Table of Contents Author Guidelines Submit a Manuscript
Neural Plasticity
Volume 2013, Article ID 908741, 10 pages
http://dx.doi.org/10.1155/2013/908741
Research Article

The Mechanisms of Movement Control and Time Estimation in Cervical Dystonia Patients

1Central European Institute of Technology, CEITEC MU, Behavioral and Social Neuroscience Research Group, Masaryk University, 625 00 Brno, Czech Republic
2First Department of Neurology, Faculty of Medicine, Masaryk University and St. Anne’s Teaching Hospital, 656 91 Brno, Czech Republic
3Department of Psychiatry, University of Montréal, Montréal, QC, Canada H3C 3T5
4Functional Neuroimaging Unit, Research Center of the Geriatric Institute Affiliated with the University of Montréal, Montréal, QC, Canada H3C 3T5
5Department of Research, Donald Berman Maimonides Geriatric Center, Montréal, QC, Canada H3C 3T5
6Department of Psychiatry, Faculty of Medicine, Masaryk University and St. Teaching Hospital, 625 00 Brno, Czech Republic

Received 6 June 2013; Revised 26 August 2013; Accepted 28 August 2013

Academic Editor: Mario U. Manto

Copyright © 2013 Pavel Filip et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. S. Fahn, S. B. Bressman, and C. D. Marsden, “Classification of dystonia,” Advances in Neurology, vol. 78, pp. 1–10, 1998. View at Google Scholar · View at Scopus
  2. A. Albanese, K. Bhatia, S. B. Bressman et al., “Phenomenology and classification of dystonia: a consensus update,” Movement Disorders, vol. 28, no. 7, pp. 863–873, 2013. View at Publisher · View at Google Scholar
  3. H. Oppenheim, “Uber eine eigenartige kramotkrankheit des kindlichen und jugendlichen alters (dysbasia lordotica progressiva, dystonia musculorum deformans),” Neurologie Centralblatt, vol. 30, pp. 1090–1107, 1911. View at Google Scholar
  4. J. L. Vitek, “Pathophysiology of dystonia: a neuronal model,” Movement Disorders, vol. 17, no. 3, pp. S49–S62, 2002. View at Google Scholar · View at Scopus
  5. M. R. DeLong and T. Wichmann, “Circuits and circuit disorders of the basal ganglia,” Archives of Neurology, vol. 64, no. 1, pp. 20–24, 2007. View at Publisher · View at Google Scholar · View at Scopus
  6. N. A. Fletcher, R. Stell, A. E. Harding, and C. D. Marsden, “Degenerative cerebellar ataxia and focal dystonia,” Movement Disorders, vol. 3, no. 4, pp. 336–342, 1988. View at Google Scholar · View at Scopus
  7. M. Vidailhet, D. Grabli, and E. Roze, “Pathophysiology of dystonia,” Current Opinion in Neurology, vol. 22, no. 4, pp. 406–413, 2009. View at Publisher · View at Google Scholar · View at Scopus
  8. A. Sadnicka, B. S. Hoffland, K. P. Bhatia, B. P. van de Warrenburg, and M. J. Edwards, “The cerebellum in dystonia—help or hindrance?” Clinical Neurophysiology, vol. 123, no. 1, pp. 65–70, 2012. View at Publisher · View at Google Scholar · View at Scopus
  9. P. Filip, O. V. Lungu, and M. Bareš, “Dystonia and the cerebellum: a new field of interest in movement disorders?” Clinical Neurophysiology, vol. 124, no. 7, pp. 1269–1276, 2013. View at Publisher · View at Google Scholar
  10. J. Liepert, T. Kucinski, O. Tüscher, F. Pawlas, T. Bäumer, and C. Weiller, “Motor cortex excitability after cerebellar infarction,” Stroke, vol. 35, no. 11, pp. 2484–2488, 2004. View at Publisher · View at Google Scholar · View at Scopus
  11. M. Obermann, C. Vollrath, A. de Greiff et al., “Sensory disinhibition on passive movement in cervical dystonia,” Movement Disorders, vol. 25, no. 15, pp. 2627–2633, 2010. View at Publisher · View at Google Scholar · View at Scopus
  12. B. Draganski, C. Thun-Hohenstein, U. Bogdahn, J. Winkler, and A. May, “‘Motor circuit’ gray matter changes in idiopathic cervical dystonia,” Neurology, vol. 61, no. 9, pp. 1228–1231, 2003. View at Google Scholar · View at Scopus
