Table of Contents Author Guidelines Submit a Manuscript
Neural Plasticity
Volume 2016 (2016), Article ID 1796715, 7 pages
http://dx.doi.org/10.1155/2016/1796715
Review Article

Sleep Spindles as Facilitators of Memory Formation and Learning

Department of Physiology and Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland

Received 4 January 2016; Accepted 13 March 2016

Academic Editor: Igor Timofeev

Copyright © 2016 Daniel Ulrich. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. L. De Gennaro and M. Ferrara, “Sleep spindles: an overview,” Sleep Medicine Reviews, vol. 7, no. 5, pp. 423–440, 2003. View at Publisher · View at Google Scholar · View at Scopus
  2. W. Plihal and J. Born, “Effects of early and late nocturnal sleep on declarative and procedural memory,” Journal of Cognitive Neuroscience, vol. 9, no. 4, pp. 534–547, 1997. View at Publisher · View at Google Scholar · View at Scopus
  3. A. Giuditta, M. V. Ambrosini, P. Montagnese et al., “The sequential hypothesis of the function of sleep,” Behavioural Brain Research, vol. 69, no. 1-2, pp. 157–166, 1995. View at Publisher · View at Google Scholar · View at Scopus
  4. B. Rasch and J. Born, “About sleep's role in memory,” Physiological Reviews, vol. 93, no. 2, pp. 681–766, 2013. View at Publisher · View at Google Scholar · View at Scopus
  5. S. Diekelmann and J. Born, “The memory function of sleep,” Nature Reviews Neuroscience, vol. 11, no. 2, pp. 114–126, 2010. View at Publisher · View at Google Scholar · View at Scopus
  6. G. Tononi and C. Cirelli, “Sleep and the price of plasticity: from synaptic and cellular homeostasis to memory consolidation and integration,” Neuron, vol. 81, no. 1, pp. 12–34, 2014. View at Publisher · View at Google Scholar · View at Scopus
  7. R. Stickgold, “Parsing the role of sleep in memory processing,” Current Opinion in Neurobiology, vol. 23, no. 5, pp. 847–853, 2013. View at Publisher · View at Google Scholar · View at Scopus
  8. M. G. Frank and R. Cantera, “Sleep, clocks, and synaptic plasticity,” Trends in Neurosciences, vol. 37, no. 9, pp. 491–501, 2014. View at Publisher · View at Google Scholar · View at Scopus
  9. M. Schabus, G. Gruber, S. Parapatics et al., “Sleep spindles and their significance for declarative memory consolidation,” Sleep, vol. 27, no. 8, pp. 1479–1485, 2004. View at Google Scholar · View at Scopus
  10. S. Gais, M. Mölle, K. Helms, and J. Born, “Learning-dependent increases in sleep spindle density,” Journal of Neuroscience, vol. 22, no. 15, pp. 6830–6834, 2002. View at Google Scholar · View at Scopus
  11. J. Tamminen, J. D. Payne, R. Stickgold, E. J. Wamsley, and M. G. Gaskell, “Sleep spindle activity is associated with the integration of new memories and existing knowledge,” Journal of Neuroscience, vol. 30, no. 43, pp. 14356–14360, 2010. View at Publisher · View at Google Scholar · View at Scopus
  12. C. Schmidt, P. Peigneux, V. Muto et al., “Encoding difficulty promotes postlearning changes in sleep spindle activity during napping,” Journal of Neuroscience, vol. 26, no. 35, pp. 8976–8982, 2006. View at Publisher · View at Google Scholar · View at Scopus
  13. D.-J. Dijk and C. A. Czeisler, “Contribution of the circadian pacemaker and the sleep homeostat to sleep propensity, sleep structure, electroencephalographic slow waves, and sleep spindle activity in humans,” Journal of Neuroscience, vol. 15, no. 5 I, pp. 3526–3538, 1995. View at Google Scholar · View at Scopus
  14. Z. Clemens, D. Fabó, and P. Halász, “Overnight verbal memory retention correlates with the number of sleep spindles,” Neuroscience, vol. 132, no. 2, pp. 529–535, 2005. View at Publisher · View at Google Scholar · View at Scopus
