Table of Contents Author Guidelines Submit a Manuscript
Neural Plasticity
Volume 2013, Article ID 854597, 16 pages
http://dx.doi.org/10.1155/2013/854597
Review Article

Noninvasive Strategies to Promote Functional Recovery after Stroke

1Department of Neuroscience, Neuroscience Institute of Turin, University of Turin, Regione Gonzole 10, 10043 Orbassano (Turin), Italy
2Neuroscience Institute Cavalieri-Ottolenghi (NICO), University of Turin, Regione Gonzole 10, 10043 Orbassano (Turin), Italy
3IRCCS Istituto Auxologico Italiano, Corso Goffredo Mameli 197, 28921 Verbania, Italy
4Department of Neuroscience, University of Turin, Via Cherasco 15, 10126 Turin, Italy

Received 5 April 2013; Accepted 2 June 2013

Academic Editor: Alessandro Sale

Copyright © 2013 Alessio Faralli et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. P. L. Kolominsky-Rabas, M. Weber, O. Gefeller, B. Neundoerfer, and P. U. Heuschmann, “Epidemiology of ischemic stroke subtypes according to TOAST criteria: incidence, recurrence, and long-term survival in ischemic stroke subtypes: a population-based study,” Stroke, vol. 32, no. 12, pp. 2735–2740, 2001. View at Google Scholar · View at Scopus
  2. P. Langhorne, J. Bernhardt, and G. Kwakkel, “Stroke rehabilitation,” The Lancet, vol. 377, no. 9778, pp. 1693–1702, 2011. View at Publisher · View at Google Scholar · View at Scopus
  3. S. T. Carmichael, “Targets for neural repair therapies after stroke,” Stroke, vol. 41, no. 10, pp. S124–S126, 2010. View at Publisher · View at Google Scholar · View at Scopus
  4. F. Rossi, S. Gianola, and L. Corvetti, “Regulation of intrinsic neuronal properties for axon growth and regeneration,” Progress in Neurobiology, vol. 81, no. 1, pp. 1–28, 2007. View at Publisher · View at Google Scholar · View at Scopus
  5. S. Foscarin, F. Rossi, and D. Carulli, “Influence of the environment on adult CNS plasticity and repair,” Cell and Tissue Research, vol. 349, no. 1, pp. 161–167, 2012. View at Publisher · View at Google Scholar · View at Scopus
  6. G. Yiu and Z. He, “Glial inhibition of CNS axon regeneration,” Nature Reviews Neuroscience, vol. 7, no. 8, pp. 617–627, 2006. View at Publisher · View at Google Scholar · View at Scopus
  7. J. Lee, J. Kim, M. Sivula, and S. M. Strittmatter, “Nogo receptor antagonism promotes stroke recovery by enhancing axonal plasticity,” Journal of Neuroscience, vol. 24, no. 27, pp. 6209–6217, 2004. View at Publisher · View at Google Scholar · View at Scopus
  8. J. J. Hill, K. Jin, X. O. Mao, L. Xie, and D. A. Greenberg, “Intracerebral chondroitinase ABC and heparan sulfate proteoglycan glypican improve outcome from chronic stroke in rats,” Proceedings of the National Academy of Sciences of the United States of America, vol. 5, no. 109, pp. 9155–9160, 2012. View at Google Scholar
  9. S. Soleman, P. K. Yip, D. A. Duricki, and L. D. F. Moon, “Delayed treatment with chondroitinase ABC promotes sensorimotor recovery and plasticity after stroke in aged rats,” Brain, vol. 135, no. 4, pp. 1210–1223, 2012. View at Publisher · View at Google Scholar · View at Scopus
  10. A. Pekcec, K. Yigitkanli, J. E. Jung et al., “Following experimental stroke, the recovering brain is vulnerable to lipoxygenase-dependent semaphorin signaling,” FASEB Journal, vol. 27, no. 2, pp. 437–445, 2013. View at Publisher · View at Google Scholar
  11. J. J. Overman, A. N. Clarkson, I. B. Wanner et al., “A role for ephrin-A5 in axonal sprouting, recovery, and activity-dependent plasticity after stroke,” Proceedings of the National Academy of Sciences of the United States of America, vol. 109, no. 33, pp. 2230–2239, 2012. View at Publisher · View at Google Scholar
  12. R. Lemmens, T. Jaspers, W. Robberecht, and V. N. Thijs, “Modifying expression of EphA4 and its downstream targets improves functional recovery after stroke,” Human Molecular Genetics, vol. 22, no. 11, pp. 2214–2220, 2013. View at Publisher · View at Google Scholar
  13. B. Lorber, M. L. Howe, L. I. Benowitz, and N. Irwin, “Mst3b, an Ste20-like kinase, regulates axon regeneration in mature CNS and PNS pathways,” Nature Neuroscience, vol. 12, no. 11, pp. 1407–1414, 2009. View at Publisher · View at Google Scholar · View at Scopus
  14. L. I. Benowitz and S. T. Carmichael, “Promoting axonal rewiring to improve outcome after stroke,” Neurobiology of Disease, vol. 37, no. 2, pp. 259–266, 2010. View at Publisher · View at Google Scholar · View at Scopus
  15. C. Cossetti, C. Alfaro-Cervello, M. Donegà, G. Tyzack, and S. Pluchino, “New perspectives of tissue remodelling with neural stem and progenitor cell-based therapies,” Cell and Tissue Research, vol. 349, no. 1, pp. 321–329, 2012. View at Publisher · View at Google Scholar · View at Scopus
  16. O. Honmou, R. Onodera, M. Sasaki, S. G. Waxman, and J. D. Kocsis, “Mesenchymal stem cells: therapeutic outlook for stroke,” Trends in Molecular Medicine, vol. 18, no. 5, pp. 292–297, 2012. View at Publisher · View at Google Scholar · View at Scopus
  17. K. Oki, J. Tatarishvili, J. Wood et al., “Human-induced pluripotent stem cells form functional neurons and improve recovery after grafting in stroke-damaged brain,” Stem Cells, vol. 30, no. 6, pp. 1120–1133, 2012. View at Publisher · View at Google Scholar
  18. T. H. Murphy and D. Corbett, “Plasticity during stroke recovery: from synapse to behaviour,” Nature Reviews Neuroscience, vol. 10, no. 12, pp. 861–872, 2009. View at Publisher · View at Google Scholar · View at Scopus
  19. J. D. Schaechter, “Motor rehabilitation and brain plasticity after hemiparetic stroke,” Progress in Neurobiology, vol. 73, no. 1, pp. 61–72, 2004. View at Publisher · View at Google Scholar · View at Scopus
  20. M. F. Levin, J. A. Kleim, and S. L. Wolf, “What do motor “recovery” and “compensationg” mean in patients following stroke?” Neurorehabilitation and Neural Repair, vol. 23, no. 4, pp. 313–319, 2009. View at Publisher · View at Google Scholar · View at Scopus
  21. R. Teasell, J. Bitensky, N. Foley, and N. A. Bayona, “Training and stimulation in post stroke recovery brain reorganization,” Topics in Stroke Rehabilitation, vol. 12, no. 3, pp. 37–45, 2005. View at Publisher · View at Google Scholar · View at Scopus
  22. S. L. Small, G. Buccino, and A. Solodkin, “The mirror neuron system and treatment of stroke,” Developmental Psychobiology, vol. 54, no. 3, pp. 293–310, 2012. View at Publisher · View at Google Scholar · View at Scopus
  23. S. J. Page, D. R. Gater, and P. Bach-Y-Rita, “Reconsidering the motor recovery plateau in stroke rehabilitation,” Archives of Physical Medicine and Rehabilitation, vol. 85, no. 8, pp. 1377–1381, 2004. View at Publisher · View at Google Scholar · View at Scopus
  24. J. Bernhardt, M. N. Thuy, J. M. Collier, and L. A. Legg, “Very early versus delayed mobilisation after stroke,” Cochrane Database of Systematic Reviews, no. 1, Article ID CD006187, 2009. View at Google Scholar · View at Scopus
  25. Stroke Unit Trialists' Collaboration, “Organised inpatient (stroke unit) care for stroke,” Cochrane Database of Systematic Reviews, no. 1, Article ID CD000197, 2002. View at Google Scholar
  26. The European Stroke Organisation (ESO) Executive Committee and ESO Writing Committee, “Guidelines for management of ischaemic stroke and transient ischaemic attack,” Cerebrovascular Diseases, vol. 25, pp. 457–507, 2008. View at Google Scholar
  27. G. Kwakkel, R. C. Wagenaar, J. W. R. Twisk, G. J. Lankhorst, and J. C. Koetsier, “Intensity of leg and arm training after primary middle-cerebral-artery stroke: a randomised trial,” The Lancet, vol. 354, no. 9174, pp. 191–196, 1999. View at Publisher · View at Google Scholar · View at Scopus
