Table of Contents Author Guidelines Submit a Manuscript
Neural Plasticity
Volume 2013, Article ID 924192, 11 pages
http://dx.doi.org/10.1155/2013/924192
Review Article

Brain Connectivity Plasticity in the Motor Network after Ischemic Stroke

1Department of Radiology, Tianjin Medical University General Hospital, Tianjin 300052, China
2School of Medical Imaging, Tianjin Medical University, Tianjin 300070, China

Received 4 March 2013; Accepted 7 April 2013

Academic Editor: Hao Lei

Copyright © 2013 Lin Jiang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. S. C. Cramer, “Repairing the human brain after stroke: I. Mechanisms of spontaneous recovery,” Annals of Neurology, vol. 63, no. 3, pp. 272–287, 2008. View at Publisher · View at Google Scholar · View at Scopus
  2. N. Dancause, “Vicarious function of remote cortex following stroke: recent evidence from human and animal studies,” Neuroscientist, vol. 12, no. 6, pp. 489–499, 2006. View at Publisher · View at Google Scholar · View at Scopus
  3. S. H. Kreisel, H. Bazner, and M. G. Hennerici, “Pathophysiology of stroke rehabilitation: temporal aspects of neuro-functional recovery,” Cerebrovascular Diseases, vol. 21, pp. 6–17, 2006. View at Publisher · View at Google Scholar
  4. R. J. Nudo, “Recovery after damage to motor cortical areas,” Current Opinion in Neurobiology, vol. 9, no. 6, pp. 740–747, 1999. View at Publisher · View at Google Scholar · View at Scopus
  5. R. J. Nudo, “Mechanisms for recovery of motor function following cortical damage,” Current Opinion in Neurobiology, vol. 16, no. 6, pp. 638–644, 2006. View at Publisher · View at Google Scholar · View at Scopus
  6. R. M. Dijkhuizen, A. B. Singhal, J. B. Mandeville et al., “Correlation between brain reorganization, ischemic damage, and neurologic status after transient focal cerebral ischemia in rats: a functional magnetic resonance imaging study,” Journal of Neuroscience, vol. 23, no. 2, pp. 510–517, 2003. View at Google Scholar · View at Scopus
  7. R. M. Dijkhuizen and K. Nicolay, “Magnetic resonance imaging in experimental models of brain disorders,” Journal of Cerebral Blood Flow and Metabolism, vol. 23, no. 12, pp. 1383–1402, 2003. View at Google Scholar · View at Scopus
  8. T. D. Farr and S. Wegener, “Use of magnetic resonance imaging to predict outcome after stroke: a review of experimental and clinical evidence,” Journal of Cerebral Blood Flow and Metabolism, vol. 30, no. 4, pp. 703–717, 2010. View at Publisher · View at Google Scholar · View at Scopus
  9. Q. Jiang, Z. G. Zhang, G. L. Ding et al., “MRI detects white matter reorganization after neural progenitor cell treatment of stroke,” NeuroImage, vol. 32, no. 3, pp. 1080–1089, 2006. View at Publisher · View at Google Scholar · View at Scopus
  10. R. Weber, P. Ramos-Cabrer, and M. Hoehn, “Present status of magnetic resonance imaging and spectroscopy in animal stroke models,” Journal of Cerebral Blood Flow and Metabolism, vol. 26, no. 5, pp. 591–604, 2006. View at Publisher · View at Google Scholar · View at Scopus
  11. A. Brodtmann, H. Pardoe, Q. Li, R. Lichter, L. Ostergaard, and T. Cumming, “Changes in regional brain volume three months after stroke,” Journal of the Neurological Sciences, vol. 322, no. 1, pp. 122–128, 2012. View at Publisher · View at Google Scholar
  12. F. Fan, C. Zhu, H. Chen et al., “Dynamic brain structural changes after left hemisphere subcortical stroke,” Human Brain Mapping, 2012. View at Publisher · View at Google Scholar
  13. L. V. Gauthier, E. Taub, C. Perkins, M. Ortmann, V. W. Mark, and G. Uswatte, “Remodeling the brain: plastic structural brain changes produced by different motor therapies after stroke,” Stroke, vol. 39, no. 5, pp. 1520–1525, 2008. View at Publisher · View at Google Scholar · View at Scopus
  14. M. Corbetta, M. J. Kincade, C. Lewis, A. Z. Snyder, and A. Sapir, “Neural basis and recovery of spatial attention deficits in spatial neglect,” Nature Neuroscience, vol. 8, no. 11, pp. 1603–1610, 2005. View at Publisher · View at Google Scholar · View at Scopus
  15. D. Saur, R. Lange, A. Baumgaertner et al., “Dynamics of language reorganization after stroke,” Brain, vol. 129, no. 6, pp. 1371–1384, 2006. View at Publisher · View at Google Scholar · View at Scopus
  16. N. S. Ward, M. M. Brown, A. J. Thompson, and R. S. J. Frackowiak, “Neural correlates of motor recovery after stroke: a longitudinal fMRI study,” Brain, vol. 126, no. 11, pp. 2476–2496, 2003. View at Publisher · View at Google Scholar · View at Scopus
  17. R. L. Buckner, M. Corbetta, J. Schatz, M. E. Raichle, and S. E. Petersen, “Preserved speech abilities and compensation following prefrontal damage,” Proceedings of the National Academy of Sciences of the United States of America, vol. 93, no. 3, pp. 1249–1253, 1996. View at Publisher · View at Google Scholar · View at Scopus
  18. I. Loubinoux, C. Carel, J. Pariente et al., “Correlation between cerebral reorganization and motor recovery after subcortical infarcts,” NeuroImage, vol. 20, no. 4, pp. 2166–2180, 2003. View at Publisher · View at Google Scholar · View at Scopus