  15. Z. Clemens, D. Fabó, and P. Halász, “Twenty-four hours retention of visuospatial memory correlates with the number of parietal sleep spindles,” Neuroscience Letters, vol. 403, no. 1-2, pp. 52–56, 2006. View at Publisher · View at Google Scholar · View at Scopus
  16. R. Cox, W. F. Hofman, and L. M. Talamini, “Involvement of spindles in memory consolidation is slow wave sleep-specific,” Learning and Memory, vol. 19, no. 7, pp. 264–267, 2012. View at Publisher · View at Google Scholar · View at Scopus
  17. S. M. Fogel and C. T. Smith, “Learning-dependent changes in sleep spindles and Stage 2 sleep,” Journal of Sleep Research, vol. 15, no. 3, pp. 250–255, 2006. View at Publisher · View at Google Scholar · View at Scopus
  18. A. Morin, J. Doyon, V. Dostie et al., “Motor sequence learning increases sleep spindles and fast frequencies in post-training sleep,” SLEEP, vol. 31, no. 8, pp. 1149–1156, 2008. View at Google Scholar · View at Scopus
  19. M. Nishida and M. P. Walker, “Daytime naps, motor memory consolidation and regionally specific sleep spindles,” PLoS ONE, vol. 2, no. 4, article e341, 2007. View at Publisher · View at Google Scholar · View at Scopus
  20. W. Lu and R. Göder, “Does abnormal non-rapid eye movement sleep impair declarative memory consolidation? Disturbed thalamic functions in sleep and memory processing,” Sleep Medicine Reviews, vol. 16, no. 4, pp. 389–394, 2012. View at Publisher · View at Google Scholar · View at Scopus
  21. B. A. Mander, V. Rao, B. Lu et al., “Impaired prefrontal sleep spindle regulation of hippocampal-dependent learning in older adults,” Cerebral Cortex, vol. 24, no. 12, pp. 3301–3309, 2014. View at Publisher · View at Google Scholar · View at Scopus
  22. O. Eschenko, M. Mölle, J. Born, and S. J. Sara, “Elevated sleep spindle density after learning or after retrieval in rats,” The Journal of Neuroscience, vol. 26, no. 50, pp. 12914–12920, 2006. View at Publisher · View at Google Scholar · View at Scopus
  23. A. Watts, H. J. Gritton, J. Sweigart, and G. R. Poe, “Antidepressant suppression of non-REM sleep spindles and REM sleep impairs hippocampus-dependent learning while augmenting striatum-dependent learning,” Journal of Neuroscience, vol. 32, no. 39, pp. 13411–13420, 2012. View at Publisher · View at Google Scholar · View at Scopus
  24. L. Marshall, H. Helgadóttir, M. Mölle, and J. Born, “Boosting slow oscillations during sleep potentiates memory,” Nature, vol. 444, no. 7119, pp. 610–613, 2006. View at Publisher · View at Google Scholar · View at Scopus
  25. S. C. Mednick, E. A. McDevitt, J. K. Walsh et al., “The critical role of sleep spindles in hippocampal-dependent memory: a pharmacology study,” Journal of Neuroscience, vol. 33, no. 10, pp. 4494–4504, 2013. View at Publisher · View at Google Scholar · View at Scopus
  26. L. Marshall, R. Kirov, J. Brade, M. Mölle, and J. Born, “Transcranial electrical currents to probe EEG brain rhythms and memory consolidation during sleep in humans,” PLoS ONE, vol. 6, no. 2, Article ID e16905, 2011. View at Publisher · View at Google Scholar · View at Scopus
  27. B. Rasch, J. Pommer, S. Diekelmann, and J. Born, “Pharmacological REM sleep suppression paradoxically improves rather than impairs skill memory,” Nature Neuroscience, vol. 12, no. 4, pp. 396–397, 2009. View at Publisher · View at Google Scholar · View at Scopus
  28. G. B. Feld, I. Wilhelm, Y. Ma et al., “Slow wave sleep induced by GABA agonist tiagabine fails to benefit memory consolidation,” SLEEP, vol. 36, no. 9, pp. 1317–1326, 2013. View at Publisher · View at Google Scholar · View at Scopus
  29. F. Katsuki, J. M. McNally, S. Thankachan et al., “Sleep spindles and memory: optogenetic manipulation of parvalbumin containing GABAergic neurons in mouse thalamic reticular nucleus,” Society for Neuroscience, Abstract no. 167.14, 2015, http://www.sfn.org/annual-meeting/neuroscience-2015/sessions-and-events/program/abstract-pdfs-2015.