  28. R. F. Macko, F. M. Ivey, and L. W. Forrester, “Task-oriented aerobic exercise in chronic hemiparetic stroke: training protocols and treatment effects,” Topics in Stroke Rehabilitation, vol. 12, no. 1, pp. 45–57, 2005. View at Publisher · View at Google Scholar · View at Scopus
  29. I. G. L. van de Port, S. Wood-Dauphinee, E. Lindeman, and G. Kwakkel, “Effects of exercise training programs on walking competency after stroke: a systematic review,” The American Journal of Physical Medicine and Rehabilitation, vol. 86, no. 11, pp. 935–951, 2007. View at Publisher · View at Google Scholar · View at Scopus
  30. P. Govender and L. Kalra, “Benefits of occupational therapy in stroke rehabilitation,” Expert Review of Neurotherapeutics, vol. 7, no. 8, pp. 1013–1019, 2007. View at Publisher · View at Google Scholar · View at Scopus
  31. S. L. Wolf, C. J. Winstein, J. P. Miller et al., “Effect of constraint-induced movement therapy on upper extremity function 3 to 9 months after stroke: the EXCITE randomized clinical trial,” The Journal of the American Medical Association, vol. 296, no. 17, pp. 2095–2104, 2006. View at Publisher · View at Google Scholar · View at Scopus
  32. V. Sirtori, D. Corbetta, L. Moja, and R. Gatti, “Constraint-induced movement therapy for upper extremities in stroke patients,” Cochrane Database of Systematic Reviews, no. 4, Article ID CD004433, 2009. View at Google Scholar · View at Scopus
  33. P. Langhorne, F. Coupar, and A. Pollock, “Motor recovery after stroke: a systematic review,” The Lancet Neurology, vol. 8, no. 8, pp. 741–754, 2009. View at Publisher · View at Google Scholar · View at Scopus
  34. P. L. Jackson, M. F. Lafleur, F. Malouin, C. L. Richards, and J. Doyon, “Functional cerebral reorganization following motor sequence learning through mental practice with motor imagery,” NeuroImage, vol. 20, no. 2, pp. 1171–1180, 2003. View at Publisher · View at Google Scholar · View at Scopus
  35. S. J. Page, J. P. Szaflarski, J. C. Eliassen, H. Pan, and S. C. Cramer, “Cortical plasticity following motor skill learning during mental practice in stroke,” Neurorehabilitation and Neural Repair, vol. 23, no. 4, pp. 382–388, 2009. View at Publisher · View at Google Scholar · View at Scopus
  36. S. M. Braun, A. J. Beurskens, P. J. Borm, T. Schack, and D. T. Wade, “The effects of mental practice in stroke rehabilitation: a systematic review,” Archives of Physical Medicine and Rehabilitation, vol. 87, no. 6, pp. 842–852, 2006. View at Publisher · View at Google Scholar · View at Scopus
  37. A. Zimmermann-Schlatter, C. Schuster, M. A. Puhan, E. Siekierka, and J. Steurer, “Efficacy of motor imagery in post-stroke rehabilitation: a systematic review,” Journal of NeuroEngineering and Rehabilitation, vol. 5, article 8, 2008. View at Publisher · View at Google Scholar · View at Scopus
  38. R. E. Barclay-Goddard, T. J. Stevenson, W. Poluha, and L. Thalman, “Mental practice for treating upper extremity deficits in individuals with hemiparesis after stroke,” Cochrane Database of Systematic Reviews, no. 5, Article ID CD005950, 2011. View at Google Scholar · View at Scopus
  39. M. I. Garry, A. Loftus, and J. J. Summers, “Mirror, mirror on the wall: viewing a mirror reflection of unilateral hand movements facilitates ipsilateral M1 excitability,” Experimental Brain Research, vol. 163, no. 1, pp. 118–122, 2005. View at Publisher · View at Google Scholar · View at Scopus
  40. G. Rizzolatti and L. Craighero, “The mirror-neuron system,” Annual Review of Neuroscience, vol. 27, pp. 169–192, 2004. View at Publisher · View at Google Scholar · View at Scopus
  41. G. Rizzolatti and C. Sinigaglia, “The functional role of the parieto-frontal mirror circuit: interpretations and misinterpretations,” Nature Reviews Neuroscience, vol. 11, no. 4, pp. 264–274, 2010. View at Publisher · View at Google Scholar · View at Scopus
  42. D. Ertelt, S. Small, A. Solodkin et al., “Action observation has a positive impact on rehabilitation of motor deficits after stroke,” NeuroImage, vol. 36, no. 2, pp. T164–T173, 2007. View at Publisher · View at Google Scholar · View at Scopus
  43. H. Thieme, J. Mehrholz, M. Pohl, J. Behrens, and C. Dohle, “Mirror therapy for improving motor function after stroke,” Cochrane Database of Systematic Reviews, no. 3, Article ID CD008449, 2012. View at Publisher · View at Google Scholar
  44. G. Riva, “Applications of virtual environments in medicine,” Methods of Information in Medicine, vol. 42, no. 5, pp. 524–534, 2003. View at Google Scholar · View at Scopus
  45. H. Sveistrup, “Motor rehabilitation using virtual reality,” Journal of NeuroEngineering and Rehabilitation, vol. 1, article 10, 2004. View at Publisher · View at Google Scholar · View at Scopus
  46. M. K. Holden, “Virtual environments for motor rehabilitation: review,” Cyberpsychology and Behavior, vol. 8, no. 3, pp. 187–211, 2005. View at Publisher · View at Google Scholar · View at Scopus
  47. K. E. Laver, S. George, S. Thomas, J. E. Deutsch, and M. Crotty, “Virtual reality for stroke rehabilitation,” Cochrane Database of Systematic Reviews, no. 9, Article ID CD008349, 2011. View at Google Scholar · View at Scopus
  48. G. Saposnik and M. Levin, “Virtual reality in stroke rehabilitation: a meta-analysis and implications for clinicians,” Stroke, vol. 42, no. 5, pp. 1380–1386, 2011. View at Publisher · View at Google Scholar · View at Scopus
  49. G. Kwakkel, B. J. Kollen, and H. I. Krebs, “Effects of robot-assisted therapy on upper limb recovery after stroke: a systematic review,” Neurorehabilitation and Neural Repair, vol. 22, no. 2, pp. 111–121, 2008. View at Publisher · View at Google Scholar · View at Scopus
  50. A. C. Lo, P. D. Guarino, L. G. Richards et al., “Robot-assisted therapy for long-term upper-limb impairment after stroke,” The New England Journal of Medicine, vol. 362, no. 19, pp. 1772–1783, 2010. View at Publisher · View at Google Scholar · View at Scopus
  51. J. Mehrholz, T. Platz, J. Kugler, and M. Pohl, “Electromechanical and robot-assisted arm training for improving arm function and activities of daily living after stroke,” Cochrane Database of Systematic Reviews, no. 4, Article ID CD006876, 2008. View at Publisher · View at Google Scholar · View at Scopus
  52. P. W. Duncan, K. J. Sullivan, A. L. Behrman et al., “Body-weight—supported treadmill rehabilitation after stroke,” The New England Journal of Medicine, vol. 364, no. 21, pp. 2026–2036, 2011. View at Publisher · View at Google Scholar · View at Scopus
  53. N. Dominici, U. Keller, H. Vallery et al., “Versatile robotic interface to evaluate, enable and train locomotion and balance after neuromotor disorders,” Nature Medicine, vol. 18, no. 7, pp. 1142–1147, 2012. View at Publisher · View at Google Scholar
  54. F. C. Hummel and L. G. Cohen, “Non-invasive brain stimulation: a new strategy to improve neurorehabilitation after stroke?” The Lancet Neurology, vol. 5, no. 8, pp. 708–712, 2006. View at Publisher · View at Google Scholar · View at Scopus
  55. S. Bestmann, O. Swayne, F. Blankenburg et al., “The role of contralesional dorsal premotor cortex after stroke as studied with concurrent TMS-fMRI,” Journal of Neuroscience, vol. 30, no. 36, pp. 11926–11937, 2010. View at Publisher · View at Google Scholar · View at Scopus
  56. M. Corti, C. Patten, and W. Triggs, “Repetitive transcranial magnetic stimulation of motor cortex after stroke: a focused review,” The American Journal of Physical Medicine and Rehabilitation, vol. 91, no. 3, pp. 254–270, 2012. View at Publisher · View at Google Scholar