  19. M. Meinzer, S. Harnish, T. Conway, and B. Crosson, “Recent developments in functional and structural imaging of aphasia recovery after stroke,” Aphasiology, vol. 25, no. 3, pp. 271–290, 2011. View at Publisher · View at Google Scholar · View at Scopus
  20. F. Chollet, V. DiPiero, R. J. S. Wise, D. J. Brooks, R. J. Dolan, and R. S. J. Frackowiak, “The functional anatomy of motor recovery after stroke in humans: a study with positron emission tomography,” Annals of Neurology, vol. 29, no. 1, pp. 63–71, 1991. View at Publisher · View at Google Scholar · View at Scopus
  21. C. Grefkes, D. A. Nowak, S. B. Eickhoff et al., “Cortical connectivity after subcortical stroke assessed with functional magnetic resonance imaging,” Annals of Neurology, vol. 63, no. 2, pp. 236–246, 2008. View at Publisher · View at Google Scholar · View at Scopus
  22. C. Weiller, F. Chollet, K. J. Friston, R. J. S. Wise, and R. S. J. Frackowiak, “Functional reorganization of the brain in recovery from striatocapsular infarction in man,” Annals of Neurology, vol. 31, no. 5, pp. 463–472, 1992. View at Google Scholar · View at Scopus
  23. M. Abo, Z. Chen, L. J. Lai, T. Reese, and B. Bjelke, “Functional recovery after brain lesion—contralateral neuromodulation: an fMRI study,” NeuroReport, vol. 12, no. 7, pp. 1543–1547, 2001. View at Google Scholar · View at Scopus
  24. R. M. Dijkhuizen, J. Ren, J. B. Mandeville et al., “Functional magnetic resonance imaging of reorganization in rat brain after stroke,” Proceedings of the National Academy of Sciences of the United States of America, vol. 98, no. 22, pp. 12766–12771, 2001. View at Publisher · View at Google Scholar · View at Scopus
  25. Y. R. Kim, M. P. A. van Meer, J. B. Mandeville et al., “fMRI of delayed albumin treatment during stroke recovery in rats: implication for fast neuronal habituation in recovering brains,” Journal of Cerebral Blood Flow and Metabolism, vol. 27, no. 1, pp. 142–153, 2007. View at Publisher · View at Google Scholar · View at Scopus
  26. Y. R. Kim, M. P. A. van Meer, E. Tejima et al., “Functional MRI of delayed chronic lithium treatment in rat focal cerebral ischemia,” Stroke, vol. 39, no. 2, pp. 439–447, 2008. View at Publisher · View at Google Scholar · View at Scopus
  27. T. Reese, R. Pórszász, D. Baumann et al., “Cytoprotection does not preserve brain functionality in rats during the acute post-stroke phase despite evidence of non-infarction provided by MRI,” NMR in Biomedicine, vol. 13, no. 6, pp. 361–370, 2000. View at Google Scholar
  28. A. Sauter, T. Reese, R. Pórszász, D. Baumann, M. Rausch, and M. Rudin, “Recovery of function in cytoprotected cerebral cortex in rat stroke model assessed by functional MRI,” Magnetic Resonance in Medicine, vol. 47, no. 4, pp. 759–765, 2002. View at Publisher · View at Google Scholar · View at Scopus
  29. R. Weber, P. Ramos-Cabrer, C. Justicia et al., “Early prediction of functional recovery after experimental stroke: functional magnetic resonance imaging, electrophysiology, and behavioral testing in rats,” Journal of Neuroscience, vol. 28, no. 5, pp. 1022–1029, 2008. View at Publisher · View at Google Scholar · View at Scopus
  30. K. M. Sicard, N. Henninger, M. Fisher, T. Q. Duong, and C. F. Ferris, “Long-term changes of functional MRI-based brain function, behavioral status, and histopathology after transient focal cerebral ischemia in rats,” Stroke, vol. 37, no. 10, pp. 2593–2600, 2006. View at Publisher · View at Google Scholar · View at Scopus
  31. S. Bestmann, O. Swayne, F. Blankenburg et al., “The role of contralesional dorsal premotor cortex after stroke as studied with concurrent TMS-fMRI,” Journal of Neuroscience, vol. 30, no. 36, pp. 11926–11937, 2010. View at Publisher · View at Google Scholar · View at Scopus
  32. J. O'Shea, H. Johansen-Berg, D. Trief, S. Göbel, and M. F. S. Rushworth, “Functionally specific reorganization in human premotor cortex,” Neuron, vol. 54, no. 3, pp. 479–490, 2007. View at Publisher · View at Google Scholar · View at Scopus
  33. A. Riecker, K. Gröschel, H. Ackermann, S. Schnaudigel, J. Kassubek, and A. Kastrup, “The role of the unaffected hemisphere in motor recovery after stroke,” Human Brain Mapping, vol. 31, no. 7, pp. 1017–1029, 2010. View at Publisher · View at Google Scholar · View at Scopus
  34. A. Feydy, R. Carlier, A. Roby-Brami et al., “Longitudinal study of motor recovery after stroke: recruitment and focusing of brain activation,” Stroke, vol. 33, no. 6, pp. 1610–1617, 2002. View at Publisher · View at Google Scholar · View at Scopus
  35. K. E. Stephan, L. M. Harrison, S. J. Kiebel, O. David, W. D. Penny, and K. J. Friston, “Dynamic causal models of neural system dynamics: current state and future extensions,” Journal of Biosciences, vol. 32, no. 1, pp. 129–144, 2007. View at Publisher · View at Google Scholar
  36. A. R. Carter, S. V. Astafiev, C. E. Lang et al., “Resting interhemispheric functional magnetic resonance imaging connectivity predicts performance after stroke,” Annals of Neurology, vol. 67, no. 3, pp. 365–375, 2010. View at Publisher · View at Google Scholar · View at Scopus
