Table of Contents Author Guidelines Submit a Manuscript
Neural Plasticity
Volume 2015, Article ID 104282, 13 pages
http://dx.doi.org/10.1155/2015/104282
Research Article

Altered Recruitment of the Attention Network Is Associated with Disability and Cognitive Impairment in Pediatric Patients with Acquired Brain Injury

1Acquired Brain Injury Unit, Scientific Institute “Eugenio Medea”, Via Don Luigi Monza 20, 23842 Bosisio Parini, Italy
2Neuroimaging Research Unit, Institute of Experimental Neurology, San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Via Olgettina 60, 20132 Milan, Italy
3Department of Neurology, San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Via Olgettina 60, 20132 Milan, Italy

Received 24 June 2015; Revised 23 July 2015; Accepted 26 August 2015

Academic Editor: Christophe Pellegrino

Copyright © 2015 Sandra Strazzer et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. R. Rabinowitz and H. S. Levin, “Cognitive sequelae of traumatic brain injury,” Psychiatric Clinics of North America, vol. 37, no. 1, pp. 1–11, 2014. View at Publisher · View at Google Scholar · View at Scopus
  2. V. A. Anderson, S. A. Morse, C. Catroppa, F. Haritou, and J. V. Rosenfeld, “Thirty month outcome from early childhood head injury: a prospective analysis of neurobehavioural recovery,” Brain, vol. 127, no. 12, pp. 2608–2620, 2004. View at Publisher · View at Google Scholar · View at Scopus
  3. M. E. Kramer, C.-Y. P. Chiu, N. C. Walz et al., “Long-term neural processing of attention following early childhood traumatic brain injury: FMRI and neurobehavioral outcomes,” Journal of the International Neuropsychological Society, vol. 14, no. 3, pp. 424–435, 2008. View at Publisher · View at Google Scholar · View at Scopus
  4. A. J. Bate, J. L. Mathias, and J. R. Crawford, “Performance on the test of everyday Attention and standard tests of attention following severe traumatic brain injury,” Clinical Neuropsychologist, vol. 15, no. 3, pp. 405–422, 2001. View at Publisher · View at Google Scholar · View at Scopus
  5. J. M. Cooper, C. Catroppa, M. H. Beauchamp et al., “Attentional control ten years post-childhood traumatic brain injury: the impact of lesion presence, location, and severity in adolescence and early adulthood,” Journal of Neurotrauma, vol. 31, no. 8, pp. 713–721, 2014. View at Publisher · View at Google Scholar · View at Scopus
  6. C.-J. Chen, C.-H. Wu, Y.-P. Liao et al., “Working memory in patients with mild traumatic brain injury: functional MR imaging analysis,” Radiology, vol. 264, no. 3, pp. 844–851, 2012. View at Publisher · View at Google Scholar · View at Scopus
  7. R. S. Scheibel, M. R. Newsome, J. L. Steinberg et al., “Altered brain activation during cognitive control in patients with moderate to severe traumatic brain injury,” Neurorehabilitation and Neural Repair, vol. 21, no. 1, pp. 36–45, 2007. View at Publisher · View at Google Scholar · View at Scopus
  8. T. W. McAllister, M. B. Sparling, L. A. Flashman, S. J. Guerin, A. C. Mamourian, and A. J. Saykin, “Differential working memory load effects after mild traumatic brain injury,” NeuroImage, vol. 14, no. 5, pp. 1004–1012, 2001. View at Publisher · View at Google Scholar · View at Scopus
  9. L. S. Krivitzky, T. M. Roebuck-Spencer, R. M. Roth, K. Blackstone, C. P. Johnson, and G. Gioia, “Functional magnetic resonance imaging of working memory and response inhibition in children with mild traumatic brain injury,” Journal of the International Neuropsychological Society, vol. 17, no. 6, pp. 1143–1152, 2011. View at Publisher · View at Google Scholar · View at Scopus