  57. W. Y. Hsu, C. H. Cheng, K. K. Liao, I. H. Lee, and Y. Y. Lin, “Effects of repetitive transcranial magnetic stimulation on motor functions in patients with stroke: a meta-analysis,” Stroke, vol. 43, no. 7, pp. 1849–1857, 2012. View at Publisher · View at Google Scholar
  58. P. Talelli, A. Wallace, M. Dileone et al., “Theta burst stimulation in the rehabilitation of the upper limb: a semirandomized, placebo-controlled trial in chronic stroke patients,” Neurorehabilitation and Neural Repair, vol. 26, no. 8, pp. 976–987, 2012. View at Publisher · View at Google Scholar
  59. G. P. Schjetnan, J. Faraji, G. A. Metz, M. Tatsuno, and A. Luczak, “Transcranial direct current stimulation in stroke rehabilitation: a review of recent advancements,” Stroke Research and Treatment, vol. 2013, Article ID 170256, 14 pages, 2013. View at Publisher · View at Google Scholar
  60. W. W. Feng, M. G. Bowden, and S. Kautz, “Review of transcranial direct current stimulation in poststroke recovery,” Topics in Stroke Rehabilitation, vol. 20, no. 1, pp. 68–77, 2013. View at Publisher · View at Google Scholar
  61. E. M. Khedr, O. A. Shawky, D. H. El-Hammady et al., “Effect of anodal versus cathodal transcranial direct current stimulation on stroke rehabilitation: a pilot randomized controlled trial,” Neurorehabilitation and Neural Repair, 2013. View at Publisher · View at Google Scholar
  62. B. Will, R. Galani, C. Kelche, and M. R. Rosenzweig, “Recovery from brain injury in animals: relative efficacy of environmental enrichment, physical exercise or formal training (1990–2002),” Progress in Neurobiology, vol. 72, no. 3, pp. 167–182, 2004. View at Publisher · View at Google Scholar · View at Scopus
  63. J. Nithianantharajah and A. J. Hannan, “Enriched environments, experience-dependent plasticity and disorders of the nervous system,” Nature Reviews Neuroscience, vol. 7, no. 9, pp. 697–709, 2006. View at Publisher · View at Google Scholar · View at Scopus
  64. A. L. Ohlsson and B. B. Johansson, “Environment influences functional outcome of cerebral infarction in rats,” Stroke, vol. 26, no. 4, pp. 644–649, 1995. View at Google Scholar · View at Scopus
  65. B. B. Johansson, “Functional outcome in rats transferred to an enriched environment 15 days after focal brain ischemia,” Stroke, vol. 27, no. 2, pp. 324–326, 1996. View at Google Scholar · View at Scopus
  66. J. Biernaskie and D. Corbett, “Enriched rehabilitative training promotes improved forelimb motor function and enhanced dendritic growth after focal ischemic injury,” Journal of Neuroscience, vol. 21, no. 14, pp. 5272–5280, 2001. View at Google Scholar · View at Scopus
  67. A. Risedal, B. Mattsson, P. Dahlqvist, C. Nordborg, T. Olsson, and B. B. Johansson, “Environmental influences on functional outcome after a cortical infarct in the rat,” Brain Research Bulletin, vol. 58, no. 3, pp. 315–321, 2002. View at Publisher · View at Google Scholar · View at Scopus
  68. M. Knieling, G. A. Metz, I. Antonow-Schlorke, and O. W. Witte, “Enriched environment promotes efficiency of compensatory movements after cerebral ischemia in rats,” Neuroscience, vol. 163, no. 3, pp. 759–769, 2009. View at Publisher · View at Google Scholar · View at Scopus
  69. Y. Wang, B. Bontempi, S. M. Hong et al., “A comprehensive analysis of gait impairment after experimental stroke and the therapeutic effect of environmental enrichment in rats,” Journal of Cerebral Blood Flow and Metabolism, vol. 28, no. 12, pp. 1936–1950, 2008. View at Publisher · View at Google Scholar · View at Scopus
  70. I. Q. Whishaw, “Loss of the innate cortical engram for action patterns used in skilled reaching and the development of behavioral compensation following motor cortex lesions in the rat,” Neuropharmacology, vol. 39, no. 5, pp. 788–805, 2000. View at Publisher · View at Google Scholar · View at Scopus
  71. J. W. Krakauer, “Motor learning: its relevance to stroke recovery and neurorehabilitation,” Current Opinion in Neurology, vol. 19, no. 1, pp. 84–90, 2006. View at Google Scholar · View at Scopus
  72. G. A. Metz, I. Antonow-Schlorke, and O. W. Witte, “Motor improvements after focal cortical ischemia in adult rats are mediated by compensatory mechanisms,” Behavioural Brain Research, vol. 162, no. 1, pp. 71–82, 2005. View at Publisher · View at Google Scholar · View at Scopus
  73. A. van Dellen, C. Blakemore, R. Deacon, D. York, and A. J. Hannan, “Delaying the onset of Huntington's in mice,” Nature, vol. 404, no. 6779, pp. 721–722, 2000. View at Publisher · View at Google Scholar · View at Scopus
  74. G. W. Arendash, M. F. Garcia, D. A. Costa, J. R. Cracchiolo, I. M. Wefes, and H. Potter, “Environmental enrichment improves cognition in aged Alzheimer's transgenic mice despite stable β-amyloid deposition,” NeuroReport, vol. 15, no. 11, pp. 1751–1754, 2004. View at Publisher · View at Google Scholar · View at Scopus
  75. J. L. Jankowsky, T. Melnikova, D. J. Fadale et al., “Environmental enrichment mitigates cognitive deficits in a mouse model of Alzheimer's disease,” Journal of Neuroscience, vol. 25, no. 21, pp. 5217–5224, 2005. View at Publisher · View at Google Scholar · View at Scopus
  76. O. Lazarov, J. Robinson, Y. P. Tang et al., “Environmental enrichment reduces Aβ levels and amyloid deposition in transgenic mice,” Cell, vol. 120, no. 5, pp. 701–713, 2005. View at Publisher · View at Google Scholar · View at Scopus
  77. L. Restivo, F. Ferrari, E. Passino et al., “Enriched environment promotes behavioral and morphological recovery in a mouse model for the fragile X syndrome,” Proceedings of the National Academy of Sciences of the United States of America, vol. 102, no. 32, pp. 11557–11562, 2005. View at Publisher · View at Google Scholar · View at Scopus
  78. L. Mandolesi, P. de Bartolo, F. Foti et al., “Environmental enrichment provides a cognitive reserve to be spent in the case of brain lesion,” Journal of Alzheimer's Disease, vol. 15, no. 1, pp. 11–28, 2008. View at Google Scholar · View at Scopus
  79. A. M. Turner and W. T. Greenough, “Differential rearing effects on rat visual cortex synapses. I. Synaptic and neuronal density and synapses per neuron,” Brain Research, vol. 329, no. 1-2, pp. 195–203, 1985. View at Google Scholar · View at Scopus
  80. J. Nithianantharajah, H. Levis, and M. Murphy, “Environmental enrichment results in cortical and subcortical changes in levels of synaptophysin and PSD-95 proteins,” Neurobiology of Learning and Memory, vol. 81, no. 3, pp. 200–210, 2004. View at Publisher · View at Google Scholar · View at Scopus
  81. W. T. Greenough, F. R. Volkmar, and J. M. Juraska, “Effects of rearing complexity on dendritic branching in frontolateral and temporal cortex of the rat,” Experimental Neurology, vol. 41, no. 2, pp. 371–378, 1973. View at Google Scholar · View at Scopus
  82. C. J. Faherty, D. Kerley, and R. J. Smeyne, “A Golgi-Cox morphological analysis of neuronal changes induced by environmental enrichment,” Developmental Brain Research, vol. 141, no. 1-2, pp. 55–61, 2003. View at Publisher · View at Google Scholar · View at Scopus
  83. B. Kolb, R. Gibb, and G. Gorny, “Experience-dependent changes in dendritic arbor and spine density in neocortex vary qualitatively with age and sex,” Neurobiology of Learning and Memory, vol. 79, no. 1, pp. 1–10, 2003. View at Publisher · View at Google Scholar · View at Scopus
  84. A. Sale, J. F. Maya Vetencourt, P. Medini et al., “Environmental enrichment in adulthood promotes amblyopia recovery through a reduction of intracortical inhibition,” Nature Neuroscience, vol. 10, no. 6, pp. 679–681, 2007. View at Publisher · View at Google Scholar · View at Scopus