  37. M. P. A. van Meer, K. van der Marel, K. Wang et al., “Recovery of sensorimotor function after experimental stroke correlates with restoration of resting-state interhemispheric functional connectivity,” Journal of Neuroscience, vol. 30, no. 11, pp. 3964–3972, 2010. View at Publisher · View at Google Scholar · View at Scopus
  38. M. P. A. van Meer, K. van der Marel, W. M. Otte, J. W. Berkelbach van der Sprenkel, and R. M. Dijkhuizen, “Correspondence between altered functional and structural connectivity in the contralesional sensorimotor cortex after unilateral stroke in rats: a combined resting-state functional MRI and manganese-enhanced MRI study,” Journal of Cerebral Blood Flow and Metabolism, vol. 30, no. 10, pp. 1707–1711, 2010. View at Publisher · View at Google Scholar · View at Scopus
  39. N. S. Ward, J. M. Newton, O. B. C. Swayne et al., “The relationship between brain activity and peak grip force is modulated by corticospinal system integrity after subcortical stroke,” European Journal of Neuroscience, vol. 25, no. 6, pp. 1865–1873, 2007. View at Publisher · View at Google Scholar · View at Scopus
  40. A. R. Carter, K. R. Patel, S. V. Astafiev et al., “Upstream dysfunction of somatomotor functional connectivity after corticospinal damage in stroke,” Neurorehabilitation and Neural Repair, vol. 26, pp. 7–19, 2012. View at Publisher · View at Google Scholar
  41. A. R. Carter, G. L. Shulman, and M. Corbetta, “Why use a connectivity-based approach to study stroke and recovery of function?” NeuroImage, vol. 62, no. 4, pp. 2271–2280, 2012. View at Publisher · View at Google Scholar
  42. K. Friston, “Functional integration and inference in the brain,” Progress in Neurobiology, vol. 68, no. 2, pp. 113–143, 2002. View at Publisher · View at Google Scholar · View at Scopus
  43. D. Le Bihan, “Looking into the functional architecture of the brain with diffusion MRI,” Nature Reviews Neuroscience, vol. 4, no. 6, pp. 469–480, 2003. View at Publisher · View at Google Scholar · View at Scopus
  44. C. Pierpaoli and P. J. Basser, “Toward a quantitative assessment of diffusion anisotropy,” Magnetic Resonance in Medicine, vol. 36, no. 6, pp. 893–906, 1996. View at Google Scholar · View at Scopus
  45. S. Mori, B. J. Crain, V. P. Chacko, and P. C. van Zijl, “Three dimensional tracking of axonal projections in the brain by magnetic resonance imaging,” Annals of Neurology, vol. 45, pp. 265–269, 1999. View at Publisher · View at Google Scholar
  46. W. Qin, M. Zhang, Y. Piao et al., “Wallerian degeneration in central nervous system: dynamic associations between diffusion indices and their underlying pathology,” PLoS One, vol. 7, no. 7, Article ID e41441, 2012. View at Google Scholar
  47. Y. Assaf and O. Pasternak, “Diffusion tensor imaging (DTI)-based white matter mapping in brain research: a review,” Journal of Molecular Neuroscience, vol. 34, no. 1, pp. 51–61, 2008. View at Publisher · View at Google Scholar · View at Scopus
  48. S. H. Jang, M. B. Woo, S. H. Bong et al., “Recovery of a partially damaged corticospinal tract in a patient with intracerebral hemorrhage: a diffusion tensor image study,” Restorative Neurology and Neuroscience, vol. 24, no. 1, pp. 25–29, 2006. View at Google Scholar · View at Scopus
  49. J. J. Neil, “Diffusion imaging concepts for clinicians,” Journal of Magnetic Resonance Imaging, vol. 27, no. 1, pp. 1–7, 2008. View at Publisher · View at Google Scholar · View at Scopus
  50. G. Schlaug, S. Marchina, and A. Norton, “Evidence for plasticity in white-matter tracts of patients with chronic broca's aphasia undergoing intense intonation-based speech therapy,” Annals of the New York Academy of Sciences, vol. 1169, pp. 385–394, 2009. View at Publisher · View at Google Scholar · View at Scopus
  51. S. M. Son, S. H. Park, H. K. Moon et al., “Diffusion tensor tractography can predict hemiparesis in infants with high risk factors,” Neuroscience Letters, vol. 451, no. 1, pp. 94–97, 2009. View at Publisher · View at Google Scholar · View at Scopus
  52. Y. A. Bhagat, D. J. Emery, A. Shuaib et al., “The relationship between diffusion anisotropy and time of onset after stroke,” Journal of Cerebral Blood Flow and Metabolism, vol. 26, no. 11, pp. 1442–1450, 2006. View at Publisher · View at Google Scholar · View at Scopus
  53. Q. Jiang, Z. G. Zhang, and M. Chopp, “MRI of stroke recovery,” Stroke, vol. 41, no. 2, pp. 410–414, 2010. View at Publisher · View at Google Scholar · View at Scopus
  54. C. H. Sotak, “The role of diffusion tensor imaging in the evaluation of ischemic brain—a review,” NMR in Biomedicine, vol. 15, no. 7-8, pp. 561–569, 2002. View at Publisher · View at Google Scholar · View at Scopus
  55. J. P. van der Zijden, A. van der Toorn, K. van der Marel, and R. M. Dijkhuizen, “Longitudinal in vivo MRI of alterations in perilesional tissue after transient ischemic stroke in rats,” Experimental Neurology, vol. 212, no. 1, pp. 207–212, 2008. View at Publisher · View at Google Scholar · View at Scopus
  56. Y. Assaf and Y. Cohen, “Non-mono-exponential attenuation of water and N-Acetyl aspartate signals due to diffusion in brain tissue,” Journal of Magnetic Resonance, vol. 131, no. 1, pp. 69–85, 1998. View at Google Scholar · View at Scopus
