Table of Contents Author Guidelines Submit a Manuscript
Neural Plasticity
Volume 2015, Article ID 481574, 12 pages
http://dx.doi.org/10.1155/2015/481574
Review Article

Functional and Structural Brain Plasticity Enhanced by Motor and Cognitive Rehabilitation in Multiple Sclerosis

1Department of Neurology and Psychiatry, Sapienza University, Viale dell’Università 30, 00185 Rome, Italy
2Department of Radiological Sciences, Oncology and Pathology, Sapienza University, Rome, Italy
3IRCCS Neuromed, Pozzilli, Italy

Received 12 February 2015; Accepted 16 April 2015

Academic Editor: Michael G. Stewart

Copyright © 2015 Luca Prosperini et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. Compston and A. Coles, “Multiple sclerosis,” The Lancet, vol. 359, no. 9313, pp. 1221–1231, 2002. View at Publisher · View at Google Scholar · View at Scopus
  2. R. Dutta and B. D. Trapp, “Mechanisms of neuronal dysfunction and degeneration in multiple sclerosis,” Progress in Neurobiology, vol. 93, no. 1, pp. 1–12, 2011. View at Publisher · View at Google Scholar · View at Scopus
  3. F. D. Lublin, M. Baier, and G. Cutter, “Effect of relapses on development of residual deficit in multiple sclerosis,” Neurology, vol. 61, no. 11, pp. 1528–1532, 2003. View at Publisher · View at Google Scholar · View at Scopus
  4. A. Traboulsee, “MRI relapses have significant pathologic and clinical implications in multiple sclerosis,” Journal of the Neurological Sciences, vol. 256, no. 1, pp. S19–S22, 2007. View at Publisher · View at Google Scholar · View at Scopus
  5. M. S. Freedman, “'Time is brain' also in multiple sclerosis,” Multiple Sclerosis, vol. 15, no. 10, pp. 1133–1134, 2009. View at Publisher · View at Google Scholar · View at Scopus
  6. C. H. Polman, S. C. Reingold, B. Banwell et al., “Diagnostic criteria for multiple sclerosis: 2010 revisions to the McDonald criteria,” Annals of Neurology, vol. 69, no. 2, pp. 292–302, 2011. View at Publisher · View at Google Scholar · View at Scopus
  7. P. van Asch, “Impact of mobility impairment in multiple sclerosis 2-patients' perspectives,” European Neurological Review, vol. 6, no. 2, pp. 115–120, 2011. View at Google Scholar · View at Scopus
  8. R. H. B. Benedict and R. Zivadinov, “Risk factors for and management of cognitive dysfunction in multiple sclerosis,” Nature Reviews Neurology, vol. 7, no. 6, pp. 332–342, 2011. View at Publisher · View at Google Scholar · View at Scopus
  9. C. Leone, F. Patti, and P. Feys, “Measuring the cost of cognitive-motor dual tasking during walking in multiple sclerosis,” Multiple Sclerosis Journal, vol. 21, no. 2, pp. 123–131, 2015. View at Publisher · View at Google Scholar
  10. J. Kesselring and S. Beer, “Symptomatic therapy and neurorehabilitation in multiple sclerosis,” The Lancet Neurology, vol. 4, no. 10, pp. 643–652, 2005. View at Publisher · View at Google Scholar · View at Scopus
  11. S. Beer, F. Khan, and J. Kesselring, “Rehabilitation interventions in multiple sclerosis: an overview,” Journal of Neurology, vol. 259, no. 9, pp. 1994–2008, 2012. View at Publisher · View at Google Scholar · View at Scopus
  12. J. A. Kleim, “Neural plasticity and neurorehabilitation: teaching the new brain old tricks,” Journal of Communication Disorders, vol. 44, no. 5, pp. 521–528, 2011. View at Publisher · View at Google Scholar · View at Scopus
  13. A. Pascual-Leone, A. Amedi, F. Fregni, and L. B. Merabet, “The plastic human brain cortex,” Annual Review of Neuroscience, vol. 28, no. 1, pp. 377–401, 2005. View at Publisher · View at Google Scholar · View at Scopus
  14. D. Zeller and J. Classen, “Plasticity of the motor system in multiple sclerosis,” Neuroscience, vol. 283, pp. 222–230, 2014. View at Publisher · View at Google Scholar
  15. P. S. Giacomini and D. L. Arnold, “Non-conventional MRI techniques for measuring neuroprotection, repair and plasticity in multiple sclerosis,” Current Opinion in Neurology, vol. 21, no. 3, pp. 272–277, 2008. View at Publisher · View at Google Scholar · View at Scopus
  16. P. Pantano, C. Mainero, and F. Caramia, “Functional brain reorganization in multiple sclerosis: evidence from fMRI studies,” Journal of Neuroimaging, vol. 16, no. 2, pp. 104–114, 2006. View at Publisher · View at Google Scholar · View at Scopus