  85. S. Foscarin, D. Ponchione, E. Pajaj et al., “Experience-dependent plasticity and modulation of growth regulatory molecules at central synapses,” PLoS ONE, vol. 6, no. 1, Article ID e16666, 2011. View at Publisher · View at Google Scholar · View at Scopus
  86. B. H. Dobkin, “Motor rehabilitation after stroke, traumatic brain, and spinal cord injury: common denominators within recent clinical trials,” Current Opinion in Neurology, vol. 22, no. 6, pp. 563–569, 2009. View at Publisher · View at Google Scholar · View at Scopus
  87. Y. R. Yang, R. Y. Wang, and P. S. Wang, “Early and late treadmill training after focal brain ischemia in rats,” Neuroscience Letters, vol. 339, no. 2, pp. 91–94, 2003. View at Publisher · View at Google Scholar · View at Scopus
  88. Y. Ding, J. Li, Q. Lai et al., “Motor balance and coordination training enhances functional outcome in rat with transient middle cerebral artery occlusion,” Neuroscience, vol. 123, no. 3, pp. 667–674, 2004. View at Publisher · View at Google Scholar · View at Scopus
  89. R. J. Nudo, B. M. Wise, F. SiFuentes, and G. W. Milliken, “Neural substrates for the effects of rehabilitative training on motor recovery after ischemic infarct,” Science, vol. 272, no. 5269, pp. 1791–1794, 1996. View at Google Scholar · View at Scopus
  90. E. Taub, G. Uswatte, and T. Elbert, “New treatments in neurorehabilitation founded on basic research,” Nature Reviews Neuroscience, vol. 3, no. 3, pp. 228–236, 2002. View at Publisher · View at Google Scholar · View at Scopus
  91. M. W. Kim, M. S. Bang, T. R. Han et al., “Exercise increased BDNF and trkB in the contralateral hemisphere of the ischemic rat brain,” Brain Research, vol. 1052, no. 1, pp. 16–21, 2005. View at Publisher · View at Google Scholar · View at Scopus
  92. A. Moraska, T. Deak, R. L. Spencer, D. Roth, and M. Fleshner, “Treadmill running produces both positive and negative physiological adaptations in Sprague-Dawley rats,” The American Journal of Physiology, vol. 279, no. 4, pp. R1321–R1329, 2000. View at Google Scholar · View at Scopus
  93. H. D. Müller, K. M. Hanumanthiah, K. Diederich, S. Schwab, W. Schäbitz, and C. Sommer, “Brain-derived neurotrophic factor but not forced arm use improves long-term outcome after photothrombotic stroke and transiently upregulates binding densities of excitatory glutamate receptors in the rat brain,” Stroke, vol. 39, no. 3, pp. 1012–1021, 2008. View at Publisher · View at Google Scholar · View at Scopus
  94. A. Colantonio, S. V. Kasl, A. M. Ostfeld, and L. F. Berkman, “Psychosocial predictors of stroke outcomes in an elderly population,” Journals of Gerontology, vol. 48, no. 5, pp. S261–S268, 1993. View at Google Scholar · View at Scopus
  95. T. A. Glass, D. B. Matchar, M. Belyea, and J. R. Feussner, “Impact of social support on outcome in first stroke,” Stroke, vol. 24, no. 1, pp. 64–70, 1993. View at Google Scholar · View at Scopus
  96. B. B. Johansson and A. L. Ohlsson, “Environment, social interaction, and physical activity as determinants of functional outcome after cerebral infarction in the rat,” Experimental Neurology, vol. 139, no. 2, pp. 322–327, 1996. View at Publisher · View at Google Scholar · View at Scopus
  97. T. K. S. Craft, E. R. Glasper, L. McCullough et al., “Social interaction improves experimental stroke outcome,” Stroke, vol. 36, no. 9, pp. 2006–2011, 2005. View at Publisher · View at Google Scholar · View at Scopus
  98. S. Pietropaolo, J. Feldon, and B. K. Yee, “Nonphysical contact between cagemates alleviates the social isolation syndrome in C57BL/6 male mice,” Behavioral Neuroscience, vol. 122, no. 3, pp. 505–515, 2008. View at Publisher · View at Google Scholar · View at Scopus
  99. K. Karelina, G. J. Norman, N. Zhang, and A. C. DeVries, “Social contact influences histological and behavioral outcomes following cerebral ischemia,” Experimental Neurology, vol. 220, no. 2, pp. 276–282, 2009. View at Publisher · View at Google Scholar · View at Scopus
  100. R. L. Gibb, C. L. R. Gonzalez, W. Wegenast, and B. E. Kolb, “Tactile stimulation promotes motor recovery following cortical injury in adult rats,” Behavioural Brain Research, vol. 214, no. 1, pp. 102–107, 2010. View at Publisher · View at Google Scholar · View at Scopus
  101. C. C. Lay, M. F. Davis, C. H. Chen-Bee, and R. D. Frostig, “Mild sensory stimulation completely protects the adult rodent cortex from ischemic stroke,” PLoS ONE, vol. 5, no. 6, Article ID e11270, 2010. View at Publisher · View at Google Scholar · View at Scopus
  102. C. C. Lay, M. F. Davis, C. H. Chen-Bee, and R. D. Frostig, “Mild sensory stimulation reestablishes cortical function during the acute phase of ischemia,” Journal of Neuroscience, vol. 31, no. 32, pp. 11495–11504, 2011. View at Publisher · View at Google Scholar · View at Scopus
  103. K. J. Yoon, B. M. Oh, and D. Y. Kim, “Functional improvement and neuroplastic effects of anodal transcranial direct current stimulation (tDCS) delivered 1 day versus 1 week after cerebral ischemia in rats,” Brain Research, vol. 1452, pp. 61–72, 2012. View at Publisher · View at Google Scholar · View at Scopus
  104. T. Jiang, R. X. Xu, A. W. Zhang et al., “Effects of transcranial direct current stimulation on hemichannel pannexin-1 and neural plasticity in rat model of cerebral infarction,” Neuroscience, vol. 226, pp. 421–426, 2012. View at Publisher · View at Google Scholar
  105. C. Rossi, F. Sallustio, S. Di Legge, P. Stanzione, and G. Koch, “Transcranial direct current stimulation of the affected hemisphere does not accelerate recovery of acute stroke patients,” European Journal of Neurology, vol. 20, no. 1, pp. 202–204, 2013. View at Publisher · View at Google Scholar · View at Scopus
  106. M. A. Nitsche, A. Schauenburg, N. Lang et al., “Facilitation of implicit motor learning by weak transcranial direct current stimulation of the primary motor cortex in the human,” Journal of Cognitive Neuroscience, vol. 15, no. 4, pp. 619–626, 2003. View at Publisher · View at Google Scholar · View at Scopus
  107. M. A. Nitsche, S. Doemkes, T. Karaköse et al., “Shaping the effects of transcranial direct current stimulation of the human motor cortex,” Journal of Neurophysiology, vol. 97, no. 4, pp. 3109–3117, 2007. View at Publisher · View at Google Scholar · View at Scopus
  108. N. Bolognini, A. Pascual-Leone, and F. Fregni, “Using non-invasive brain stimulation to augment motor training-induced plasticity,” Journal of NeuroEngineering and Rehabilitation, vol. 6, no. 1, article 8, 2009. View at Publisher · View at Google Scholar · View at Scopus
  109. S. K. Esser, R. Huber, M. Massimini, M. J. Peterson, F. Ferrarelli, and G. Tononi, “A direct demonstration of cortical LTP in humans: a combined TMS/EEG study,” Brain Research Bulletin, vol. 69, no. 1, pp. 86–94, 2006. View at Publisher · View at Google Scholar · View at Scopus
  110. A. Quartarone, V. Rizzo, S. Bagnato et al., “Rapid-rate paired associative stimulation of the median nerve and motor cortex can produce long-lasting changes in motor cortical excitability in humans,” Journal of Physiology, vol. 575, no. 2, pp. 657–670, 2006. View at Publisher · View at Google Scholar · View at Scopus
  111. V. Di Lazzaro, P. Profice, F. Pilato, M. Dileone, A. Oliviero, and U. Ziemann, “The effects of motor cortex rTMS on corticospinal descending activity,” Clinical Neurophysiology, vol. 121, no. 4, pp. 464–473, 2010. View at Publisher · View at Google Scholar · View at Scopus