  57. T. Niendorf, R. M. Dijkhuizen, D. G. Norris, M. van Lookeren Campagne, and K. Nicolay, “Biexponential diffusion attenuation in various states of brain tissue: implications for diffusion-weighted imaging,” Magnetic Resonance in Medicine, vol. 36, no. 6, pp. 847–857, 1996. View at Google Scholar · View at Scopus
  58. J. H. Jensen and J. A. Helpern, “MRI quantification of non-Gaussian water diffusion by kurtosis analysis,” NMR in Biomedicine, vol. 23, no. 7, pp. 698–710, 2010. View at Publisher · View at Google Scholar · View at Scopus
  59. E. X. Wu and M. M. Cheung, “MR diffusion kurtosis imaging for neural tissue characterization,” NMR in Biomedicine, vol. 23, no. 7, pp. 836–848, 2010. View at Publisher · View at Google Scholar · View at Scopus
  60. J. H. Jensen, J. A. Helpern, A. Ramani, H. Lu, and K. Kaczynski, “Diffusional kurtosis imaging: the quantification of non-Gaussian water diffusion by means of magnetic resonance imaging,” Magnetic Resonance in Medicine, vol. 53, no. 6, pp. 1432–1440, 2005. View at Publisher · View at Google Scholar · View at Scopus
  61. J. H. Jensen, M. F. Falangola, C. Hu et al., “Preliminary observations of increased diffusional kurtosis in human brain following recent cerebral infarction,” NMR in Biomedicine, vol. 24, no. 5, pp. 452–457, 2011. View at Publisher · View at Google Scholar · View at Scopus
  62. H. Lu, J. H. Jensen, A. Ramani, and J. A. Helpern, “Three-dimensional characterization of non-gaussian water diffusion in humans using diffusion kurtosis imaging,” NMR in Biomedicine, vol. 19, no. 2, pp. 236–247, 2006. View at Publisher · View at Google Scholar · View at Scopus
  63. F. Grinberg, L. Ciobanu, E. Farrher, and N. J. Shah, “Diffusion kurtosis imaging and log-normal distribution function imaging enhance the visualisation of lesions in animal stroke models,” NMR in Biomedicine, vol. 25, no. 11, pp. 1295–1304, 2012. View at Publisher · View at Google Scholar
  64. E. S. Hui, E. Fieremans, J. H. Jensen et al., “Stroke assessment with diffusional kurtosis imaging,” Stroke, vol. 43, no. 11, pp. 2968–2973, 2012. View at Publisher · View at Google Scholar
  65. B. J. He, A. Z. Snyder, J. M. Zempel, M. D. Smyth, and M. E. Raichle, “Electrophysiological correlates of the brain's intrinsic large-scale functional architecture,” Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 41, pp. 16039–16044, 2008. View at Publisher · View at Google Scholar · View at Scopus
  66. H. Laufs, K. Krakow, P. Sterzer et al., “Electroencephalographic signatures of attentional and cognitive default modes in spontaneous brain activity fluctuations at rest,” Proceedings of the National Academy of Sciences of the United States of America, vol. 100, no. 19, pp. 11053–11058, 2003. View at Publisher · View at Google Scholar · View at Scopus
  67. H. Lu, Y. Zuo, H. Gu et al., “Synchronized delta oscillations correlate with the resting-state functional MRI signal,” Proceedings of the National Academy of Sciences of the United States of America, vol. 104, no. 46, pp. 18265–18269, 2007. View at Publisher · View at Google Scholar · View at Scopus
  68. B. Biswal, F. Z. Yetkin, V. M. Haughton, and J. S. Hyde, “Functional connectivity in the motor cortex of resting human brain using echo-planar MRI,” Magnetic Resonance in Medicine, vol. 34, no. 4, pp. 537–541, 1995. View at Publisher · View at Google Scholar · View at Scopus
  69. C. J. Honey, O. Sporns, L. Cammoun et al., “Predicting human resting-state functional connectivity from structural connectivity,” Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 6, pp. 2035–2040, 2009. View at Publisher · View at Google Scholar · View at Scopus
  70. J. L. Vincent, G. H. Patel, M. D. Fox et al., “Intrinsic functional architecture in the anaesthetized monkey brain,” Nature, vol. 447, no. 7140, pp. 83–86, 2007. View at Publisher · View at Google Scholar · View at Scopus
  71. J. Lu, H. Liu, M. Zhang et al., “Focal pontine lesions provide evience that intrinsic functional connectivity reflects polysynaptic anatomical pathways,” The Journal of Neuroscience, vol. 31, no. 42, pp. 15065–15071, 2011. View at Publisher · View at Google Scholar
  72. J. S. Damoiseaux, S. A. R. B. Rombouts, F. Barkhof et al., “Consistent resting-state networks across healthy subjects,” Proceedings of the National Academy of Sciences of the United States of America, vol. 103, no. 37, pp. 13848–13853, 2006. View at Publisher · View at Google Scholar · View at Scopus
  73. B. Horwitz, J. M. Rumsey, and B. C. Donohue, “Functional connectivity of the angular gyrus in normal reading and dyslexia,” Proceedings of the National Academy of Sciences of the United States of America, vol. 95, no. 15, pp. 8939–8944, 1998. View at Publisher · View at Google Scholar · View at Scopus
  74. M. D. Fox and M. E. Raichle, “Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging,” Nature Reviews Neuroscience, vol. 8, no. 9, pp. 700–711, 2007. View at Publisher · View at Google Scholar · View at Scopus
  75. K. J. Friston, C. D. Frith, P. F. Liddle, and R. S. J. Frackowiak, “Functional connectivity: the principal-component analysis of large (PET) data sets,” Journal of Cerebral Blood Flow and Metabolism, vol. 13, no. 1, pp. 5–14, 1993. View at Google Scholar · View at Scopus