  17. R. Sacco, S. Bonavita, F. Esposito, G. Tedeschi, and A. Gallo, “The contribution of resting state networks to the study of cortical reorganization in MS,” Multiple Sclerosis International, vol. 2013, Article ID 857807, 7 pages, 2013. View at Publisher · View at Google Scholar
  18. S. Mori and J. Zhang, “Principles of diffusion tensor imaging and its applications to basic neuroscience research,” Neuron, vol. 51, no. 5, pp. 527–539, 2006. View at Publisher · View at Google Scholar · View at Scopus
  19. E. Sbardella, F. Tona, N. Petsas, and P. Pantano, “DTI measurements in multiple sclerosis: evaluation of brain damage and clinical implications,” Multiple Sclerosis International, vol. 2013, Article ID 671730, 11 pages, 2013. View at Publisher · View at Google Scholar
  20. V. Tomassini, P. M. Matthews, A. J. Thompson et al., “Neuroplasticity and functional recovery in multiple sclerosis,” Nature Reviews Neurology, vol. 8, no. 11, pp. 635–646, 2012. View at Publisher · View at Google Scholar · View at Scopus
  21. C. Mainero, P. Pantano, F. Caramia, and C. Pozzilli, “Brain reorganization during attention and memory tasks in multiple sclerosis: insights from functional MRI studies,” Journal of the Neurological Sciences, vol. 245, no. 1-2, pp. 93–98, 2006. View at Publisher · View at Google Scholar · View at Scopus
  22. M. Filippi, A. Charil, M. Rovaris, M. Absinta, and M. A. Rocca, “Insights from magnetic resonance imaging,” in Handbook of Clinical Neurology, vol. 122 of Multiple Sclerosis and Related Disorders, chapter 6, pp. 115–149, 2014. View at Publisher · View at Google Scholar
  23. J. Deluca and U. Nocentini, “Neuropsychological, medical and rehabilitative management of persons with multiple sclerosis,” NeuroRehabilitation, vol. 29, no. 3, pp. 197–219, 2011. View at Publisher · View at Google Scholar · View at Scopus
  24. D. Moher, A. Liberati, J. Tetzlaff, D. G. Altman, and PRISMA Group, “Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement,” British Medical Journal, vol. 339, Article ID b2535, 2009. View at Publisher · View at Google Scholar · View at Scopus
  25. C. G. Maher, C. Sherrington, R. D. Herbert, A. M. Moseley, and M. Elkins, “Reliability of the PEDro scale for rating quality of randomized controlled trials,” Physical Therapy, vol. 83, no. 8, pp. 713–721, 2003. View at Google Scholar · View at Scopus
  26. K. Rasova, J. Krasenksy, E. Havrdova et al., “Is it possible to actively and purposely make use of plasticity and adaptability in the neurorehabilitation treatment of multiple scelorsis patients? A pilot project,” Clinical Rehabilitation, vol. 19, no. 2, pp. 170–181, 2005. View at Publisher · View at Google Scholar · View at Scopus
  27. V. Tomassini, H. Johansen-Berg, S. Jbabdi et al., “Relating brain damage to brain plasticity in patients with multiple sclerosis,” Neurorehabilitation & Neural Repair, vol. 26, no. 6, pp. 581–593, 2012. View at Publisher · View at Google Scholar · View at Scopus
  28. I. Ibrahim, J. Tintera, A. Skoch et al., “Fractional anisotropy and mean diffusivity in the corpus callosum of patients with multiple sclerosis: the effect of physiotherapy,” Neuroradiology, vol. 53, no. 11, pp. 917–926, 2011. View at Publisher · View at Google Scholar · View at Scopus
  29. L. Bonzano, A. Tacchino, G. Brichetto et al., “Upper limb motor rehabilitation impacts white matter microstructure in multiple sclerosis,” NeuroImage, vol. 90, pp. 107–116, 2014. View at Publisher · View at Google Scholar · View at Scopus
  30. L. Prosperini, F. Fanelli, N. Petsas et al., “Multiple sclerosis: changes in microarchitecture of white matter tracts after training with a video game balance board,” Radiology, vol. 273, no. 2, pp. 529–538, 2014. View at Publisher · View at Google Scholar
  31. K. Rasova, M. Prochazkova, J. Tintera, I. Ibrahim, D. Zimova, and I. Stetkarova, “Motor programme activating therapy influences adaptive brain functions in multiple sclerosis: clinical and MRI study,” International Journal of Rehabilitation Research, vol. 38, no. 1, pp. 49–54, 2015. View at Publisher · View at Google Scholar
