Table of Contents Author Guidelines Submit a Manuscript
Neural Plasticity
Volume 2013 (2013), Article ID 948587, 12 pages
http://dx.doi.org/10.1155/2013/948587
Research Article

Comparative Morphology of Dendritic Arbors in Populations of Purkinje Cells in Mouse Sulcus and Apex

1Okinawa Institute of Science and Technology Graduate University, Okinawa 904-0495, Japan
2University of Antwerp, 2000 Antwerp, Belgium
3Brain Mechanism for Behavior Unit, 1919-1 Tancha, Onna-son, Kunigami-gun, Okinawa 904-0495, Japan

Received 14 June 2013; Revised 25 August 2013; Accepted 21 September 2013

Academic Editor: Rachel M. Sherrard

Copyright © 2013 Hermina Nedelescu and Mohamed Abdelhack. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. P. D. Hatzigiannakoglou and L. C. Triarhou, “A review of Heinrich Obersteiner's 1888 textbook on the central nervous system by the neurologist Sigmund Freud,” Wiener Medizinische Wochenschrift, vol. 161, no. 11-12, pp. 315–325, 2011. View at Publisher · View at Google Scholar · View at Scopus
  2. V. Braitenberg and R. P. Atwood, “Morphological observations on the cerebellar cortex,” The Journal of Comparative Neurology, vol. 109, no. 1, pp. 1–33, 1958. View at Google Scholar · View at Scopus
  3. J. C. Eccles, J. C. I. M, and J. Szentagothai, The Cerebellum as a Neuronal Machine, Springer, New York, NY, USA, 1967.
  4. H. Nishiyama and D. J. Linden, “Differential maturation of climbing fiber innervation in cerebellar vermis,” The Journal of Neuroscience, vol. 24, no. 16, pp. 3926–3932, 2004. View at Publisher · View at Google Scholar · View at Scopus
  5. A. Sudarov and A. L. Joyner, “Cerebellum morphogenesis: the foliation pattern is orchestrated by multi-cellular anchoring centers,” Neural Development, vol. 2, no. 1, article 26, 2007. View at Publisher · View at Google Scholar · View at Scopus
  6. M. Kaneko, K. Yamaguchi, M. Eiraku et al., “Remodeling of monoplanar purkinje cell dendrites during cerebellar circuit formation,” PLoS ONE, vol. 6, no. 5, Article ID e20108, 2011. View at Publisher · View at Google Scholar · View at Scopus
  7. R. Parekh and G. A. Ascoli, “Neuronal morphology goes digital: a research hub for cellular and system neuroscience,” Neuron, vol. 77, no. 6, pp. 1017–1038, 2013. View at Google Scholar
  8. M. Halavi, K. A. Hamilton, R. Parekh, and G. A. Ascoli, “Digital reconstructions of neuronal morphology: three decades of research trends,” Frontiers in Neural Circuits, vol. 6, no. 49, pp. 1–11, 2012. View at Publisher · View at Google Scholar · View at Scopus
  9. H. Cuntz, F. Forstner, A. Borst, and M. Häusser, “One rule to grow them all: a general theory of neuronal branching and its practical application,” PLoS Computational Biology, vol. 6, no. 8, Article ID e1000877, 2010. View at Publisher · View at Google Scholar · View at Scopus
  10. I. Segev, “Sound grounds for computing dendrites,” Nature, vol. 393, no. 6682, pp. 207–208, 1998. View at Publisher · View at Google Scholar · View at Scopus
  11. S. Hamodeh, D. Eicke, R. M. A. Napper, R. J. Harvey, and F. Sultan, “Population based quantification of dendrites: evidence for the lack of microtubule-associate protein 2a,b in Purkinje cell spiny dendrites,” Neuroscience, vol. 170, no. 4, pp. 1004–1014, 2010. View at Publisher · View at Google Scholar · View at Scopus
  12. J. W. Lichtman and W. Denk, “The big and the small: challenges of imaging the brain's circuits,” Science, vol. 334, no. 6056, pp. 618–623, 2011. View at Publisher · View at Google Scholar · View at Scopus
  13. W. Denk, K. L. Briggman, and M. Helmstaedter, “Structural neurobiology: missing link to a mechanistic understanding of neural computation,” Nature Reviews Neuroscience, vol. 13, no. 5, pp. 351–358, 2012. View at Publisher · View at Google Scholar · View at Scopus
  14. J. R. Glaser and E. M. Glaser, “Neuron imaging with neurolucida—a PC-based system for image combining microscopy,” Computerized Medical Imaging and Graphics, vol. 14, no. 5, pp. 307–317, 1990. View at Publisher · View at Google Scholar · View at Scopus