  76. Y. Xuan, C. Meng, Y. Yang et al., “Resting-state brain activity in adult males who stutter,” PLoS One, vol. 7, no. 1, Article ID e30570, 2012. View at Google Scholar
  77. D. Tomasi and N. D. Volkow, “Functional connectivity density mapping,” Proceedings of the National Academy of Sciences of the United States of America, vol. 107, no. 21, pp. 9885–9890, 2010. View at Publisher · View at Google Scholar · View at Scopus
  78. D. Tomasi and N. D. Volkow, “Association between functional connectivity hubs and brain networks,” Cerebral Cortex, vol. 21, pp. 2003–2013, 2011. View at Publisher · View at Google Scholar
  79. K. J. Friston, “Functional and effective connectivity in neuroimaging: a synthesis,” Human Brain Mapping, vol. 2, no. 1-2, pp. 56–78, 1994. View at Google Scholar · View at Scopus
  80. K. J. Friston, C. Buechel, G. R. Fink, J. Morris, E. Rolls, and R. J. Dolan, “Psychophysiological and modulatory interactions in neuroimaging,” NeuroImage, vol. 6, no. 3, pp. 218–229, 1997. View at Publisher · View at Google Scholar · View at Scopus
  81. W. D. Penny, K. E. Stephan, A. Mechelli, and K. J. Friston, “Comparing dynamic causal models,” NeuroImage, vol. 22, no. 3, pp. 1157–1172, 2004. View at Publisher · View at Google Scholar · View at Scopus
  82. A. Roebroeck, E. Formisano, and R. Goebel, “Mapping directed influence over the brain using Granger causality and fMRI,” NeuroImage, vol. 25, no. 1, pp. 230–242, 2005. View at Publisher · View at Google Scholar · View at Scopus
  83. A. R. McIntosh and F. Gonzalez-Lima, “Structural equation modeling and its application to network analysis in functional brain imaging,” Human Brain Mapping, vol. 2, no. 1-2, pp. 2–22, 1994. View at Google Scholar · View at Scopus
  84. K. J. Friston, L. Harrison, and W. Penny, “Dynamic causal modelling,” NeuroImage, vol. 19, no. 4, pp. 1273–1302, 2003. View at Publisher · View at Google Scholar · View at Scopus
  85. E. Bullmore and O. Sporns, “Complex brain networks: graph theoretical analysis of structural and functional systems,” Nature Reviews Neuroscience, vol. 10, pp. 186–198, 2009. View at Publisher · View at Google Scholar
  86. J. C. Reijneveld, S. C. Ponten, H. W. Berendse, and C. J. Stam, “The application of graph theoretical analysis to complex networks in the brain,” Clinical Neurophysiology, vol. 118, no. 11, pp. 2317–2331, 2007. View at Publisher · View at Google Scholar · View at Scopus
  87. M. Rubinov and O. Sporns, “Complex network measures of brain connectivity: uses and interpretations,” NeuroImage, vol. 52, pp. 1059–1069, 2010. View at Publisher · View at Google Scholar
  88. D. J. Watts and S. H. Strogatz, “Collective dynamics of ‘small-world’ networks,” Nature, vol. 393, no. 6684, pp. 440–442, 1998. View at Google Scholar · View at Scopus
  89. S. H. Jang, “A review of diffusion tensor imaging studies on motor recovery mechanisms in stroke patients,” NeuroRehabilitation, vol. 28, pp. 345–352, 2011. View at Google Scholar
  90. P. Mukherjee, “Diffusion tensor imaging and fiber tractography in acute stroke,” Neuroimaging Clinics of North America, vol. 15, no. 3, pp. 655–665, 2005. View at Publisher · View at Google Scholar · View at Scopus
  91. K. Pannek, J. B. Chalk, S. Finnigan, and S. E. Rose, “Dynamic corticospinal white matter connectivity changes during stroke recovery: a diffusion tensor probabilistic tractography study,” Journal of Magnetic Resonance Imaging, vol. 29, no. 3, pp. 529–536, 2009. View at Publisher · View at Google Scholar · View at Scopus
  92. J. D. Schaechter, Z. P. Fricker, K. L. Perdue et al., “Microstructural status of ipsilesional and contralesional corticospinal tract correlates with motor skill in chronic stroke patients,” Human Brain Mapping, vol. 30, no. 11, pp. 3461–3474, 2009. View at Publisher · View at Google Scholar · View at Scopus
  93. C. Yu, C. Zhu, Y. Zhang et al., “A longitudinal diffusion tensor imaging study on Wallerian degeneration of corticospinal tract after motor pathway stroke,” NeuroImage, vol. 47, no. 2, pp. 451–458, 2009. View at Publisher · View at Google Scholar · View at Scopus
  94. Y. Liu, H. E. D'Arceuil, S. Westmoreland et al., “Serial diffusion tensor MRI after transient and permanent cerebral ischemia in nonhuman primates,” Stroke, vol. 38, no. 1, pp. 138–145, 2007. View at Publisher · View at Google Scholar · View at Scopus
  95. G. Ding, Q. Jiang, L. Li et al., “Magnetic resonance imaging investigation of axonal remodeling and angiogenesis after embolic stroke in sildenafil-treated rats,” Journal of Cerebral Blood Flow and Metabolism, vol. 28, no. 8, pp. 1440–1448, 2008. View at Publisher · View at Google Scholar · View at Scopus
  96. L. Li, Q. Jiang, G. Ding et al., “MRI identification of white matter reorganization enhanced by erythropoietin treatment in a rat model of focal ischemia,” Stroke, vol. 40, no. 3, pp. 936–941, 2009. View at Publisher · View at Google Scholar · View at Scopus
  97. Y. H. Ahn, S. H. You, M. Randolph et al., “Peri-infarct reorganization of motor function in patients with pontine infarct,” NeuroRehabilitation, vol. 21, no. 3, pp. 233–237, 2006. View at Google Scholar · View at Scopus