  30. M. Tamaki, T. Matsuoka, H. Nittono, and T. Hori, “Activation of fast sleep spindles at the premotor cortex and parietal areas contributes to motor learning: a study using sLORETA,” Clinical Neurophysiology, vol. 120, no. 5, pp. 878–886, 2009. View at Publisher · View at Google Scholar · View at Scopus
  31. L. A. Johnson, T. Blakely, D. Hermes, S. Hakimian, N. F. Ramsey, and J. G. Ojemann, “Sleep spindles are locally modulated by training on a brain-computer interface,” Proceedings of the National Academy of Sciences of the United States of America, vol. 109, no. 45, pp. 18583–18588, 2012. View at Publisher · View at Google Scholar · View at Scopus
  32. R. Cox, W. F. Hofman, M. de Boer, and L. M. Talamini, “Local sleep spindle modulations in relation to specific memory cues,” NeuroImage, vol. 99, pp. 103–110, 2014. View at Publisher · View at Google Scholar · View at Scopus
  33. S. J. Martin, P. D. Grimwood, and R. G. M. Morris, “Synaptic plasticity and memory: an evaluation of the hypothesis,” Annual Review of Neuroscience, vol. 23, pp. 649–711, 2000. View at Publisher · View at Google Scholar · View at Scopus
  34. K.-H. Braunewell and D. Manahan-Vaughan, “Long-term depression: a cellular basis for learning?” Reviews in the Neurosciences, vol. 12, no. 2, pp. 121–140, 2001. View at Google Scholar · View at Scopus
  35. D. M. Kullmann, A. W. Moreau, Y. Bakiri, and E. Nicholson, “Plasticity of Inhibition,” Neuron, vol. 75, no. 6, pp. 951–962, 2012. View at Publisher · View at Google Scholar · View at Scopus
  36. C. Pavlides and J. Winson, “Influences of hippocampal place cell firing in the awake state on the activity of these cells during subsequent sleep episodes,” The Journal of Neuroscience, vol. 9, no. 8, pp. 2907–2918, 1989. View at Google Scholar · View at Scopus
  37. D. S. Ramanathan, T. Gulati, and K. Ganguly, “Sleep-dependent reactivation of ensembles in motor cortex promotes skill consolidation,” PLoS Biology, vol. 13, no. 9, Article ID e1002263, 2015. View at Publisher · View at Google Scholar · View at Scopus
  38. J. L. McGaugh, “Memory—a century of consolidation,” Science, vol. 287, no. 5451, pp. 248–251, 2000. View at Publisher · View at Google Scholar · View at Scopus
  39. R. Chittajallu, S. Alford, and G. L. Collingridge, “Ca2+ and synaptic plasticity,” Cell Calcium, vol. 24, no. 5-6, pp. 377–385, 1998. View at Publisher · View at Google Scholar · View at Scopus
  40. T. J. Sejnowski and A. Destexhe, “Why do we sleep?” Brain Research, vol. 886, no. 1-2, pp. 208–223, 2000. View at Publisher · View at Google Scholar · View at Scopus
  41. I. Timofeev, F. Grenier, M. Bazhenov, A. R. Houweling, T. J. Sejnowski, and M. Steriade, “Short- and medium-term plasticity associated with augmenting responses in cortical slabs and spindles in intact cortex of cats in vivo,” Journal of Physiology, vol. 542, no. 2, pp. 583–598, 2002. View at Publisher · View at Google Scholar · View at Scopus
  42. D. Contreras, A. Destexhe, and M. Steriade, “Intracellular and computational characterization of the intracortical inhibitory control of synchronized thalamic inputs in vivo,” Journal of Neurophysiology, vol. 78, no. 1, pp. 335–350, 1997. View at Google Scholar · View at Scopus