  13. H. Kadota, Y. Nakajima, M. Miyazaki et al., “An fMRI study of musicians with focal dystonia during tapping tasks,” Journal of Neurology, vol. 257, no. 7, pp. 1092–1098, 2010. View at Publisher · View at Google Scholar · View at Scopus
  14. X.-Y. Hu, L. Wang, H. Liu, and S.-Z. Zhang, “Functional magnetic resonance imaging study of writer's cramp,” Chinese Medical Journal, vol. 119, no. 15, pp. 1263–1271, 2006. View at Google Scholar · View at Scopus
  15. R. S. Baker, A. H. Andersen, R. J. Morecraft, and C. D. Smith, “A functional magnetic resonance imaging study in patients with benign essential blepharospasm,” Journal of Neuro-Ophthalmology, vol. 23, no. 1, pp. 11–15, 2003. View at Publisher · View at Google Scholar · View at Scopus
  16. M. Niethammer, M. Carbon, M. Argyelan, and D. Eidelberg, “Hereditary dystonia as a neurodevelopmental circuit disorder: evidence from neuroimaging,” Neurobiology of Disease, vol. 42, no. 2, pp. 202–209, 2011. View at Publisher · View at Google Scholar · View at Scopus
  17. D. Alvarez-Fischer, M. Grundmann, L. Lu et al., “Prolonged generalized dystonia after chronic cerebellar application of kainic acid,” Brain Research, vol. 1464, pp. 82–88, 2012. View at Publisher · View at Google Scholar
  18. M. S. LeDoux and K. A. Brand, “Secondary cervical dystonia associated with structural lesions of the central nervous system,” Movement Disorders, vol. 18, no. 1, pp. 60–69, 2003. View at Publisher · View at Google Scholar · View at Scopus
  19. E. Perlov, L. Tebarzt van Elst, M. Buechert et al., “H1-MR-spectroscopy of cerebellum in adult attention deficit/hyperactivity disorder,” Journal of Psychiatric Research, vol. 44, no. 14, pp. 938–943, 2010. View at Publisher · View at Google Scholar · View at Scopus
  20. J. C. Bledsoe, M. Semrud-Clikeman, and S. R. Pliszka, “Neuroanatomical and neuropsychological correlates of the cerebellum in children with attention-deficit/hyperactivity disorder-combined type,” Journal of the American Academy of Child and Adolescent Psychiatry, vol. 50, no. 6, pp. 593–601, 2011. View at Publisher · View at Google Scholar · View at Scopus
  21. D. Timmann, J. Drepper, M. Frings et al., “The human cerebellum contributes to motor, emotional and cognitive associative learning. A review,” Cortex, vol. 46, no. 7, pp. 845–857, 2010. View at Publisher · View at Google Scholar · View at Scopus
  22. D. J. Bauer, A. L. Kerr, and R. A. Swain, “Cerebellar dentate nuclei lesions reduce motivation in appetitive operant conditioning and open field exploration,” Neurobiology of Learning and Memory, vol. 95, no. 2, pp. 166–175, 2011. View at Publisher · View at Google Scholar · View at Scopus
  23. M. Bares, O. Lungu, T. Liu, T. Waechter, C. M. Gomez, and J. Ashe, “Impaired predictive motor timing in patients with cerebellar disorders,” Experimental Brain Research, vol. 180, no. 2, pp. 355–365, 2007. View at Publisher · View at Google Scholar · View at Scopus
  24. M. Bares, O. V. Lungu, T. Liu, T. Waechter, C. M. Gomez, and J. Ashe, “The neural substrate of predictive motor timing in spinocerebellar ataxia,” The Cerebellum, vol. 10, no. 2, pp. 233–244, 2011. View at Publisher · View at Google Scholar · View at Scopus
  25. M. Bareš, O. V. Lungu, I. Husárová, and T. Gescheidt, “Predictive motor timing performance dissociates between early diseases of the cerebellum and parkinson's disease,” Cerebellum, vol. 9, no. 1, pp. 124–135, 2010. View at Publisher · View at Google Scholar · View at Scopus
  26. I. Husárová, O. V. Lungu, R. Mareček et al., “Functional imaging of the cerebellum and basal ganglia during predictive motor timing in early parkinson's disease,” Journal of Neuroimaging, 2011. View at Publisher · View at Google Scholar