  32. I.-K. Penner and L. Kappos, “Retraining attention in MS,” Journal of the Neurological Sciences, vol. 245, no. 1-2, pp. 147–151, 2006. View at Publisher · View at Google Scholar · View at Scopus
  33. J. Sastre-Garriga, J. Alonso, M. Renom et al., “A functional magnetic resonance proof of concept pilot trial of cognitive rehabilitation in multiple sclerosis,” Multiple Sclerosis, vol. 17, no. 4, pp. 457–467, 2011. View at Publisher · View at Google Scholar · View at Scopus
  34. N. D. Chiaravalloti, G. Wylie, V. Leavitt, and J. DeLuca, “Increased cerebral activation after behavioral treatment for memory deficits in MS,” Journal of Neurology, vol. 259, no. 7, pp. 1337–1346, 2012. View at Publisher · View at Google Scholar · View at Scopus
  35. A. Ernst, A. Botzung, D. Gounot et al., “Induced brain plasticity after a facilitation programme for autobiographical memory in multiple sclerosis: a preliminary study,” Multiple Sclerosis International, vol. 2012, Article ID 820240, 12 pages, 2012. View at Publisher · View at Google Scholar
  36. M. Filippi, G. Riccitelli, F. Mattioli et al., “Multiple sclerosis: effects of cognitive rehabilitation on structural and functional MR imaging measures—an explorative study,” Radiology, vol. 262, no. 3, pp. 932–940, 2012. View at Publisher · View at Google Scholar · View at Scopus
  37. A. Cerasa, M. C. Gioia, P. Valentino et al., “Computer-assisted cognitive rehabilitation of attention deficits for multiple sclerosis: a randomized trial with fMRI correlates,” Neurorehabilitation and Neural Repair, vol. 27, no. 4, pp. 284–295, 2013. View at Publisher · View at Google Scholar · View at Scopus
  38. L. Parisi, M. A. Rocca, P. Valsasina, L. Panicari, F. Mattioli, and M. Filippi, “Cognitive rehabilitation correlates with the functional connectivity of the anterior cingulate cortex in patients with multiple sclerosis,” Brain Imaging and Behavior, vol. 8, no. 3, pp. 387–393, 2014. View at Publisher · View at Google Scholar · View at Scopus
  39. V. M. Leavitt, G. R. Wylie, P. A. Girgis, J. Deluca, and N. D. Chiaravalloti, “Increased functional connectivity within memory networks following memory rehabilitation in multiple sclerosis,” Brain Imaging and Behavior, vol. 8, no. 3, pp. 394–402, 2012. View at Publisher · View at Google Scholar
  40. S. Bonavita, R. Sacco, M. D. Corte et al., “Computer-aided cognitive rehabilitation improves cognitive performances and induces brain functional connectivity changes in relapsing remitting multiple sclerosis patients: an exploratory study,” Journal of Neurology, vol. 262, no. 1, pp. 91–100, 2015. View at Publisher · View at Google Scholar
  41. L. de Giglio, F. Tona, N. Petsas et al., “Changes in thalamic resting-state functional connectivity induced by a home-based cognitive rehabilitation program in patients with multiple sclerosis,” in Proceedings of the 20th Annual RIMS Conference, Milan, Italy, April 2015.
  42. L. Prosperini, D. Fortuna, C. Giannì, L. Leonardi, M. R. Marchetti, and C. Pozzilli, “Home-based balance training using the Wii balance board: a randomized, crossover pilot study in multiple sclerosis,” Neurorehabilitation and Neural Repair, vol. 27, no. 6, pp. 516–525, 2013. View at Publisher · View at Google Scholar · View at Scopus
  43. J. Ashburner and K. J. Friston, “Voxel-based morphometry—the methods,” NeuroImage, vol. 11, no. 6 I, pp. 805–821, 2000. View at Publisher · View at Google Scholar · View at Scopus
  44. L. de Giglio, F. de Luca, L. Prosperini et al., “A low-cost cognitive rehabilitation with a commercial video game improves sustained attention and executive functions in multiple sclerosis: a pilot study,” Neurorehabilitation & Neural Repair, 2014. View at Publisher · View at Google Scholar
  45. S. W. Kennerley, J. Diedrichsen, E. Hazeltine, A. Semjen, and R. B. Ivry, “Callosotomy patients exhibit temporal uncoupling during continuous bimanual movements,” Nature Neuroscience, vol. 5, no. 4, pp. 376–381, 2002. View at Publisher · View at Google Scholar · View at Scopus
  46. B. W. Fling, J. A. Bernard, J. Bo, and J. Langan, “Corpus callosum and bimanual coordination in multiple sclerosis,” Journal of Neuroscience, vol. 28, no. 29, pp. 7248–7249, 2008. View at Publisher · View at Google Scholar · View at Scopus