  43. M. Murayama, E. Pérez-Garci, T. Nevian, T. Bock, W. Senn, and M. E. Larkum, “Dendritic encoding of sensory stimuli controlled by deep cortical interneurons,” Nature, vol. 457, no. 7233, pp. 1137–1141, 2009. View at Publisher · View at Google Scholar · View at Scopus
  44. A. Peyrache, F. P. Battaglia, and A. Destexhe, “Inhibition recruitment in prefrontal cortex during sleep spindles and gating of hippocampal inputs,” Proceedings of the National Academy of Sciences of the United States of America, vol. 108, no. 41, pp. 17207–17212, 2011. View at Publisher · View at Google Scholar · View at Scopus
  45. C. M. Werk, V. L. Harbour, and C. A. Chapman, “Induction of long-term potentiation leads to increased reliability of evoked neocortical spindles in vivo,” Neuroscience, vol. 131, no. 4, pp. 793–800, 2005. View at Publisher · View at Google Scholar · View at Scopus
  46. T. O. Bergmann, M. Mölle, L. Marshall, L. Kaya-Yildiz, J. Born, and H. Roman Siebner, “A local signature of LTP- and LTD-like plasticity in human NREM sleep,” European Journal of Neuroscience, vol. 27, no. 9, pp. 2241–2249, 2008. View at Publisher · View at Google Scholar · View at Scopus
  47. M. Rosanova and D. Ulrich, “Pattern-specific associative long-term potentiation induced by a sleep spindle-related spike train,” Journal of Neuroscience, vol. 25, no. 41, pp. 9398–9405, 2005. View at Publisher · View at Google Scholar · View at Scopus
  48. W. B. Levy and O. Steward, “Temporal contiguity requirements for long-term associative potentiation/depression in the hippocampus,” Neuroscience, vol. 8, no. 4, pp. 791–797, 1983. View at Publisher · View at Google Scholar · View at Scopus
  49. H.-V. V. Ngo, T. Martinetz, J. Born, and M. Mölle, “Auditory closed-loop stimulation of the sleep slow oscillation enhances memory,” Neuron, vol. 78, no. 3, pp. 545–553, 2013. View at Publisher · View at Google Scholar · View at Scopus
  50. M. Ushimaru, Y. Ueta, and Y. Kawaguchi, “Differentiated participation of thalamocortical subnetworks in slow/spindle waves and desynchronization,” Journal of Neuroscience, vol. 32, no. 5, pp. 1730–1746, 2012. View at Publisher · View at Google Scholar · View at Scopus
  51. R. J. Gardner, S. W. Hughes, and M. W. Jones, “Differential spike timing and phase dynamics of reticular thalamic and prefrontal cortical neuronal populations during sleep spindles,” Journal of Neuroscience, vol. 33, no. 47, pp. 18469–18480, 2013. View at Publisher · View at Google Scholar · View at Scopus
  52. S. J. Aton, C. Broussard, M. Dumoulin et al., “Visual experience and subsequent sleep induce sequential plastic changes in putative inhibitory and excitatory cortical neurons,” Proceedings of the National Academy of Sciences of the United States of America, vol. 110, no. 8, pp. 3101–3106, 2013. View at Publisher · View at Google Scholar · View at Scopus