  10. M. R. Newsome, R. S. Scheibel, J. L. Steinberg et al., “Working memory brain activation following severe traumatic brain injury,” Cortex, vol. 43, no. 1, pp. 95–111, 2007. View at Publisher · View at Google Scholar · View at Scopus
  11. C. M. S. Conners, Conners' Continuous Performance Test II: Computer Program for Windows Technical Guide and Software Manual, Mutli-Health Systems, North Tonawanda, NY, USA, 2000.
  12. M. Bartés-Serrallonga, A. Adan, J. Solé-Casals et al., “Cerebral networks of sustained attention and working memory: a functional magnetic resonance imaging study based on the continuous performance test,” Revista de Neurologia, vol. 58, no. 7, pp. 289–295, 2014. View at Google Scholar · View at Scopus
  13. M. C. Kelton, H. J. Kahn, C. L. Conrath, and P. A. Newhouse, “The effects of nicotine on Parkinson's disease,” Brain and Cognition, vol. 43, no. 1–3, pp. 274–282, 2000. View at Google Scholar · View at Scopus
  14. M. J. Groom, G. M. Jackson, T. G. Calton et al., “Cognitive deficits in early-onset schizophrenia spectrum patients and their non-psychotic siblings: a comparison with ADHD,” Schizophrenia Research, vol. 99, no. 1–3, pp. 85–95, 2008. View at Publisher · View at Google Scholar · View at Scopus
  15. C. K. Conners, Conners Continuous Performance Test (CPT II), MHS Multi-Head System Inc, 2002.
  16. A. A. Hollingshead, “The Hollingshead four factor index of socioeconomic status,” Working Draft, Yale University, New Haven, Conn, USA, 1975. View at Google Scholar
  17. D. Wechsler, WISC-III: Wechsler Intelligence Scale for Children, The Psychological Corporation, New York, NY, USA, 1981.
  18. R. K. Heaton, G. J. Chelune, J. L. Talley, G. G. Kay, and G. Curtis, Wisconsin Card Sorting Test (WCST) Manual: Revised and Expanded, Psychological Assessment Resources, 1993.
  19. T. M. Achenbach and C. Edelbrock, The Child Behavior Checklist and Revised Child Behavior Profile, Queen City Printers, Burlington, Vt, USA, 1983.
  20. B. Jennett, G. Teasdale, R. Braakman, J. Minderhoud, and R. Knill-Jones, “Predicting outcome in individual patients after severe head injury,” The Lancet, vol. 1, no. 7968, pp. 1031–1034, 1976. View at Publisher · View at Google Scholar · View at Scopus
  21. A. Ardolino, G. Sleat, and K. Willett, “Outcome measurements in major trauma—results of a consensus meeting,” Injury, vol. 43, no. 10, pp. 1662–1666, 2012. View at Publisher · View at Google Scholar · View at Scopus
  22. M. Rappaport, K. M. Hall, K. Hopkins, T. Belleza, and D. N. Cope, “Disability rating scale for severe head trauma: coma to community,” Archives of Physical Medicine and Rehabilitation, vol. 63, no. 3, pp. 118–123, 1982. View at Google Scholar · View at Scopus
  23. S. Homack and C. A. Riccio, “Conners' continuous performance test (2nd ed.; CCPT-II),” Journal of Attention Disorders, vol. 9, no. 3, pp. 556–558, 2006. View at Publisher · View at Google Scholar · View at Scopus
  24. M. Wilke, S. K. Holland, M. Altaye, and C. Gaser, “Template-O-Matic: a toolbox for creating customized pediatric templates,” NeuroImage, vol. 41, no. 3, pp. 903–913, 2008. View at Publisher · View at Google Scholar · View at Scopus
  25. K. J. Friston, A. P. Holmes, J.-B. Poline et al., “Analysis of fMRI time-series revisited,” NeuroImage, vol. 2, no. 1, pp. 45–53, 1995. View at Publisher · View at Google Scholar · View at Scopus
  26. N. Tzourio-Mazoyer, B. Landeau, D. Papathanassiou et al., “Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain,” NeuroImage, vol. 15, no. 1, pp. 273–289, 2002. View at Publisher · View at Google Scholar · View at Scopus