  15. C. Sekirnjak, B. Vissel, J. Bollinger, M. Faulstich, and S. Du Lac, “Purkinje cell synapses target physiologically unique brainstem neurons,” The Journal of Neuroscience, vol. 23, no. 15, pp. 6392–6398, 2003. View at Google Scholar · View at Scopus
  16. J. Oberdick, R. J. Smeyne, J. R. Mann, S. Zackson, and J. I. Morgan, “A promoter that drives transgene expression in cerebellar Purkinje and retinal bipolar neurons,” Science, vol. 248, no. 4952, pp. 223–226, 1990. View at Google Scholar · View at Scopus
  17. J. S. Albus, “A theory of cerebellar function,” Mathematical Biosciences, vol. 10, no. 1-2, pp. 25–61, 1971. View at Google Scholar · View at Scopus
  18. A. Li, H. Gong, B. Zhang et al., “Micro-optical sectioning tomography to obtain a high-resolution atlas of the mouse brain,” Science, vol. 330, no. 6009, pp. 1404–1408, 2010. View at Publisher · View at Google Scholar · View at Scopus
  19. K. Herrup and B. Kuemerle, “The compartmentalization of the cerebellum,” Annual Review of Neuroscience, vol. 20, pp. 61–90, 1997. View at Publisher · View at Google Scholar · View at Scopus
  20. K. Ozol, J. M. Hayden, J. Oberdick, and R. Hawkes, “Transverse zones in the vermis of the mouse cerebellum,” The Journal of Comparative Neurology, vol. 412, no. 1, pp. 95–111, 1999. View at Google Scholar
  21. M. Larouche and R. Hawkes, “From clusters to stripes: the developmental origins of adult cerebellar compartmentation,” Cerebellum, vol. 5, no. 2, pp. 77–88, 2006. View at Publisher · View at Google Scholar · View at Scopus
  22. I. Ozden, M. R. Sullivan, H. M. Lee, and S. S.-H. Wang, “Reliable coding emerges from coactivation of climbing fibers in microbands of cerebellar Purkinje neurons,” The Journal of Neuroscience, vol. 29, no. 34, pp. 10463–10473, 2009. View at Publisher · View at Google Scholar · View at Scopus
  23. R. V. Sillitoe, N. Gopal, and A. L. Joyner, “Embryonic origins of ZebrinII parasagittal stripes and establishment of topographic Purkinje cell projections,” Neuroscience, vol. 162, no. 3, pp. 574–588, 2009. View at Publisher · View at Google Scholar · View at Scopus
  24. R. Apps and R. Hawkes, “Cerebellar cortical organization: a one-map hypothesis,” Nature Reviews Neuroscience, vol. 10, no. 9, pp. 670–681, 2009. View at Publisher · View at Google Scholar · View at Scopus
  25. C. L. Armstrong, A. M. Krueger-Naug, R. W. Currie, and R. Hawkes, “Constitutive expression of heat shock protein HSP25 in the central nervous system of the developing and adult mouse,” Journal of Comparative Neurology, vol. 434, no. 3, pp. 262–274, 2001. View at Publisher · View at Google Scholar · View at Scopus
  26. R. V. Sillitoe and R. Hawkes, “Whole-mount immunohistochemistry: a high-throughput screen for patterning defects in the mouse cerebellum,” Journal of Histochemistry & Cytochemistry, vol. 50, no. 2, pp. 235–244, 2002. View at Google Scholar · View at Scopus
  27. R. Apps and M. Garwicz, “Anatomical and physiological foundations of cerebellar information processing,” Nature Reviews Neuroscience, vol. 6, no. 4, pp. 297–311, 2005. View at Publisher · View at Google Scholar · View at Scopus
  28. H. Marzban, C.-T. Kim, D. Doorn, S.-H. Chung, and R. Hawkes, “A novel transverse expression domain in the mouse cerebellum revealed by a neurofilament-associated antigen,” Neuroscience, vol. 153, no. 4, pp. 1190–1201, 2008. View at Publisher · View at Google Scholar · View at Scopus
  29. C. R. Goodlett, K. M. Hamre, and J. R. West, “Regional differences in the timing of dendritic outgrowth of Purkinje cells in the vermal cerebellum demonstrated by MAP2 immunocytochemistry,” Developmental Brain Research, vol. 53, no. 1, pp. 131–134, 1990. View at Publisher · View at Google Scholar · View at Scopus
  30. Q. Ma, D. Jones, P. R. Borghesani et al., “Impaired B-lymphopoiesis, myelopoiesis, and derailed cerebellar neuron migration in CXCR4- and SDF-1-deficient mice,” Proceedings of the National Academy of Sciences of the United States of America, vol. 95, no. 16, pp. 9448–9453, 1998. View at Publisher · View at Google Scholar · View at Scopus
