Table of Contents Author Guidelines Submit a Manuscript
Neural Plasticity
Volume 2016, Article ID 3704964, 9 pages
http://dx.doi.org/10.1155/2016/3704964
Research Article

Manipulation of Dysfunctional Spinal Joints Affects Sensorimotor Integration in the Prefrontal Cortex: A Brain Source Localization Study

1Mech-Sense, Department of Gastroenterology and Hepatology, Aalborg University Hospital, 9000 Aalborg, Denmark
2Centre for Chiropractic Research, New Zealand College of Chiropractic, Auckland 1060, New Zealand
3Centre for Sensory-Motor Interactions (SMI), Department of Health Science and Technology, Aalborg University, 9100 Aalborg, Denmark
4Faculty of Health & Environmental Sciences, Health & Rehabilitation Research Institute, AUT University, Auckland 1010, New Zealand
5Faculty of Health Sciences, University of Ontario Institute of Technology, ON, Canada L1H 7K4

Received 12 November 2015; Accepted 28 January 2016

Academic Editor: Bruno Poucet

Copyright © 2016 Dina Lelic et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. H. Haavik and B. Murphy, “The role of spinal manipulation in addressing disordered sensorimotor integration and altered motor control,” Journal of Electromyography and Kinesiology, vol. 22, no. 5, pp. 768–776, 2012. View at Publisher · View at Google Scholar · View at Scopus
  2. J. Daligadu, H. Haavik, P. C. Yielder, J. Baarbe, and B. Murphy, “Alterations in cortical and cerebellar motor processing in subclinical neck pain patients following spinal manipulation,” Journal of Manipulative and Physiological Therapeutics, vol. 36, no. 8, pp. 527–537, 2013. View at Publisher · View at Google Scholar · View at Scopus
  3. H. Haavik-Taylor and B. Murphy, “Cervical spine manipulation alters sensorimotor integration: a somatosensory evoked potential study,” Clinical Neurophysiology, vol. 118, no. 2, pp. 391–402, 2007. View at Publisher · View at Google Scholar · View at Scopus
  4. H. Haavik-Taylor and B. Murphy, “Transiet modulation of intracortical inhibition following spinal manipulation,” Chiropractic Journal of Australia, vol. 37, pp. 106–116, 2007. View at Google Scholar
  5. H. H. Taylor and B. Murphy, “Altered sensorimotor integration with cervical spine manipulation,” Journal of Manipulative and Physiological Therapeutics, vol. 31, no. 2, pp. 115–126, 2008. View at Publisher · View at Google Scholar · View at Scopus
  6. H. H. Taylor and B. Murphy, “Altered central integration of dual somatosensory input after cervical spine manipulation,” Journal of Manipulative and Physiological Therapeutics, vol. 33, no. 3, pp. 178–188, 2010. View at Publisher · View at Google Scholar · View at Scopus
  7. C. M. Michel, M. M. Murray, G. Lantz, S. Gonzalez, L. Spinelli, and R. Grave De Peralta, “EEG source imaging,” Clinical Neurophysiology, vol. 115, no. 10, pp. 2195–2222, 2004. View at Publisher · View at Google Scholar · View at Scopus
  8. M. Valeriani, D. Restuccia, V. Di Lazzaro, C. Barba, D. Le Pera, and P. Tonali, “Dipolar generators of the early scalp somatosensory evoked potentials to tibial nerve stimulation in human subjects,” Neuroscience Letters, vol. 238, no. 1-2, pp. 49–52, 1997. View at Publisher · View at Google Scholar · View at Scopus
  9. M. Valeriani, D. Le Pera, D. Niddam, L. Arendt-Nielsen, and A. C. N. Chen, “Dipolar source modeling of somatosensory evoked potentials to painful and nonpainful median nerve stimulation,” Muscle and Nerve, vol. 23, no. 8, pp. 1194–1203, 2000. View at Publisher · View at Google Scholar · View at Scopus
  10. M. Valeriani, D. Le Pera, and P. Tonali, “Characterizing somatosensory evoked potential sources with dipole models: advantages and limitations,” Muscle and Nerve, vol. 24, no. 3, pp. 325–339, 2001. View at Publisher · View at Google Scholar · View at Scopus