  98. H. J. Sung, H. A. Sang, S. H. Jung, J. L. Se, J. Lee, and H. A. Young, “Peri-infarct reorganization in a patient with corona radiata infarct: a combined study of functional MRI and diffusion tensor image tractography,” Restorative Neurology and Neuroscience, vol. 24, no. 2, pp. 65–68, 2006. View at Google Scholar · View at Scopus
  99. S. H. Jang, “A review of the ipsilateral motor pathway as a recovery mechanism in patients with stroke,” NeuroRehabilitation, vol. 24, no. 4, pp. 315–320, 2009. View at Publisher · View at Google Scholar · View at Scopus
  100. Y. H. Kwon, M. Y. Lee, J. W. Park et al., “Differences of cortical activation pattern between cortical and corona radiata infarct,” Neuroscience Letters, vol. 417, no. 2, pp. 138–142, 2007. View at Publisher · View at Google Scholar · View at Scopus
  101. Y. H. Kwon, C. H. Lee, S. H. Ahn et al., “Motor recovery via the peri-infarct area in patients with corona radiata infarct,” NeuroRehabilitation, vol. 22, no. 2, pp. 105–108, 2007. View at Google Scholar · View at Scopus
  102. R. Chen, L. G. Cohen, and M. Hallett, “Role of the ipsilateral motor cortex in voluntary movement,” Canadian Journal of Neurological Sciences, vol. 24, no. 4, pp. 284–291, 1997. View at Google Scholar · View at Scopus
  103. R. Chen, C. Gerloff, M. Hallett, and L. G. Cohen, “Involvement of the ipsilateral motor cortex in finger movements of different complexities,” Annals of Neurology, vol. 41, no. 2, pp. 247–254, 1997. View at Publisher · View at Google Scholar · View at Scopus
  104. Y. Fujii and T. Nakada, “Cortical reorganization in patients with subcortical hemiparesis: neural mechanisms of functional recovery and prognostic implication,” Journal of Neurosurgery, vol. 98, no. 1, pp. 64–73, 2003. View at Google Scholar · View at Scopus
  105. S. H. Jang, S. H. Cho, Y. H. Kim et al., “Motor recovery mechanism of diffuse axonal injury: a combined study of transcranial magnetic stimulation and functional MRI,” Restorative Neurology and Neuroscience, vol. 23, no. 1, pp. 51–56, 2005. View at Google Scholar · View at Scopus
  106. S. S. Yeo and S. H. Jang, “Ipsilateral motor pathway without contralateral motor pathway in a stroke patient,” NeuroRehabilitation, vol. 30, no. 4, pp. 303–306, 2012. View at Google Scholar
  107. E. Palmer, P. Ashby, and V. E. Hajek, “Ipsilateral fast corticospinal pathways do not account for recovery in stroke,” Annals of Neurology, vol. 32, no. 4, pp. 519–525, 1992. View at Publisher · View at Google Scholar · View at Scopus
  108. B. Zaaimi, S. A. Edgley, D. S. Soteropoulos, and S. N. Baker, “Changes in descending motor pathway connectivity after corticospinal tract lesion in macaque monkey,” Brain, vol. 135, part 7, pp. 2277–2289, 2012. View at Publisher · View at Google Scholar
  109. R. Traversa, P. Cicinelli, A. Bassi, P. M. Rossini, and G. Bernardi, “Mapping of motor cortical reorganization after stroke: a brain simulation study with focal magnetic pulses,” Stroke, vol. 28, no. 1, pp. 110–117, 1997. View at Google Scholar · View at Scopus
  110. Y. H. Kim, S. H. Jang, W. M. Byun, B. S. Han, K. H. Lee, and S. H. Ahn, “Ipsilateral motor pathway confirmed by combined brain mapping of a patient with hemiparetic stroke: a case report,” Archives of Physical Medicine and Rehabilitation, vol. 85, no. 8, pp. 1351–1353, 2004. View at Publisher · View at Google Scholar · View at Scopus
  111. R. S. Marshall, G. M. Perera, R. M. Lazar, J. W. Krakauer, R. C. Constantine, and R. L. DeLaPaz, “Evolution of cortical activation during recovery from corticospinal tract infarction,” Stroke, vol. 31, no. 3, pp. 656–661, 2000. View at Google Scholar · View at Scopus
  112. J. Netz, T. Lammers, and V. Hömberg, “Reorganization of motor output in the non-affected hemisphere after stroke,” Brain, vol. 120, no. 9, pp. 1579–1586, 1997. View at Publisher · View at Google Scholar · View at Scopus
  113. D. J. Serrien, L. H. A. Strens, M. J. Cassidy, A. J. Thompson, and P. Brown, “Functional significance of the ipsilateral hemisphere during movement of the affected hand after stroke,” Experimental Neurology, vol. 190, no. 2, pp. 425–432, 2004. View at Publisher · View at Google Scholar · View at Scopus
  114. J. H. Hong, S. M. Son, W. M. Byun, H. W. Jang, S. H. Ahn, and S. H. Jang, “Aberrant pyramidal tract in medial lemniscus of brainstem in the human brain,” NeuroReport, vol. 20, no. 7, pp. 695–697, 2009. View at Publisher · View at Google Scholar · View at Scopus
  115. H. G. Kwon, S. M. Son, M. C. Chang, S. Kim, Y. H. Kwon, and S. H. Jang, “Characteristics of the aberrant pyramidal tract in comparison with the pyramidal tract in the human brain,” BMC Neuroscience, vol. 12, article 108, 2011. View at Publisher · View at Google Scholar
  116. M. Yamashita and T. Yamamoto, “Aberrant pyramidal tract in the medial lemniscus of the human brainstem: normal distribution and pathological changes,” European Neurology, vol. 45, no. 2, pp. 75–82, 2001. View at Publisher · View at Google Scholar · View at Scopus
  117. J. H. Hong and S. H. Jang, “Aberrant pyramidal tract in a patient with coronaradiata infarct a diffusion tensor tractography study,” Neural Regeneration Research, vol. 6, no. 13, pp. 1027–1030, 2011. View at Google Scholar · View at Scopus