  112. A. Conte, D. Belvisi, E. Iezzi, F. Mari, M. Inghilleri, and A. Berardelli, “Effects of attention on inhibitory and facilitatory phenomena elicited by paired-pulse transcranial magnetic stimulation in healthy subjects,” Experimental Brain Research, vol. 186, no. 3, pp. 393–399, 2008. View at Publisher · View at Google Scholar · View at Scopus
  113. H. R. Siebner, M. Peller, F. Willoch et al., “Lasting cortical activation after repetitive TMS of the motor cortex: a glucose metabolic study,” Neurology, vol. 54, no. 4, pp. 956–963, 2000. View at Google Scholar · View at Scopus
  114. F. Wang, X. Geng, H. Y. Tao, and Y. Cheng, “The restoration after repetitive transcranial magnetic stimulation treatment on cognitive ability of vascular dementia rats and its impacts on synaptic plasticity in hippocampal ca1 area,” Journal of Molecular Neuroscience, vol. 41, no. 1, pp. 145–155, 2010. View at Publisher · View at Google Scholar · View at Scopus
  115. H. Wang, D. Crupi, J. Liu et al., “Repetitive transcranial magnetic stimulation enhances BDNF-TrkB signaling in both brain and lymphocyte,” Journal of Neuroscience, vol. 31, no. 30, pp. 11044–11054, 2011. View at Publisher · View at Google Scholar · View at Scopus
  116. M. Fujiki and O. Steward, “High frequency transcranial magnetic stimulation mimics the effects of ECS in upregulating astroglial gene expression in the murine CNS,” Molecular Brain Research, vol. 44, no. 2, pp. 301–308, 1997. View at Publisher · View at Google Scholar · View at Scopus
  117. X. Zhang, Y. Mei, C. Liu, and S. Yu, “Effect of transcranial magnetic stimulation on the expression of c-Fos and brain-derived neurotrophic factor of the cerebral cortex in rats with cerebral infarct,” Journal of Huazhong University of Science and Technology—Medical Science, vol. 27, no. 4, pp. 415–418, 2007. View at Publisher · View at Google Scholar · View at Scopus
  118. J. Biernaskie, G. Chernenko, and D. Corbett, “Efficacy of rehabilitative experience declines with time after focal ischemic brain injury,” Journal of Neuroscience, vol. 24, no. 5, pp. 1245–1254, 2004. View at Publisher · View at Google Scholar · View at Scopus
  119. S. Barbay, E. J. Plautz, K. M. Friel et al., “Behavioral and neurophysiological effects of delayed training following a small ischemic infarct in primary motor cortex of squirrel monkeys,” Experimental Brain Research, vol. 169, no. 1, pp. 106–116, 2006. View at Publisher · View at Google Scholar · View at Scopus
  120. A. Risedal, J. Zeng, and B. B. Johansson, “Early training may exacerbate brain damage after focal brain ischemia in the rat,” Journal of Cerebral Blood Flow and Metabolism, vol. 19, no. 9, pp. 997–1003, 1999. View at Google Scholar · View at Scopus
  121. S. T. Bland, T. Schallert, R. Strong, J. Aronowski, and J. C. Grotta, “Early exclusive use of the affected forelimb after moderate transient focal ischemia in rats: functional and anatomic outcome,” Stroke, vol. 31, no. 5, pp. 1144–1152, 2000. View at Google Scholar · View at Scopus
  122. J. L. Humm, D. A. Kozlowski, S. T. Bland, D. C. James, and T. Schallert, “Use-dependent exaggeration of brain injury: is glutamate involved?” Experimental Neurology, vol. 157, no. 2, pp. 349–358, 1999. View at Publisher · View at Google Scholar · View at Scopus
  123. T. A. Jones, C. J. Chu, L. A. Grande, and A. D. Gregory, “Motor skills training enhances lesion-induced structural plasticity in the motor cortex of adult rats,” Journal of Neuroscience, vol. 19, no. 22, pp. 10153–10163, 1999. View at Google Scholar · View at Scopus
  124. R. Domann, G. Hagemann, M. Kraemer, H. J. Freund, and O. W. Witte, “Electrophysiological changes in the surrounding brain tissue of photochemically induced cortical infarcts in the rat,” Neuroscience Letters, vol. 155, no. 1, pp. 69–72, 1993. View at Publisher · View at Google Scholar · View at Scopus
  125. S. T. Carmichael, “Brain excitability in stroke: the yin and yang of stroke progression,” Archives of Neurology, vol. 69, no. 2, pp. 161–167, 2012. View at Publisher · View at Google Scholar · View at Scopus
  126. R. Farrell, S. Evans, and D. Corbett, “Environmental enrichment enhances recovery of function but exacerbates ischemic cell death,” Neuroscience, vol. 107, no. 4, pp. 585–592, 2001. View at Publisher · View at Google Scholar · View at Scopus
  127. R. G. Lee and P. van Donkelaar, “Mechanisms underlying functional recovery following stroke,” Canadian Journal of Neurological Sciences, vol. 22, no. 4, pp. 257–263, 1995. View at Google Scholar · View at Scopus
  128. R. Chen, L. G. Cohen, and M. Hallett, “Nervous system reorganization following injury,” Neuroscience, vol. 111, no. 4, pp. 761–773, 2002. View at Publisher · View at Google Scholar · View at Scopus
  129. R. J. Seitz and H. J. Freund, “Plasticity of the human motor cortex,” Advances in Neurology, vol. 73, pp. 321–333, 1997. View at Google Scholar · View at Scopus
  130. P. Cicinelli, R. Traversa, and P. M. Rossini, “Post-stroke reorganization of brain motor output to the hand: a 2–4 month follow-up with focal magnetic transcranial stimulation,” Electroencephalography and Clinical Neurophysiology—Electromyography and Motor Control, vol. 105, no. 6, pp. 438–450, 1997. View at Publisher · View at Google Scholar · View at Scopus
  131. R. Traversa, P. Cicinelli, A. Bassi, P. M. Rossini, and G. Bernardi, “Mapping of motor cortical reorganization after stroke: a brain simulation study with focal magnetic pulses,” Stroke, vol. 28, no. 1, pp. 110–117, 1997. View at Google Scholar · View at Scopus
  132. J. Liepert, W. H. R. Miltner, H. Bauder et al., “Motor cortex plasticity during constraint,induced movement therapy in stroke patients,” Neuroscience Letters, vol. 250, no. 1, pp. 5–8, 1998. View at Publisher · View at Google Scholar · View at Scopus
  133. R. S. Marshall, G. M. Perera, R. M. Lazar, J. W. Krakauer, R. C. Constantine, and R. L. DeLaPaz, “Evolution of cortical activation during recovery from corticospinal tract infarction,” Stroke, vol. 31, no. 3, pp. 656–661, 2000. View at Google Scholar · View at Scopus
  134. N. S. Ward, J. M. Newton, O. B. C. Swayne et al., “Motor system activation after subcortical stroke depends on corticospinal system integrity,” Brain, vol. 129, part 3, pp. 809–819, 2006. View at Publisher · View at Google Scholar · View at Scopus
  135. N. S. Ward, J. M. Newton, O. B. C. Swayne et al., “The relationship between brain activity and peak grip force is modulated by corticospinal system integrity after subcortical stroke,” European Journal of Neuroscience, vol. 25, no. 6, pp. 1865–1873, 2007. View at Publisher · View at Google Scholar · View at Scopus
  136. H. Adesnik and M. Scanziani, “Lateral competition for cortical space by layer-specific horizontal circuits,” Nature, vol. 464, no. 7292, pp. 1155–1160, 2010. View at Publisher · View at Google Scholar · View at Scopus
  137. S. T. Carmichael, L. Wei, C. M. Rovainen, and T. A. Woolsey, “New patterns of intracortical projections after focal cortical stroke,” Neurobiology of Disease, vol. 8, no. 5, pp. 910–922, 2001. View at Publisher · View at Google Scholar · View at Scopus
  138. J. H. Kaas, H. X. Qi, M. J. Burish, O. A. Gharbawie, S. M. Onifer, and J. M. Massey, “Cortical and subcortical plasticity in the brains of humans, primates, and rats after damage to sensory afferents in the dorsal columns of the spinal cord,” Experimental Neurology, vol. 209, no. 2, pp. 407–416, 2008. View at Publisher · View at Google Scholar · View at Scopus
