoimmune encephalomyelitis repressed by microglial paralysis,” Nature Medicine, vol. 11, no. 2, pp. 146–152, 2005. View at Publisher · View at Google Scholar · View at Scopus
  57. J. S. Duffield, P. G. Tipping, T. Kipari et al., “Conditional ablation of macrophages halts progression of crescentic glomerulonephritis,” American Journal of Pathology, vol. 167, no. 5, pp. 1207–1219, 2005. View at Google Scholar · View at Scopus
  58. S. R. McKercher, B. E. Torbett, K. L. Anderson et al., “Targeted disruption of the PU.1 gene results in multiple hematopoietic abnormalities,” EMBO Journal, vol. 15, no. 20, pp. 5647–5658, 1996. View at Google Scholar · View at Scopus
  59. E. W. Scott, M. C. Simon, J. Anastasi, and H. Singh, “Requirement of transcription factor PU.1 in the development of multiple hematopoietic lineages,” Science, vol. 265, no. 5178, pp. 1573–1577, 1994. View at Google Scholar · View at Scopus
  60. B. Erblich, L. Zhu, A. M. Etgen, K. Dobrenis, and J. W. Pollard, “Absence of colony stimulation factor-1 receptor results in loss of microglia, disrupted brain development and olfactory deficits,” PLoS ONE, vol. 6, no. 10, Article ID e26317, 2011. View at Publisher · View at Google Scholar · View at Scopus
  61. N. van Rooijen and R. Van Nieuwmegen, “Elimination of phagocytic cells in the spleen after intravenous injection of liposome-encapsulated dichloromethylene diphosphonate. An enzyme-histochemical study,” Cell and Tissue Research, vol. 238, no. 2, pp. 355–358, 1984. View at Google Scholar · View at Scopus
  62. C. L. Cunningham, V. Martinez-Cerdeno, and S. C. Noctor, “Microglia regulate the number of neural precursor cells in the developing cerebral cortex,” Journal of Neuroscience, vol. 33, no. 10, pp. 4216–4233, 2013. View at Publisher · View at Google Scholar
  63. J. V. Faustino, X. Wang, C. E. Johnson et al., “Microglial cells contribute to endogenous brain defenses after acute neonatal focal stroke,” Journal of Neuroscience, vol. 31, no. 36, pp. 12992–13001, 2011. View at Publisher · View at Google Scholar · View at Scopus
  64. K. Ji, G. Akgul, L. P. Wollmuth, and S. E. Tsirka, “Microglia actively regulate the number of functional synapses,” PLoS One, vol. 8, no. 2, Article ID e56293, 2013. View at Google Scholar
  65. M. Lalancette-Hébert, G. Gowing, A. Simard, C. W. Yuan, and J. Kriz, “Selective ablation of proliferating microglial cells exacerbates ischemic injury in the brain,” Journal of Neuroscience, vol. 27, no. 10, pp. 2596–2605, 2007. View at Publisher · View at Google Scholar · View at Scopus
  66. S. A. Grathwohl, R. E. Kälin, T. Bolmont et al., “Formation and maintenance of Alzheimer's disease β-amyloid plaques in the absence of microglia,” Nature Neuroscience, vol. 12, no. 11, pp. 1361–1363, 2009. View at Publisher · View at Google Scholar · View at Scopus
  67. A. R. Simard, D. Soulet, G. Gowing, J. Julien, and S. Rivest, “Bone marrow-derived microglia play a critical role in restricting senile plaque formation in Alzheimer's disease,” Neuron, vol. 49, no. 4, pp. 489–502, 2006. View at Publisher · View at Google Scholar · View at Scopus
  68. G. Gowing, T. Philips, B. Van Wijmeersch et al., “Ablation of proliferating microglia does not affect motor neuron degeneration in amyotrophic lateral sclerosis caused by mutant superoxide dismutase,” Journal of Neuroscience, vol. 28, no. 41, pp. 10234–10244, 2008. View at Publisher · View at Google Scholar · View at Scopus
  69. M. M. Mirrione, D. K. Konomos, I. Gravanis et al., “Microglial ablation and lipopolysaccharide preconditioning affects pilocarpine-induced seizures in mice,” Neurobiology of Disease, vol. 39, no. 1, pp. 85–97, 2010. View at Publisher · View at Google Scholar · View at Scopus
  70. J. Carmen, G. Gowing, J. Julien, and D. Kerr, “Altered immune response to CNS viral infection in mice with a conditional knock-down of macrophage-lineage cells,” GLIA, vol. 54, no. 2, pp. 71–80, 2006. View at Publisher · View at Google Scholar · View at Scopus
  71. H. Galarneau, J. Villeneuve, G. Gowing, J. Julien, and L. Vallières, “Increased glioma growth in mice depleted of macrophages,” Cancer Research, vol. 67, no. 18, pp. 8874–8881, 2007. View at Publisher · View at Google Scholar · View at Scopus
  72. J. L. Marín-Teva, I. Dusart, C. Colin, A. Gervais, N. Van Rooijen, and M. Mallat, “Microglia promote the death of developing purkinje cells,” Neuron, vol. 41, no. 4, pp. 535–547, 2004. View at Publisher · View at Google Scholar · View at Scopus
  73. O. Pascual, S. B. Achour, P. Rostaing, A. Triller, and A. Bessis, “Microglia activation triggers astrocyte-mediated modulation of excitatory neurotransmission,” Proceedings of the National Academy of Sciences of the United States of America, vol. 109, no. 4, pp. E197–E205, 2012. View at Publisher · View at Google Scholar · View at Scopus