  47. A. Ozturk, S. A. Smith, E. M. Gordon-Lipkin et al., “MRI of the corpus callosum in multiple sclerosis: association with disability,” Multiple Sclerosis, vol. 16, no. 2, pp. 166–177, 2010. View at Publisher · View at Google Scholar · View at Scopus
  48. C. Ryberg, E. Rostrup, O. B. Paulson et al., “Corpus callosum atrophy as a predictor of age-related cognitive and motor impairment: a 3-year follow-up of the LADIS study cohort,” Journal of the Neurological Sciences, vol. 307, no. 1-2, pp. 100–105, 2011. View at Publisher · View at Google Scholar · View at Scopus
  49. M. Manto, J. M. Bower, A. B. Conforto et al., “Consensus paper: roles of the cerebellum in motor control-the diversity of ideas on cerebellar involvement in movement,” Cerebellum, vol. 11, no. 2, pp. 457–487, 2012. View at Publisher · View at Google Scholar · View at Scopus
  50. C. Beaulieu, “The basis of anisotropic water diffusion in the nervous system—a technical review,” NMR in Biomedicine, vol. 15, no. 7-8, pp. 435–455, 2002. View at Publisher · View at Google Scholar · View at Scopus
  51. S. Cader, H. Johansen-Berg, M. Wylezinska et al., “Discordant white matter N-acetylasparate and diffusion MRI measures suggest that chronic metabolic dysfunction contributes to axonal pathology in multiple sclerosis,” NeuroImage, vol. 36, no. 1, pp. 19–27, 2007. View at Publisher · View at Google Scholar · View at Scopus
  52. B. Faw, “Pre-frontal executive committee for perception, working memory, attention, long-term memory, motor control, and thinking: a tutorial review,” Consciousness and Cognition, vol. 12, no. 1, pp. 83–139, 2003. View at Publisher · View at Google Scholar · View at Scopus
  53. P. J. Morgane, J. R. Galler, and D. J. Mokler, “A review of systems and networks of the limbic forebrain/limbic midbrain,” Progress in Neurobiology, vol. 75, no. 2, pp. 143–160, 2005. View at Publisher · View at Google Scholar · View at Scopus
  54. B. Y. Hayden and M. L. Platt, “Neurons in anterior cingulate cortex multiplex information about reward and action,” The Journal of Neuroscience, vol. 30, no. 9, pp. 3339–3346, 2010. View at Publisher · View at Google Scholar · View at Scopus
  55. A. E. Cavanna and M. R. Trimble, “The precuneus: a review of its functional anatomy and behavioural correlates,” Brain, vol. 129, no. 3, pp. 564–583, 2006. View at Publisher · View at Google Scholar · View at Scopus
  56. C. Dohle, K. M. Stephan, J. T. Valvoda et al., “Representation of virtual arm movements in precuneus,” Experimental Brain Research, vol. 208, no. 4, pp. 543–555, 2011. View at Publisher · View at Google Scholar · View at Scopus
  57. R. L. Buckner, “The cerebellum and cognitive function: 25 years of insight from anatomy and neuroimaging,” Neuron, vol. 80, no. 3, pp. 807–815, 2013. View at Publisher · View at Google Scholar · View at Scopus
  58. D. Timmann and I. Daum, “Cerebellar contributions to cognitive functions: a progress report after two decades of research,” Cerebellum, vol. 6, no. 3, pp. 159–162, 2007. View at Publisher · View at Google Scholar · View at Scopus
  59. L. F. Koziol, D. Budding, N. Andreasen et al., “Consensus paper: the cerebellum's role in movement and cognition,” Cerebellum, vol. 13, no. 1, pp. 151–177, 2014. View at Publisher · View at Google Scholar · View at Scopus
  60. I. Lipp and V. Tomassini, “Neuroplasticity and motor rehabilitation in multiple sclerosis,” Frontiers in Neurology, 2015. View at Publisher · View at Google Scholar
  61. H. Duffau, “Brain plasticity: from pathophysiological mechanisms to therapeutic applications,” Journal of Clinical Neuroscience, vol. 13, no. 9, pp. 885–897, 2006. View at Publisher · View at Google Scholar · View at Scopus
  62. S.-L. Liew, E. Santarnecchi, E. R. Buch, and L. G. Cohen, “Non-invasive brain stimulation in neurorehabilitation: local and distant effects for motor recovery,” Frontiers in Human Neuroscience, vol. 8, article 378, 2014. View at Publisher · View at Google Scholar
  63. D. M. Martin, R. Liu, A. Alonzo, M. Green, and C. K. Loo, “Use of transcranial direct current stimulation (tDCS) to enhance cognitive training: effect of timing of stimulation,” Experimental Brain Research, vol. 232, no. 10, pp. 3345–3351, 2014. View at Publisher · View at Google Scholar