  139. T. A. Jones and T. Schallert, “Overgrowth and pruning of dendrites in adult rats recovering from neocortical damage,” Brain Research, vol. 581, no. 1, pp. 156–160, 1992. View at Publisher · View at Google Scholar · View at Scopus
  140. R. P. Stroemer, T. A. Kent, and C. E. Hulsebosch, “Neocortical neural sprouting, synaptogenesis, and behavioral recovery after neocortical infarction in rats,” Stroke, vol. 26, no. 11, pp. 2135–2144, 1995. View at Google Scholar · View at Scopus
  141. N. Dancause, “Vicarious function of remote cortex following stroke: recent evidence from human and animal studies,” Neuroscientist, vol. 12, no. 6, pp. 489–499, 2006. View at Publisher · View at Google Scholar · View at Scopus
  142. M. L. Starkey, C. Bleul, B. Zörner et al., “Back seat driving: hindlimb corticospinal neurons assume forelimb control following ischaemic stroke,” Brain, vol. 135, no. 11, pp. 3265–3281, 2012. View at Publisher · View at Google Scholar
  143. M. Komitova, B. B. Johansson, and P. S. Eriksson, “On neural plasticity, new neurons and the postischemic milieu: an integrated view on experimental rehabilitation,” Experimental Neurology, vol. 199, no. 1, pp. 42–55, 2006. View at Publisher · View at Google Scholar · View at Scopus
  144. B. B. Johansson and P. V. Belichenko, “Neuronal plasticity and dendritic spines: effect of environmental enrichment on intact and postischemic rat brain,” Journal of Cerebral Blood Flow and Metabolism, vol. 22, no. 1, pp. 89–96, 2002. View at Google Scholar · View at Scopus
  145. T. L. Briones, M. Rogozinska, and J. Woods, “Modulation of ischemia-induced NMDAR1 activation by environmental enrichment decreases oxidative damage,” Journal of Neurotrauma, vol. 28, no. 12, pp. 2485–2492, 2011. View at Publisher · View at Google Scholar · View at Scopus
  146. O. L. Gobbo and S. M. O'Mara, “Impact of enriched-environment housing on brain-derived neurotrophic factor and on cognitive performance after a transient global ischemia,” Behavioural Brain Research, vol. 152, no. 2, pp. 231–241, 2004. View at Publisher · View at Google Scholar · View at Scopus
  147. M. Ploughman, S. Granter-Button, G. Chernenko et al., “Exercise intensity influences the temporal profile of growth factors involved in neuronal plasticity following focal ischemia,” Brain Research, vol. 1150, no. 1, pp. 207–216, 2007. View at Publisher · View at Google Scholar · View at Scopus
  148. S. Li, J. J. Overman, D. Katsman et al., “An age-related sprouting transcriptome provides molecular control of axonal sprouting after stroke,” Nature Neuroscience, vol. 13, no. 12, pp. 1496–1506, 2010. View at Publisher · View at Google Scholar · View at Scopus
  149. K. Keyvani, N. Sachser, O. W. Witte, and W. Paulus, “Gene expression profiling in the intact and injured brain following environmental enrichment,” Journal of Neuropathology and Experimental Neurology, vol. 63, no. 6, pp. 598–609, 2004. View at Google Scholar · View at Scopus
  150. J. Milbrandt, “A nerve growth factor-induced gene encodes a possible transcriptional regulatory factor,” Science, vol. 238, no. 4828, pp. 797–799, 1987. View at Google Scholar · View at Scopus
  151. J. L. W. Yau, T. Olsson, R. G. M. Morris, J. Noble, and J. R. Seckl, “Decreased NGFI-A gene expression in the hippocampus of cognitively impaired aged rats,” Molecular Brain Research, vol. 42, no. 2, pp. 354–357, 1996. View at Publisher · View at Google Scholar · View at Scopus
  152. M. Dragunow, “A role for immediate-early transcription factors in learning and memory,” Behavior Genetics, vol. 26, no. 3, pp. 293–299, 1996. View at Publisher · View at Google Scholar · View at Scopus
  153. G. Thiel, S. Schoch, and D. Petersohn, “Regulation of synapsin I gene expression by the zinc finger transcription factor zif268/egr-1,” The Journal of Biological Chemistry, vol. 269, no. 21, pp. 15294–15301, 1994. View at Google Scholar · View at Scopus
  154. D. Petersohn, S. Schoch, D. R. Brinkmann, and G. Thiel, “The human synapsin II gene promoter. Possible role for the transcription factors zif268/egr-1, polyoma enhancer activator 3, and AP2,” The Journal of Biological Chemistry, vol. 270, no. 41, pp. 24361–24369, 1995. View at Publisher · View at Google Scholar · View at Scopus
  155. A. Ferreira and M. Rapoport, “The synapsins: beyond the regulation of neurotransmitter release,” Cellular and Molecular Life Sciences, vol. 59, no. 4, pp. 589–595, 2002. View at Publisher · View at Google Scholar · View at Scopus
  156. A. S. Pagnussat, F. Simao, J. R. Anastacio et al., “Effects of skilled and unskilled training on functional recovery and brain plasticity after focal ischemia in adult rats,” Brain Research, vol. 1486, pp. 53–61, 2012. View at Publisher · View at Google Scholar
  157. S. F. Yan, T. Fujita, J. Lu et al., “Egr-1, a master switch coordinating upregulation of divergent gene families underlying ischemic stress,” Nature Medicine, vol. 6, no. 12, pp. 1355–1361, 2000. View at Publisher · View at Google Scholar · View at Scopus
  158. J. Milbrandt, “Nerve growth factor induces a gene homologous to the glucocorticoid receptor gene,” Neuron, vol. 1, no. 3, pp. 183–188, 1988. View at Google Scholar · View at Scopus
  159. M. Dragunow, W. Abraham, and P. Hughes, “Activation of NMDA and muscarinic receptors induces nur-77 mRNA in hippocampal neurons,” Molecular Brain Research, vol. 36, no. 2, pp. 349–356, 1996. View at Publisher · View at Google Scholar · View at Scopus
  160. P. Dahlqvist, A. Rönnbäck, A. Risedal et al., “Effects of postischemic environment on transcription factor and serotonin receptor expression after permanent focal cortical ischemia in rats,” Neuroscience, vol. 119, no. 3, pp. 643–652, 2003. View at Publisher · View at Google Scholar · View at Scopus
  161. P. Dahlqvist, L. Zhao, I. M. Johansson et al., “Environmental enrichment alters nerve growth factor-induced gene A and glucocorticoid receptor messenger RNA expression after middle cerebral artery occlusion in rats,” Neuroscience, vol. 93, no. 2, pp. 527–535, 1999. View at Publisher · View at Google Scholar · View at Scopus
  162. J. Nygren and T. Wieloch, “Enriched environment enhances recovery of motor function after focal ischemia in mice, and downregulates the transcription factor NGFI-A,” Journal of Cerebral Blood Flow and Metabolism, vol. 25, no. 12, pp. 1625–1633, 2005. View at Publisher · View at Google Scholar · View at Scopus
  163. Y. Shono, C. Yokota, Y. Kuge et al., “Gene expression associated with an enriched environment after transient focal ischemia,” Brain Research, vol. 1376, pp. 60–65, 2011. View at Publisher · View at Google Scholar · View at Scopus
  164. M. Cayre, P. Canoll, and J. E. Goldman, “Cell migration in the normal and pathological postnatal mammalian brain,” Progress in Neurobiology, vol. 88, no. 1, pp. 41–63, 2009. View at Publisher · View at Google Scholar · View at Scopus
  165. S. Keiner, J. Walter, J. Oberland, and C. Redecker, “Contribution of constitutively proliferating precursor cell subtypes to dentate neurogenesis after cortical infarcts,” BMC Neuroscience, vol. 11, article 146, 2010. View at Publisher · View at Google Scholar · View at Scopus
  166. J. Walter, S. Keiner, O. W. Witte, and C. Redecker, “Differential stroke-induced proliferative response of distinct precursor cell subpopulations in the young and aged dentate gyrus,” Neuroscience, vol. 169, no. 3, pp. 1279–1286, 2010. View at Publisher · View at Google Scholar · View at Scopus
  167. A. Arvidsson, T. Collin, D. Kirik, Z. Kokaia, and O. Lindvall, “Neuronal replacement from endogenous precursors in the adult brain after stroke,” Nature Medicine, vol. 8, no. 9, pp. 963–970, 2002. View at Publisher · View at Google Scholar · View at Scopus