  11. H. Lee, L. L. Nicholson, R. D. Adams, and S.-S. Bae, “Proprioception and rotation range sensitization associated with subclinical neck pain,” Spine, vol. 30, no. 3, pp. E60–E67, 2005. View at Publisher · View at Google Scholar · View at Scopus
  12. H.-Y. Lee, J.-D. Wang, G. Yao, and S.-F. Wang, “Association between cervicocephalic kinesthetic sensibility and frequency of subclinical neck pain,” Manual Therapy, vol. 13, no. 5, pp. 419–425, 2008. View at Publisher · View at Google Scholar · View at Scopus
  13. J. J. Triano, B. Budgell, A. Bagnulo et al., “Review of methods used by chiropractors to determine the site for applying manipulation,” Chiropractic and Manual Therapies, vol. 21, article 36, 2013. View at Publisher · View at Google Scholar · View at Scopus
  14. B. W. Hessell, W. Herzog, P. J. W. Conway, and M. C. McEwen, “Experimental measurement of the force exerted during spinal manipulation using the Thompson technique,” Journal of Manipulative and Physiological Therapeutics, vol. 13, no. 8, pp. 448–453, 1990. View at Google Scholar · View at Scopus
  15. W. Herzog, “Mechanical, physiologic, and neuromascular considerations of chiropractic treatment,” in Advances in Chiropractic, D. J. Lawrence, J. D. Cassidy, and M. McGregor, Eds., pp. 269–285, Mosby-Year Book, New York, NY, USA, 1996. View at Google Scholar
  16. W. Herzog, P. J. Conway, Y. T. Zhang, J. Gal, and A. C. S. Guimaraes, “Reflex responses associated with manipulative treatments on the thoracic spine: a pilot study,” Journal of Manipulative and Physiological Therapeutics, vol. 18, no. 4, pp. 233–236, 1995. View at Google Scholar · View at Scopus
  17. J. G. Pickar and J. D. Wheeler, “Response of muscle proprioceptors to spinal manipulative-like loads in the anesthetized cat,” Journal of Manipulative and Physiological Therapeutics, vol. 24, no. 1, pp. 2–11, 2001. View at Publisher · View at Google Scholar · View at Scopus
  18. R. D. Pascual-Marqui, M. Esslen, K. Kochi, and D. Lehmann, “Functional imaging with low-resolution brain electromagnetic tomography (LORETA): a review,” Methods and Findings in Experimental and Clinical Pharmacology, vol. 24, pp. 91–95, 2002. View at Google Scholar
  19. M. Valeriani, D. Le Pera, D. Niddam, A. C. N. Chen, and L. Arendt-Nielsen, “Dipolar modelling of the scalp evoked potentials to painful contact heat stimulation of the human skin,” Neuroscience Letters, vol. 318, no. 1, pp. 44–48, 2002. View at Publisher · View at Google Scholar · View at Scopus
  20. C. C. Gallen, D. F. Sobel, J. D. Lewine et al., “Neuromagnetic mapping of brain function,” Radiology, vol. 187, no. 3, pp. 863–867, 1993. View at Publisher · View at Google Scholar · View at Scopus
  21. H. H. Taylor and B. Murphy, “The effects of spinal manipulation on central integration of dual somatosensory input observed after motor training: a crossover study,” Journal of Manipulative and Physiological Therapeutics, vol. 33, no. 4, pp. 261–272, 2010. View at Publisher · View at Google Scholar · View at Scopus
  22. T. Allison, G. McCarthy, C. C. Wood, P. D. Williamson, and D. D. Spencer, “Human cortical potentials evoked by stimulation of the median nerve. II. Cytoarchitectonic areas generating long-latency activity,” Journal of Neurophysiology, vol. 62, no. 3, pp. 711–722, 1989. View at Google Scholar · View at Scopus
  23. T. Allison, G. McCarthy, C. C. Wood, and S. J. Jones, “Potentials evoked in human and monkey cerebral cortex by stimulation of the median nerve. A review of scalp and intracranial recordings,” Brain, vol. 114, no. 6, pp. 2465–2503, 1991. View at Publisher · View at Google Scholar · View at Scopus