  27. D. L. Harrington, R. R. Lee, L. A. Boyd, S. Z. Rapcsak, and R. T. Knight, “Does the representation of time depend on the cerebellum? Effect of cerebellar stroke,” Brain, vol. 127, no. 3, pp. 561–574, 2004. View at Publisher · View at Google Scholar · View at Scopus
  28. J. T. Coull, R.-K. Cheng, and W. H. Meck, “Neuroanatomical and neurochemical substrates of timing,” Neuropsychopharmacology, vol. 36, no. 1, pp. 3–25, 2011. View at Publisher · View at Google Scholar · View at Scopus
  29. D. L. Harrington, J. L. Zimbelman, S. C. Hinton, and S. M. Rao, “Neural modulation of temporal encoding, maintenance, and decision processes,” Cerebral Cortex, vol. 20, no. 6, pp. 1274–1285, 2010. View at Publisher · View at Google Scholar · View at Scopus
  30. G. Koch, M. Oliveri, S. Torriero, S. Salerno, E. L. Gerfo, and C. Caltagirone, “Repetitive TMS of cerebellum interferes with millisecond time processing,” Experimental Brain Research, vol. 179, no. 2, pp. 291–299, 2007. View at Publisher · View at Google Scholar · View at Scopus
  31. E. D'Angelo and C. I. de Zeeuw, “Timing and plasticity in the cerebellum: focus on the granular layer,” Trends in Neurosciences, vol. 32, no. 1, pp. 30–40, 2009. View at Publisher · View at Google Scholar · View at Scopus
  32. P. A. Lewis and R. C. Miall, “Distinct systems for automatic and cognitively controlled time measurement: evidence from neuroimaging,” Current Opinion in Neurobiology, vol. 13, no. 2, pp. 250–255, 2003. View at Publisher · View at Google Scholar · View at Scopus
  33. Q. J. Almeida, J. S. Frank, E. A. Roy, A. E. Patla, and M. S. Jog, “Dopaminergic modulation of timing control and variability in the gait of Parkinson's disease,” Movement Disorders, vol. 22, no. 12, pp. 1735–1742, 2007. View at Publisher · View at Google Scholar · View at Scopus
  34. M. Jahanshahi, C. R. G. Jones, J. Zijlmans et al., “Dopaminergic modulation of striato-frontal connectivity during motor timing in Parkinson's disease,” Brain, vol. 133, no. 3, pp. 727–745, 2010. View at Publisher · View at Google Scholar · View at Scopus
  35. S. A. Montgomery and M. Asberg, “A new depression scale designed to be sensitive to change,” The British Journal of Psychiatry, vol. 134, no. 4, pp. 382–389, 1979. View at Google Scholar · View at Scopus
  36. E. S. Consky and A. E. Lang, “Clinical assessments of patients with cervical dystonia,” Neurological Disease and Therapy, vol. 25, p. 211, 1994. View at Google Scholar
  37. M. P. Grant, R. J. Leigh, S. H. Seidman, D. E. Riley, and J. P. Hanna, “Comparison of predictable smooth ocular and combined eye-head tracking behaviour in patients with lesions affecting the brainstem and cerebellum,” Brain, vol. 115, no. 5, pp. 1323–1342, 1992. View at Google Scholar · View at Scopus
  38. L. Avanzino and G. Abbruzzese, “How does the cerebellum contribute to the pathophysiology of dystonia?” Basal Ganglia, vol. 2, no. 4, pp. 231–235, 2012. View at Publisher · View at Google Scholar
  39. R. S. Raike, H. A. Jinnah, and E. J. Hess, “Animal models of generalized dystonia,” NeuroRx, vol. 2, no. 3, pp. 504–512, 2005. View at Publisher · View at Google Scholar · View at Scopus
  40. H. A. Jinnah, E. J. Hess, M. S. LeDoux, N. Sharma, M. G. Baxter, and M. R. DeLong, “Rodent models for dystonia research: characteristics, evaluation, and utility,” Movement Disorders, vol. 20, no. 3, pp. 283–292, 2005. View at Publisher · View at Google Scholar · View at Scopus
  41. M. Carbon, M. F. Ghilardi, M. Argyelan, V. Dhawan, S. B. Bressman, and D. Eidelberg, “Increased cerebellar activation during sequence learning in DYT1 carriers: an equiperformance study,” Brain, vol. 131, no. 1, pp. 146–154, 2008. View at Publisher · View at Google Scholar · View at Scopus