  168. J. M. Parent, Z. S. Vexler, C. Gong, N. Derugin, and D. M. Ferriero, “Rat forebrain neurogenesis and striatal neuron replacement after focal stroke,” Annals of Neurology, vol. 52, no. 6, pp. 802–813, 2002. View at Publisher · View at Google Scholar · View at Scopus
  169. R. Zhang, Z. Zhang, C. Zhang et al., “Stroke transiently increases subventricular zone cell division from asymmetric to symmetric and increases neuronal differentiation in the adult rat,” Journal of Neuroscience, vol. 24, no. 25, pp. 5810–5815, 2004. View at Publisher · View at Google Scholar · View at Scopus
  170. J. E. Gotts and M. Chesselet, “Mechanisms of subventricular zone expansion after focal cortical ischemic injury,” Journal of Comparative Neurology, vol. 488, no. 2, pp. 201–214, 2005. View at Publisher · View at Google Scholar · View at Scopus
  171. M. Komitova, B. Mattsson, B. B. Johansson, and P. S. Eriksson, “Enriched environment increases neural stem/progenitor cell proliferation and neurogenesis in the subventricular zone of stroke-lesioned adult rats,” Stroke, vol. 36, no. 6, pp. 1278–1282, 2005. View at Publisher · View at Google Scholar · View at Scopus
  172. D. Koketsu, Y. Furuichi, M. Maeda, N. Matsuoka, Y. Miyamoto, and T. Hisatsune, “Increased number of new neurons in the olfactory bulb and hippocampus of adult non-human primates after focal ischemia,” Experimental Neurology, vol. 199, no. 1, pp. 92–102, 2006. View at Publisher · View at Google Scholar · View at Scopus
  173. T. Collin, A. Arvidsson, Z. Kokaia, and O. Lindvall, “Quantitative analysis of the generation of different striatal neuronal subtypes in the adult brain following excitotoxic injury,” Experimental Neurology, vol. 195, no. 1, pp. 71–80, 2005. View at Publisher · View at Google Scholar · View at Scopus
  174. K. Jin, X. Wang, L. Xie, X. O. Mao, and D. A. Greenberg, “Transgenic ablation of doublecortin-expressing cells suppresses adult neurogenesis and worsens stroke outcome in mice,” Proceedings of the National Academy of Sciences of the United States of America, vol. 107, no. 17, pp. 7993–7998, 2010. View at Publisher · View at Google Scholar · View at Scopus
  175. Y. Sun, K. Jin, L. Xie et al., “VEGF-induced neuroprotection, neurogenesis, and angiogenesis after focal cerebral ischemia,” Journal of Clinical Investigation, vol. 111, no. 12, pp. 1843–1851, 2003. View at Publisher · View at Google Scholar · View at Scopus
  176. M. Komitova, L. R. Zhao, G. Gidö, B. B. Johansson, and P. Eriksson, “Postischemic exercise attenuates whereas enriched environment has certain enhancing effects on lesion-induced subventricular zone activation in the adult rat,” European Journal of Neuroscience, vol. 21, no. 9, pp. 2397–2405, 2005. View at Publisher · View at Google Scholar · View at Scopus
  177. T. L. Briones, E. Suh, H. Hattar, and M. Wadowska, “Dentate gyrus neurogenesis after cerebral ischemia and behavioral training,” Biological Research for Nursing, vol. 6, no. 3, pp. 167–179, 2005. View at Publisher · View at Google Scholar · View at Scopus
  178. J. L. Trejo, E. Carro, and I. Torres-Alemán, “Circulating insulin-like growth factor I mediates exercise-induced increases in the number of new neurons in the adult hippocampus,” Journal of Neuroscience, vol. 21, no. 5, pp. 1628–1634, 2001. View at Google Scholar · View at Scopus
  179. K. Fabel, K. Fabel, B. Tam et al., “VEGF is necessary for exercise-induced adult hippocampal neurogenesis,” European Journal of Neuroscience, vol. 18, no. 10, pp. 2803–2812, 2003. View at Publisher · View at Google Scholar · View at Scopus
  180. L. Cao, X. Jiao, D. S. Zuzga et al., “VEGF links hippocampal activity with neurogenesis, learning and memory,” Nature Genetics, vol. 36, no. 8, pp. 827–835, 2004. View at Publisher · View at Google Scholar · View at Scopus
  181. F. Wurm, S. Keiner, A. Kunze, O. W. Witte, and C. Redecker, “Effects of skilled forelimb training on hippocampal neurogenesis and spatial learning after focal cortical infarcts in the adult rat brain,” Stroke, vol. 38, no. 10, pp. 2833–2840, 2007. View at Publisher · View at Google Scholar · View at Scopus
  182. C. Zhao, J. Wang, S. Zhao, and Y. Nie, “Constraint-induced movement therapy enhanced neurogenesis and behavioral recovery after stroke in adult rats,” Tohoku Journal of Experimental Medicine, vol. 218, no. 4, pp. 301–308, 2009. View at Publisher · View at Google Scholar · View at Scopus
  183. Y. Matsumori, S. M. Hong, Y. Fan et al., “Enriched environment and spatial learning enhance hippocampal neurogenesis and salvages ischemic penumbra after focal cerebral ischemia,” Neurobiology of Disease, vol. 22, no. 1, pp. 187–198, 2006. View at Publisher · View at Google Scholar · View at Scopus
  184. M. Nedergaard and U. Dirnagl, “Role of glial cells in cerebral ischemia,” Glia, vol. 50, no. 4, pp. 281–286, 2005. View at Publisher · View at Google Scholar · View at Scopus
  185. M. Nilsson and M. Pekny, “Enriched environment and astrocytes in central nervous system regeneration,” Journal of Rehabilitation Medicine, vol. 39, no. 5, pp. 345–352, 2007. View at Publisher · View at Google Scholar · View at Scopus
  186. J. L. Ridet, S. K. Malhotra, A. Privat, and F. H. Gage, “Reactive astrocytes: cellular and molecular cues to biological function,” Trends in Neurosciences, vol. 20, no. 12, pp. 570–577, 1997. View at Publisher · View at Google Scholar · View at Scopus
  187. E. M. Ullian, K. S. Christopherson, and B. A. Barres, “Role for glia in synaptogenesis,” Glia, vol. 47, no. 3, pp. 209–216, 2004. View at Publisher · View at Google Scholar · View at Scopus
  188. M. Pekny, U. Wilhelmsson, Y. R. Bogestål, and M. Pekna, “The role of astrocytes and complement system in neural plasticity,” International Review of Neurobiology, vol. 82, pp. 95–111, 2007. View at Publisher · View at Google Scholar · View at Scopus
  189. H. Song, C. F. Stevens, and F. H. Gage, “Astroglia induce neurogenesis from adult neural stem cells,” Nature, vol. 417, no. 6884, pp. 39–44, 2002. View at Publisher · View at Google Scholar · View at Scopus
  190. A. Alvarez-Buylla and D. A. Lim, “For the long run: maintaining germinal niches in the adult brain,” Neuron, vol. 41, no. 5, pp. 683–686, 2004. View at Publisher · View at Google Scholar · View at Scopus
  191. S. Robel, B. Berninger, and M. Götz, “The stem cell potential of glia: lessons from reactive gliosis,” Nature Reviews Neuroscience, vol. 12, no. 2, pp. 88–104, 2011. View at Publisher · View at Google Scholar · View at Scopus
  192. H. K. Kimelberg, “Astrocytic swelling in cerebral ischemia as a possible cause of injury and target for therapy,” Glia, vol. 50, no. 4, pp. 389–397, 2005. View at Publisher · View at Google Scholar · View at Scopus
  193. S. Keiner, F. Wurm, A. Kunze, O. W. Witte, and C. Redecker, “Rehabilitative therapies differentially alter proliferation and survival of glial cell populations in the perilesional zone of cortical infarcts,” Glia, vol. 56, no. 5, pp. 516–527, 2008. View at Publisher · View at Google Scholar · View at Scopus
  194. R. P. Kraig and C. B. Jaeger, “Ionic concomitants of astroglial transformation to reactive species,” Stroke, vol. 21, no. 11, supplement, pp. III184–III187, 1990. View at Google Scholar · View at Scopus
  195. J. X. Wilson, “Antioxidant defense of the brain: a role for astrocytes,” Canadian Journal of Physiology and Pharmacology, vol. 75, no. 10-11, pp. 1149–1163, 1997. View at Publisher · View at Google Scholar · View at Scopus