  24. P. Kaňovský, M. Bareš, and I. Rektor, “The selective gating of the N30 cortical component of the somatosensory evoked potentials of median nerve is different in the mesial and dorsolateral frontal cortex: evidence from intracerebral recordings,” Clinical Neurophysiology, vol. 114, no. 6, pp. 981–991, 2003. View at Publisher · View at Google Scholar · View at Scopus
  25. F. Mauguiere, J. E. Desmedt, and J. Courjon, “Astereognosis and dissociated loss of frontal or parietal components of somatosensory evoked potentials in hemispheric lesions. Detailed correlations with clinical signs and computerized tomographic scanning,” Brain, vol. 106, part 2, pp. 271–311, 1983. View at Publisher · View at Google Scholar · View at Scopus
  26. P. M. Rossini, G. L. Gigli, M. G. Marciani, F. Zarola, and M. Caramia, “Non-invasive evaluation of input-output characteristics of sensorimotor cerebral areas in healthy humans,” Electroencephalography and Clinical Neurophysiology, vol. 68, no. 2, pp. 88–100, 1987. View at Publisher · View at Google Scholar · View at Scopus
  27. P. M. Rossini, F. Babiloni, G. Bernardi et al., “Abnormalities of short-latency somatosensory evoked potentials in parkinsonian patients,” Electroencephalography and Clinical Neurophysiology/ Evoked Potentials, vol. 74, no. 4, pp. 277–289, 1989. View at Publisher · View at Google Scholar · View at Scopus
  28. T. D. Waberski, H. Buchner, M. Perkuhn et al., “N30 and the effect of explorative finger movements: a model of the contribution of the motor cortex to early somatosensory potentials,” Clinical Neurophysiology, vol. 110, no. 9, pp. 1589–1600, 1999. View at Publisher · View at Google Scholar · View at Scopus
  29. S. Rossi, R. della Volpe, F. Ginanneschi et al., “Early somatosensory processing during tonic muscle pain in humans: relation to loss of proprioception and motor ‘defensive’ strategies,” Clinical Neurophysiology, vol. 114, no. 7, pp. 1351–1358, 2003. View at Publisher · View at Google Scholar · View at Scopus
  30. A. M. Cebolla, E. Palmero-Soler, B. Dan, and G. Cheron, “Frontal phasic and oscillatory generators of the N30 somatosensory evoked potential,” NeuroImage, vol. 54, no. 2, pp. 1297–1306, 2011. View at Publisher · View at Google Scholar · View at Scopus
  31. G. Cheron and S. Borenstein, “Gating of the early components of the frontal and parietal somatosensory evoked potentials in different sensory-motor interference modalities,” Electroencephalography and Clinical Neurophysiology, vol. 80, no. 6, pp. 522–530, 1991. View at Publisher · View at Google Scholar · View at Scopus
  32. G. Cheron and S. Borenstein, “Mental movement simulation affects the N30 frontal component of the somatosensory evoked potential,” Electroencephalography and Clinical Neurophysiology/ Evoked Potentials, vol. 84, no. 3, pp. 288–292, 1992. View at Publisher · View at Google Scholar · View at Scopus
  33. J. E. Desmedt and G. Cheron, “Non-cephalic reference recording of early somatosensory potentials to finger stimulation in adult or aging normal: differentiation of widespread N18 and contralateral N20 from the prerolandic p22 and N30 components,” Electroencephalography and Clinical Neurophysiology, vol. 52, no. 6, pp. 553–570, 1981. View at Publisher · View at Google Scholar · View at Scopus
  34. C. Barba, M. Frot, M. Guénot, and F. Mauguière, “Stereotactic recordings of median nerve somatosensory-evoked potentials in the human pre-supplementary motor area,” European Journal of Neuroscience, vol. 13, no. 2, pp. 347–356, 2001. View at Publisher · View at Google Scholar · View at Scopus
  35. C. Barba, M. Valeriani, D. Restuccia et al., “The human supplementary motor area-proper does not receive direct somatosensory inputs from the periphery: data from stereotactic depth somatosensory evoked potential recordings,” Neuroscience Letters, vol. 344, no. 3, pp. 161–164, 2003. View at Publisher · View at Google Scholar · View at Scopus