  27. K. J. Friston, W. D. Penny, and D. E. Glaser, “Conjunction revisited,” NeuroImage, vol. 25, no. 3, pp. 661–667, 2005. View at Publisher · View at Google Scholar · View at Scopus
  28. M. Gaetz, “The neurophysiology of brain injury,” Clinical Neurophysiology, vol. 115, no. 1, pp. 4–18, 2004. View at Publisher · View at Google Scholar · View at Scopus
  29. J. H. Adams, B. Jennett, D. R. McLellan, L. S. Murray, and D. I. Graham, “The neuropathology of the vegetative state after head injury,” Journal of Clinical Pathology, vol. 52, no. 11, pp. 804–806, 1999. View at Publisher · View at Google Scholar · View at Scopus
  30. M. Lasee and H. S. Choi, Evidence of Reliability and Validity for a Children's Auditory Continuous Performance Test, Sage, 2013.
  31. M. E. Raichle and A. Z. Snyder, “A default mode of brain function: a brief history of an evolving idea,” NeuroImage, vol. 37, no. 4, pp. 1083–1097, 2007. View at Publisher · View at Google Scholar · View at Scopus
  32. C. Habas, N. Kamdar, D. Nguyen et al., “Distinct cerebellar contributions to intrinsic connectivity networks,” Journal of Neuroscience, vol. 29, no. 26, pp. 8586–8594, 2009. View at Publisher · View at Google Scholar · View at Scopus
  33. H. Garavan, T. J. Ross, J. Kaufman, and E. A. Stein, “A midline dissociation between error-processing and response-conflict monitoring,” NeuroImage, vol. 20, no. 2, pp. 1132–1139, 2003. View at Publisher · View at Google Scholar · View at Scopus
  34. M. E. Raichle, A. M. MacLeod, A. Z. Snyder, W. J. Powers, D. A. Gusnard, and G. L. Shulman, “A default mode of brain function,” Proceedings of the National Academy of Sciences of the United States of America, vol. 98, no. 2, pp. 676–682, 2001. View at Publisher · View at Google Scholar · View at Scopus
  35. F. G. Hillary, H. M. Genova, N. D. Chiaravalloti, B. Rypma, and J. DeLuca, “Prefrontal modulation of working memory performance in brain injury and disease,” Human Brain Mapping, vol. 27, no. 11, pp. 837–847, 2006. View at Publisher · View at Google Scholar · View at Scopus
  36. F. G. Hillary, “Neuroimaging of working memory dysfunction and the dilemma with brain reorganization hypotheses,” Journal of the International Neuropsychological Society, vol. 14, no. 4, pp. 526–534, 2008. View at Publisher · View at Google Scholar · View at Scopus
  37. C. Christodoulou, J. DeLuca, J. H. Ricker et al., “Functional magnetic resonance imaging of working memory impairment after traumatic brain injury,” Journal of Neurology Neurosurgery and Psychiatry, vol. 71, no. 2, pp. 161–168, 2001. View at Publisher · View at Google Scholar · View at Scopus
  38. W. M. Perlstein, M. A. Cole, J. A. Demery et al., “Parametric manipulation of working memory load in traumatic brain injury: behavioral and neural correlates,” Journal of the International Neuropsychological Society, vol. 10, no. 5, pp. 724–741, 2004. View at Publisher · View at Google Scholar · View at Scopus
  39. J. T. Povlishock and D. I. Katz, “Update of neuropathology and neurological recovery after traumatic brain injury,” Journal of Head Trauma Rehabilitation, vol. 20, no. 1, pp. 76–94, 2005. View at Publisher · View at Google Scholar · View at Scopus
  40. G. Zappalà, M. Thiebaut de Schotten, and P. J. Eslinger, “Traumatic brain injury and the frontal lobes: what can we gain with diffusion tensor imaging?” Cortex, vol. 48, no. 2, pp. 156–165, 2012. View at Publisher · View at Google Scholar · View at Scopus
  41. U. M. Venkatesan, N. A. Dennis, and F. G. Hillary, “Chronology and chronicity of altered resting-state functional connectivity after traumatic brain injury,” Journal of Neurotrauma, vol. 32, no. 4, pp. 252–264, 2015. View at Publisher · View at Google Scholar