  196. K. Ruscher, D. Freyer, M. Karsch et al., “Erythropoietin is a paracrine mediator of ischemic tolerance in the brain: evidence from an in vitro model,” Journal of Neuroscience, vol. 22, no. 23, pp. 10291–10301, 2002. View at Google Scholar · View at Scopus
  197. G. Trendelenburg, K. Prass, J. Priller et al., “Serial analysis of gene expression identifies metallothionein-II as major neuroprotective gene in mouse focal cerebral ischemia,” Journal of Neuroscience, vol. 22, no. 14, pp. 5879–5888, 2002. View at Google Scholar · View at Scopus
  198. M. F. Anderson, F. Blomstrand, C. Blomstrand, P. S. Eriksson, and M. Nilsson, “Astrocytes and stroke: networking for survival?” Neurochemical Research, vol. 28, no. 2, pp. 293–305, 2003. View at Publisher · View at Google Scholar · View at Scopus
  199. G. Trendelenburg and U. Dirnagl, “Neuroprotective role of astrocytes in cerebral ischemia: focus on ischemic preconditioning,” Glia, vol. 50, no. 4, pp. 307–320, 2005. View at Publisher · View at Google Scholar · View at Scopus
  200. T. G. Bush, N. Puvanachandra, C. H. Horner et al., “Leukocyte infiltration, neuronal degeneration, and neurite outgrowth after ablation of scar-forming, reactive astrocytes in adult transgenic mice,” Neuron, vol. 23, no. 2, pp. 297–308, 1999. View at Publisher · View at Google Scholar · View at Scopus
  201. M. Pekny, C. B. Johansson, C. Eliasson et al., “Abnormal reaction to central nervous system injury in mice lacking glial fibrillary acidic protein and vimentin,” Journal of Cell Biology, vol. 145, no. 3, pp. 503–514, 1999. View at Publisher · View at Google Scholar · View at Scopus
  202. J. R. Faulkner, J. E. Herrmann, M. J. Woo, K. E. Tansey, N. B. Doan, and M. V. Sofroniew, “Reactive astrocytes protect tissue and preserve function after spinal cord injury,” Journal of Neuroscience, vol. 24, no. 9, pp. 2143–2155, 2004. View at Publisher · View at Google Scholar · View at Scopus
  203. C. M. Liberto, P. J. Albrecht, L. M. Herx, V. W. Yong, and S. W. Levison, “Pro-regenerative properties of cytokine-activated astrocytes,” Journal of Neurochemistry, vol. 89, no. 5, pp. 1092–1100, 2004. View at Publisher · View at Google Scholar · View at Scopus
  204. T. Morioka, A. N. Kalehua, and W. J. Streit, “Characterization of microglial reaction after middle cerebral artery occlusion in rat brain,” Journal of Comparative Neurology, vol. 327, no. 1, pp. 123–132, 1993. View at Publisher · View at Google Scholar · View at Scopus
  205. W. J. Streit, S. A. Walter, and N. A. Pennell, “Reactive microgliosis,” Progress in Neurobiology, vol. 57, no. 6, pp. 563–581, 1999. View at Publisher · View at Google Scholar · View at Scopus
  206. W. J. Streit, “Microglial response to brain injury: a brief synopsis,” Toxicologic Pathology, vol. 28, no. 1, pp. 28–30, 2000. View at Google Scholar · View at Scopus
  207. I. Bechmann, J. Priller, A. Kovac et al., “Immune surveillance of mouse brain perivascular spaces by blood-borne macrophages,” European Journal of Neuroscience, vol. 14, no. 10, pp. 1651–1658, 2001. View at Publisher · View at Google Scholar · View at Scopus
  208. S. Jander, M. Schroeter, and A. Saleh, “Imaging inflammation in acute brain ischemia,” Stroke, vol. 38, no. 2, supplement, pp. 642–645, 2007. View at Publisher · View at Google Scholar · View at Scopus
  209. S. Elkabes, E. M. DiCicco-Bloom, and I. B. Black, “Brain microglia/macrophages express neurotrophins that selectively regulate microglial proliferation and function,” Journal of Neuroscience, vol. 16, no. 8, pp. 2508–2521, 1996. View at Google Scholar · View at Scopus
  210. F. Imai, H. Suzuki, J. Oda et al., “Neuroprotective effect of exogenous microglia in global brain ischemia,” Journal of Cerebral Blood Flow and Metabolism, vol. 27, no. 3, pp. 488–500, 2007. View at Publisher · View at Google Scholar · View at Scopus
  211. K. M. Boje and P. K. Arora, “Microglial-produced nitric oxide and reactive nitrogen oxides mediate neuronal cell death,” Brain Research, vol. 587, no. 2, pp. 250–256, 1992. View at Publisher · View at Google Scholar · View at Scopus
  212. J. von Zahn, T. Möller, H. Kettenmann, and C. Nolte, “Microglial phagocytosis is modulated by pro-and anti-inflammatory cytokines,” NeuroReport, vol. 8, no. 18, pp. 3851–3856, 1997. View at Google Scholar · View at Scopus
  213. M. Aschner, J. W. Allen, H. K. Kimelberg, R. M. LoPachin, and W. J. Streit, “Glial cells in neurotoxicity development,” Annual Review of Pharmacology and Toxicology, vol. 39, pp. 151–173, 1999. View at Publisher · View at Google Scholar · View at Scopus
  214. C. L. Gibson, T. C. Coughlan, and S. P. Murphy, “Glial nitric oxide and ischemia,” Glia, vol. 50, no. 4, pp. 417–426, 2005. View at Publisher · View at Google Scholar · View at Scopus
  215. S. W. Barger, M. E. Goodwin, M. M. Porter, and M. L. Beggs, “Glutamate release from activated microglia requires the oxidative burst and lipid peroxidation,” Journal of Neurochemistry, vol. 101, no. 5, pp. 1205–1213, 2007. View at Publisher · View at Google Scholar · View at Scopus
  216. S. T. Dheen, C. Kaur, and E. Ling, “Microglial activation and its implications in the brain diseases,” Current Medicinal Chemistry, vol. 14, no. 11, pp. 1189–1197, 2007. View at Publisher · View at Google Scholar · View at Scopus
  217. K. A. Hewlett and D. Corbett, “Delayed minocycline treatment reduces long-term functional deficits and histological injury in a rodent model of focal ischemia,” Neuroscience, vol. 141, no. 1, pp. 27–33, 2006. View at Publisher · View at Google Scholar · View at Scopus
  218. Z. Liu, Y. Fan, S. J. Won et al., “Chronic treatment with minocycline preserves adult new neurons and reduces functional impairment after focal cerebral ischemia,” Stroke, vol. 38, no. 1, pp. 146–152, 2007. View at Publisher · View at Google Scholar · View at Scopus
  219. M. Komitova, E. Perfilieva, B. Mattsson, P. S. Eriksson, and B. B. Johansson, “Enriched environment after focal cortical ischemia enhances the generation of astroglia and NG2 positive polydendrocytes in adult rat neocortex,” Experimental Neurology, vol. 199, no. 1, pp. 113–121, 2006. View at Publisher · View at Google Scholar · View at Scopus
  220. A. Nishiyama, M. Watanabe, Z. Yang, and J. Bu, “Identity, distribution, and development of polydendrocytes: NG2-expressing glial cells,” Brain Cell Biology, vol. 31, no. 6-7, pp. 437–455, 2002. View at Google Scholar · View at Scopus
  221. S. Belachew, R. Chittajallu, A. A. Aguirre et al., “Postnatal NG2 proteoglycan-expressing progenitor cells are intrinsically multipotent and generate functional neurons,” Journal of Cell Biology, vol. 161, no. 1, pp. 169–186, 2003. View at Publisher · View at Google Scholar · View at Scopus
  222. A. Aguirre and V. Gallo, “Postnatal neurogenesis and gliogenesis in the olfactory bulb from NG2-expressing progenitors of the subventricular zone,” Journal of Neuroscience, vol. 24, no. 46, pp. 10530–10541, 2004. View at Publisher · View at Google Scholar · View at Scopus
  223. E. Boda and A. Buffo, “Glial cells in non-germinal territories: insights into their stem/progenitor properties in the intact and injured nervous tissue,” Archives Italiennes de Biologie, vol. 148, no. 2, pp. 119–136, 2010. View at Google Scholar · View at Scopus
  224. A. J. Butler and S. J. Page, “Mental practice with motor imagery: evidence for motor recovery and cortical reorganization after stroke,” Archives of Physical Medicine and Rehabilitation, vol. 87, no. 12, pp. 2–11, 2006. View at Publisher · View at Google Scholar · View at Scopus