  42. R. Opavský, P. Hluštík, P. Otruba, and P. Kaňovský, “Sensorimotor network in cervical dystonia and the effect ofbotulinum toxin treatment: a functional MRI study,” Journal of the Neurological Sciences, vol. 306, no. 1, pp. 71–75, 2008. View at Google Scholar
  43. V. C. Extremera, J. Álvarez-Coca, G. A. Rodríguez, J. M. Pérez, J. L. R. de Villanueva, and C. P. Díaz, “Torticollis is a usual symptom in posterior fossa tumors,” European Journal of Pediatrics, vol. 167, no. 2, pp. 249–250, 2008. View at Publisher · View at Google Scholar · View at Scopus
  44. R. M. C. Spencer, T. Verstynen, M. Brett, and R. Ivry, “Cerebellar activation during discrete and not continuous timed movements: an fMRI study,” NeuroImage, vol. 36, no. 2, pp. 378–387, 2007. View at Publisher · View at Google Scholar · View at Scopus
  45. H. Lorås, H. Sigmundsson, J. B. Talcott, F. Öhberg, and A. K. Stensdotter, “Timing continuous or discontinuous movements across effectors specified by different pacing modalities and intervals,” Experimental Brain Research, vol. 220, no. 3-4, pp. 335–347, 2012. View at Publisher · View at Google Scholar
  46. J. R. de Gruijl, P. Bazzigaluppi, M. T. G. de Jeu, and C. I. de Zeeuw, “Climbing fiber burst size and olivary sub-threshold oscillations in a network setting,” PLoS Computational Biology, vol. 8, no. 12, Article ID e1002814, 2012. View at Google Scholar
  47. M.-U. Manto, “On the cerebello-cerebral interactions,” Cerebellum, vol. 5, no. 4, pp. 286–288, 2006. View at Publisher · View at Google Scholar · View at Scopus
  48. M. Molinari, M. G. Leggio, and M. H. Thaut, “The cerebellum and neural networks for rhythmic sensorimotor synchronization in the human brain,” Cerebellum, vol. 6, no. 1, pp. 18–23, 2007. View at Publisher · View at Google Scholar · View at Scopus
  49. D. Eidelberg, J. R. Moeller, A. Antonini et al., “Functional brain networks in DYT1 dystonia,” Annals of Neurology, vol. 44, no. 3, pp. 303–312, 1998. View at Publisher · View at Google Scholar · View at Scopus
  50. P. Kaňovský, M. Bareš, H. Streitová, H. Klajblová, P. Daniel, and I. Rektor, “Abnormalities of cortical excitability and cortical inhibition in cervical dystonia: evidence from somatosensory evoked potentials and paired transcranial magnetic stimulation recordings,” Journal of Neurology, vol. 250, no. 1, pp. 42–50, 2003. View at Publisher · View at Google Scholar · View at Scopus
  51. J.-C. Dreher and J. Grafman, “The roles of the cerebellum and basal ganglia in timing and error prediction,” European Journal of Neuroscience, vol. 16, no. 8, pp. 1609–1619, 2002. View at Publisher · View at Google Scholar · View at Scopus
  52. M. Hallett, “Pathophysiology of dystonia,” Journal of Neural Transmission, Supplement, no. 70, pp. 485–488, 2006. View at Google Scholar · View at Scopus
  53. N. Murase, J. C. Rothwell, R. Kaji et al., “Subthreshold low-frequency repetitive transcranial magnetic stimulation over the premotor cortex modulates writer's cramp,” Brain, vol. 128, no. 1, pp. 104–115, 2005. View at Publisher · View at Google Scholar · View at Scopus
  54. V. K. Neychev, X. Fan, V. I. Mitev, E. J. Hess, and H. A. Jinnah, “The basal ganglia and cerebellum interact in the expression of dystonic movement,” Brain, vol. 131, no. 9, pp. 2499–2509, 2008. View at Publisher · View at Google Scholar · View at Scopus
  55. V. K. Neychev, R. E. Gross, S. Lehéricy, E. J. Hess, and H. A. Jinnah, “The functional neuroanatomy of dystonia,” Neurobiology of Disease, vol. 42, no. 2, pp. 185–201, 2011. View at Publisher · View at Google Scholar · View at Scopus