  53. C. M. Wierzynski, E. V. Lubenov, M. Gu, and A. G. Siapas, “State-dependent spike-timing relationships between hippocampal and prefrontal circuits during sleep,” Neuron, vol. 61, no. 4, pp. 587–596, 2009. View at Publisher · View at Google Scholar · View at Scopus
  54. F. Engert and T. Bonhoeffer, “Dendritic spine changes associated with hippocampal long-term synaptic plasticity,” Nature, vol. 399, no. 6731, pp. 66–70, 1999. View at Publisher · View at Google Scholar · View at Scopus
  55. G. Yang, C. S. W. Lai, J. Cichon, L. Ma, W. Li, and W.-B. Gan, “Sleep promotes branch-specific formation of dendritic spines after learning,” Science, vol. 344, no. 6188, pp. 1173–1178, 2014. View at Publisher · View at Google Scholar · View at Scopus
  56. S. Maret, U. Faraguna, A. B. Nelson, C. Cirelli, and G. Tononi, “Sleep and waking modulate spine turnover in the adolescent mouse cortex,” Nature Neuroscience, vol. 14, no. 11, pp. 1418–1420, 2011. View at Publisher · View at Google Scholar · View at Scopus
  57. J. Cichon and W.-B. Gan, “Branch-specific dendritic Ca2+ spikes cause persistent synaptic plasticity,” Nature, vol. 520, no. 7546, pp. 180–185, 2015. View at Publisher · View at Google Scholar · View at Scopus
  58. E. Pérez-Garci, M. E. Larkum, and T. Nevian, “Inhibition of dendritic Ca2+ spikes by GABAB receptors in cortical pyramidal neurons is mediated by a direct Gi/o-β-subunit interaction with Cav1 channels,” The Journal of Physiology, vol. 591, no. 7, pp. 1599–1612, 2013. View at Publisher · View at Google Scholar
  59. J. Striessnig, A. Koschak, M. J. Sinnegger-Brauns et al., “Role of voltage-gated L-type Ca2+ channel isoforms for brain function,” Biochemical Society Transactions, vol. 34, no. 5, pp. 903–909, 2006. View at Publisher · View at Google Scholar · View at Scopus
  60. A. E. West, W. G. Chen, M. B. Dalva et al., “Calcium regulation of neuronal gene expression,” Proceedings of the National Academy of Sciences of the United States of America, vol. 98, no. 20, pp. 11024–11031, 2001. View at Publisher · View at Google Scholar · View at Scopus
  61. D. D. Murphy and M. Segal, “Morphological plasticity of dendritic spines in central neurons is mediated by activation of cAMP response element binding protein,” Proceedings of the National Academy of Sciences of the United States of America, vol. 94, no. 4, pp. 1482–1487, 1997. View at Publisher · View at Google Scholar · View at Scopus
  62. C. Lustenberger, A. Maric, R. Dürr, P. Achermann, and R. Huber, “Triangular relationship between sleep spindle activity, general cognitive ability and the efficiency of declarative learning,” PLoS ONE, vol. 7, no. 11, Article ID e49561, 2012. View at Publisher · View at Google Scholar · View at Scopus
  63. S. Scholle, G. Zwacka, and H. C. Scholle, “Sleep spindle evolution from infancy to adolescence,” Clinical Neurophysiology, vol. 118, no. 7, pp. 1525–1531, 2007. View at Publisher · View at Google Scholar · View at Scopus
  64. A. P. Vorster and J. Born, “Sleep and memory in mammals, birds and invertebrates,” Neuroscience and Biobehavioral Reviews, vol. 50, pp. 103–119, 2015. View at Publisher · View at Google Scholar · View at Scopus