  31. C.-H. Kim, S.-H. Oh, J. H. Lee, S. O. Chang, J. Kim, and S. J. Kim, “Lobule-specific membrane excitability of cerebellar Purkinje cells,” Journal of Physiology, vol. 590, no. 2, pp. 273–288, 2012. View at Publisher · View at Google Scholar · View at Scopus
  32. C. Habas, H. Axelrad, and E.-A. Cabanis, “The cerebellar second homunculus remains silent during passive bimanual movements,” NeuroReport, vol. 15, no. 10, pp. 1571–1574, 2004. View at Publisher · View at Google Scholar · View at Scopus
  33. C. Habas, H. Axelrad, T. H. Nguyen, and E.-A. Cabanis, “Specific neocerebellar activation during out-of-phase bimanual movements,” NeuroReport, vol. 15, no. 4, pp. 595–599, 2004. View at Publisher · View at Google Scholar · View at Scopus
  34. C. A. Fox and W. Barnard, “A quantitative study of the Purkinje cell dendritic branchlets and their relationship to afferent fibres,” Journal of Anatomy, vol. 91, no. 3, pp. 299–313, 1957. View at Google Scholar · View at Scopus
  35. V. Braitenberg, “The cerebellar network: attempt at a formalization of its structure,” Network, vol. 4, no. 1, pp. 11–17, 1993. View at Publisher · View at Google Scholar · View at Scopus
  36. D. Heck and F. Sultan, “Cerebellar structure and function: making sense of parallel fibers,” Human Movement Science, vol. 21, no. 3, pp. 411–421, 2002. View at Google Scholar · View at Scopus
  37. C. I. De Zeeuw, F. E. Hoebeek, L. W. J. Bosman, M. Schonewille, L. Witter, and S. K. Koekkoek, “Spatiotemporal firing patterns in the cerebellum,” Nature Reviews Neuroscience, vol. 12, no. 6, pp. 327–344, 2011. View at Publisher · View at Google Scholar · View at Scopus
  38. Y. Cao, S. K. Maran, M. Dhamala, D. Jaeger, and D. H. Heck, “Behavior-related pauses in simple-spike activity of mouse Purkinje cells are linked to spike rate modulation,” The Journal of Neuroscience, vol. 32, no. 25, pp. 8678–8685, 2012. View at Google Scholar
  39. M. Berry and P. Bradley, “The growth of the dentritic trees of Purkinje cells in the cerebellum of the rat,” Brain Research, vol. 112, no. 1, pp. 1–35, 1976. View at Publisher · View at Google Scholar · View at Scopus
  40. M. Negrello, “Valentino braitenberg: from neuroanatomy to behavior and back,” Biological Cybernetics, 2013. View at Publisher · View at Google Scholar
  41. P. Vetter, A. Roth, and M. Häusser, “Propagation of action potentials in dendrites depends on dendritic morphology,” Journal of Neurophysiology, vol. 85, no. 2, pp. 926–937, 2001. View at Google Scholar · View at Scopus
  42. H. Agmon-Snir, C. E. Carr, and J. Rinzel, “The role of dendrites in auditory coincidence detection,” Nature, vol. 393, no. 6682, pp. 268–272, 1998. View at Publisher · View at Google Scholar · View at Scopus
  43. B. E. McKay and R. W. Turner, “Physiological and morphological development of the rat cerebellar Purkinje cell,” Journal of Physiology, vol. 567, no. 3, pp. 829–850, 2005. View at Publisher · View at Google Scholar · View at Scopus
  44. R. Ichikawa, M. Yamasaki, T. Miyazaki et al., “Developmental switching of perisomatic innervation from climbing fibers to basket cell fibers in cerebellar Purkinje cells,” The Journal of Neuroscience, vol. 31, no. 47, pp. 16916–16927, 2011. View at Publisher · View at Google Scholar · View at Scopus
  45. I. Dusart and F. Flamant, “Profound morphological and functional changes of rodent Purkinje cells between the first and the second postnatal weeks: a metamorphosis?” Frontiers in Neuroanatomy, vol. 6, no. 11, pp. 1–10, 2012. View at Publisher · View at Google Scholar · View at Scopus
  46. M. Palkovits, P. Magyar, and J. Szentágothai, “Quantitative histological analysis of the cerebellar cortex in the cat. I. Number and arrangement in space of the purkinje cells,” Brain Research, vol. 32, no. 1, pp. 1–13, 1971. View at Google Scholar · View at Scopus
  47. M. E. Dailey and S. J. Smith, “The dynamics of dendritic structure in developing hippocampal slices,” The Journal of Neuroscience, vol. 16, no. 9, pp. 2983–2994, 1996. View at Google Scholar · View at Scopus