  118. S. H. Jang, “Aberrant pyramidal tract in the medial lemniscus of the brainstem in a patient with a pontine infarct: diffusion tensor tractography study,” Journal of Neurology, Neurosurgery and Psychiatry, vol. 80, no. 2, pp. 243–244, 2009. View at Publisher · View at Google Scholar · View at Scopus
  119. R. Lindenberg, V. Renga, L. L. Zhu, F. Betzler, D. Alsop, and G. Schlaug, “Structural integrity of corticospinal motor fibers predicts motor impairment in chronic stroke,” Neurology, vol. 74, no. 4, pp. 280–287, 2010. View at Publisher · View at Google Scholar · View at Scopus
  120. S. S. Yeo and S. H. Jang, “Motor recovery via aberrant pyramidal tract in a patient with a cerebral peduncle infarct,” Neural Regeneration Research, vol. 6, no. 13, pp. 1023–1026, 2011. View at Google Scholar · View at Scopus
  121. R. Lindenberg, L. L. Zhu, T. Rüber, and G. Schlaug, “Predicting functional motor potential in chronic stroke patients using diffusion tensor imaging,” Human Brain Mapping, vol. 33, no. 5, pp. 1040–1051, 2012. View at Publisher · View at Google Scholar
  122. T. Rüber, G. Schlaug, and R. Lindenberg, “Compensatory role of the cortico-rubro-spinal tract in motor recovery after stroke,” Neurology, vol. 79, no. 6, pp. 515–522, 2012. View at Publisher · View at Google Scholar
  123. M. P. van Meer, W. M. Otte, K. van der Marel et al., “Extent of bilateral neuronal network reorganization and functional recovery in relation to stroke severity,” The Journal of Neuroscience, vol. 32, no. 13, pp. 4495–4507, 2012. View at Publisher · View at Google Scholar
  124. A. M. Golestani, S. Tymchuk, A. Demchuk et al., “Longitudinal evaluation of resting-state FMRI after acute stroke with hemiparesis,” Neurorehabilitation and Neural Repair, vol. 27, no. 2, pp. 153–163, 2013. View at Publisher · View at Google Scholar
  125. C. H. Park, W. H. Chang, S. H. Ohn et al., “Longitudinal changes of resting-state functional connectivity during motor recovery after stroke,” Stroke, vol. 42, no. 5, pp. 1357–1362, 2011. View at Publisher · View at Google Scholar · View at Scopus
  126. L. Wang, C. Yu, H. Chen et al., “Dynamic functional reorganization of the motor execution network after stroke,” Brain, vol. 133, no. 4, pp. 1224–1238, 2010. View at Publisher · View at Google Scholar · View at Scopus
  127. D. Yin, F. Song, D. Xu et al., “Patterns in cortical connectivity for determining outcomes in hand function after subcortical stroke,” PLoS One, vol. 7, no. 12, Article ID e52727, 2012. View at Google Scholar
  128. E. M. Nomura, C. Gratton, R. M. Visser, A. Kayser, F. Perez, and M. D'Esposito, “Double dissociation of two cognitive control networks in patients with focal brain lesions,” Proceedings of the National Academy of Sciences of the United States of America, vol. 107, no. 26, pp. 12017–12022, 2010. View at Publisher · View at Google Scholar · View at Scopus
  129. J. E. Warren, J. T. Crinion, M. A. Lambon Ralph, and R. J. S. Wise, “Anterior temporal lobe connectivity correlates with functional outcome after aphasic stroke,” Brain, vol. 132, no. 12, pp. 3428–3442, 2009. View at Publisher · View at Google Scholar · View at Scopus
  130. D. Mintzopoulos, L. G. Astrakas, A. Khanicheh et al., “Connectivity alterations assessed by combining fMRI and MR-compatible hand robots in chronic stroke,” NeuroImage, vol. 47, no. 2, pp. T90–T97, 2009. View at Publisher · View at Google Scholar · View at Scopus
  131. A. K. Rehme, S. B. Eickhoff, L. E. Wang, G. R. Fink, and C. Grefkes, “Dynamic causal modeling of cortical activity from the acute to the chronic stage after stroke,” NeuroImage, vol. 55, no. 3, pp. 1147–1158, 2011. View at Publisher · View at Google Scholar · View at Scopus
  132. A. K. Rehme, G. R. Fink, D. Y. von Cramon, and C. Grefkes, “The role of the contralesional motor cortex for motor recovery in the early days after stroke assessed with longitudinal fMRI,” Cerebral Cortex, vol. 21, no. 4, pp. 756–768, 2011. View at Publisher · View at Google Scholar · View at Scopus
  133. N. Sharma, J. C. Baron, and J. B. Rowe, “Motor imagery after stroke: relating outcome to motor network connectivity,” Annals of Neurology, vol. 66, no. 5, pp. 604–616, 2009. View at Publisher · View at Google Scholar · View at Scopus
  134. C. S. Inman, G. A. James, S. Hamann, J. K. Rajendra, G. Pagnoni, and A. J. Butler, “Altered resting-state effective connectivity of fronto-parietal motor control systems on the primary motor network following stroke,” NeuroImage, vol. 59, pp. 227–237, 2012. View at Publisher · View at Google Scholar
  135. F. de Vico Fallani, L. Astolfi, F. Cincotti et al., “Evaluation of the brain network organization from EEG signals: a preliminary evidence in stroke patient,” Anatomical Record, vol. 292, no. 12, pp. 2023–2031, 2009. View at Publisher · View at Google Scholar · View at Scopus
  136. L. Cheng, Z. Wu, Y. Fu, F. Miao, J. Sun, and S. Tong, “Reorganization of functional brain networks during the recovery of stroke: a functional MRI study,” in Proceedings of Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC '12), pp. 4132–4135, 2012.
  137. J. J. Crofts, D. J. Higham, R. Bosnell et al., “Network analysis detects changes in the contralesional hemisphere following stroke,” NeuroImage, vol. 54, no. 1, pp. 161–169, 2011. View at Publisher · View at Google Scholar · View at Scopus
  138. G. E. Gresham, “Stroke outcome research,” Stroke, vol. 17, no. 3, pp. 358–360, 1986. View at Google Scholar · View at Scopus
  139. S. A. Maulden, J. Gassaway, S. D. Horn, R. J. Smout, and G. DeJong, “Timing of initiation of rehabilitation after stroke,” Archives of Physical Medicine and Rehabilitation, vol. 86, no. 12, pp. S34–S40, 2005. View at Publisher · View at Google Scholar · View at Scopus
  140. F. C. Hummel and L. G. Cohen, “Non-invasive brain stimulation: a new strategy to improve neurorehabilitation after stroke?” Lancet Neurology, vol. 5, no. 8, pp. 708–712, 2006. View at Publisher · View at Google Scholar · View at Scopus
  141. E. L. Boespflug, J. M. Storrs, J. B. Allendorfer, M. Lamy, J. C. Eliassen, and S. Page, “Mean diffusivity as a potential diffusion tensor biomarker of motor rehabilitation after electrical stimulation incorporating task specific exercise in stroke: a pilot study,” Brain Imaging and Behavior, 2011. View at Publisher · View at Google Scholar
  142. J. I. Breier, J. Juranek, and A. C. Papanicolaou, “Changes in maps of language function and the integrity of the arcuate fasciculus after therapy for chronic aphasia,” Neurocase, vol. 17, no. 6, pp. 506–517, 2011. View at Publisher · View at Google Scholar
  143. Z. Wu, J. Hu, F. Du, X. Zhou, Q. Xiang, and F. Miao, “Long-term changes of diffusion tensor imaging and behavioural status after acupuncture treatment in rats with transient focal cerebral ischaemia,” Acupuncture in Medicine, vol. 30, no. 4, pp. 331–338, 2012. View at Publisher · View at Google Scholar
  144. Y. Shen, M. Li, R. Wei, and M. Lou, “Effect of acupuncture therapy for postponing Wallerian degeneration of cerebral infarction as shown by diffusion tensor imaging,” Journal of Alternative and Complementary Medicine, vol. 18, no. 12, pp. 1154–1160, 2012. View at Publisher · View at Google Scholar
  145. F. Sergi, H. I. Krebs, B. Groissier et al., “Predicting efficacy of robot-aided rehabilitation in chronic stroke patients using an MRI-compatible robotic device,” in Proceedings of Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC '11), pp. 7470–7473, 2011.
  146. B. Várkuti, C. Guan, Y. Pan et al., “Resting state changes in functional connectivity correlate with movement recovery for BCI and robot-assisted upper-extremity training after stroke,” Neurorehabilitation and Neural Repair, vol. 27, no. 1, pp. 53–62, 2013. View at Publisher · View at Google Scholar
  147. L. E. Wang, G. R. Fink, S. Diekhoff, A. K. Rehme, S. B. Eickhoff, and C. Grefkes, “Noradrenergic enhancement improves motor network connectivity in stroke patients,” Annals of Neurology, vol. 69, no. 2, pp. 375–388, 2011. View at Publisher · View at Google Scholar · View at Scopus
  148. G. A. James, Z. L. Lu, J. W. VanMeter, Sathian, X. P. Hu, and A. J. Butler, “Changes in resting state effective connectivity in the motor network following rehabilitation of upper extremity poststroke paresis,” Topics in Stroke Rehabilitation, vol. 16, no. 4, pp. 270–281, 2009. View at Publisher · View at Google Scholar · View at Scopus
  149. C. Grefkes, D. A. Nowak, L. E. Wang, M. Dafotakis, S. B. Eickhoff, and G. R. Fink, “Modulating cortical connectivity in stroke patients by rTMS assessed with fMRI and dynamic causal modeling,” NeuroImage, vol. 50, no. 1, pp. 233–242, 2010. View at Publisher · View at Google Scholar · View at Scopus