  36. E. Balzamo, P. Marquis, P. Chauvel, and J. Régis, “Short-latency components of evoked potentials to median nerve stimulation recorded by intracerebral electrodes in the human pre- and postcentral areas,” Clinical Neurophysiology, vol. 115, no. 7, pp. 1616–1623, 2004. View at Publisher · View at Google Scholar · View at Scopus
  37. P. L. Strick and J. B. Preston, “Two representations of the hand in area 4 of a primate. II. Somatosensory input organization,” Journal of Neurophysiology, vol. 48, no. 1, pp. 150–159, 1982. View at Google Scholar · View at Scopus
  38. J. Tanji and S. P. Wise, “Submodality distribution in sensorimotor cortex of the unanesthetized monkey,” Journal of Neurophysiology, vol. 45, no. 3, pp. 467–481, 1981. View at Google Scholar · View at Scopus
  39. M. Pierantozzi, P. Mazzone, A. Bassi et al., “The effect of deep brain stimulation on the frontal N30 component of somatosensory evoked potentials in advanced Parkinson's disease patients,” Clinical Neurophysiology, vol. 110, no. 10, pp. 1700–1707, 1999. View at Publisher · View at Google Scholar · View at Scopus
  40. M. Pierantozzi, A. F. Sabato, F. Leonardis et al., “Curariform peripheral block of muscular tone selectively increases precentral N30 somatosensory evoked potentials component. A pharmacological study carried out on healthy subjects and parkinsonian syndromes,” Experimental Brain Research, vol. 133, no. 3, pp. 368–376, 2000. View at Publisher · View at Google Scholar · View at Scopus
  41. G. E. Alexander and M. D. Crutcher, “Functional architecture of basal ganglia circuits: neural substrates of parallel processing,” Trends in Neurosciences, vol. 13, no. 7, pp. 266–271, 1990. View at Publisher · View at Google Scholar · View at Scopus
  42. G. Cheron, T. Piette, A. Thiriaux, J. Jacquy, and E. Godaux, “Somatosensory evoked potentials at rest and during movement in Parkinson's disease: evidence for a specific apomorphine effect on the frontal N30 wave,” Electroencephalography and Clinical Neurophysiology/ Evoked Potentials, vol. 92, no. 6, pp. 491–501, 1994. View at Publisher · View at Google Scholar · View at Scopus
  43. D. T. Struss and D. F. Benson, The Frontal Lobes, Raven Press, New York, NY, USA, 1986.
  44. S. Funahashi and J. M. Andreau, “Prefrontal cortex and neural mechanisms of executive function,” Journal of Physiology Paris, vol. 107, no. 6, pp. 471–482, 2013. View at Publisher · View at Google Scholar · View at Scopus
  45. E. E. Smith and J. Jonides, “Storage and executive processes in the frontal lobes,” Science, vol. 283, no. 5408, pp. 1657–1661, 1999. View at Publisher · View at Google Scholar · View at Scopus
  46. D. Pineda, A. Ardila, M. Rosselli, C. Cadavid, S. Mancheno, and S. Mejia, “Executive dysfunctions in children with attention deficit hyperactivity disorder,” International Journal of Neuroscience, vol. 96, no. 3-4, pp. 177–196, 1998. View at Publisher · View at Google Scholar · View at Scopus
  47. H. Haavik and B. Murphy, “Subclinical neck pain and the effects of cervical manipulation on elbow joint position sense,” Journal of Manipulative and Physiological Therapeutics, vol. 34, no. 2, pp. 88–97, 2011. View at Publisher · View at Google Scholar · View at Scopus
  48. D. D. Kelly, B. A. Murphy, and D. P. Backhouse, “Use of a mental rotation reaction-time paradigm to measure the effects of upper cervical adjustments on cortical processing: a pilot study,” Journal of Manipulative and Physiological Therapeutics, vol. 23, no. 4, pp. 246–251, 2000. View at Publisher · View at Google Scholar · View at Scopus
  49. W. Herzog, D. Scheele, and P. J. Conway, “Electromyographic responses of back and limb muscles associated with spinal manipulative therapy,” Spine, vol. 24, no. 2, pp. 146–153, 1999. View at Publisher · View at Google Scholar · View at Scopus
  50. B. A. Murphy, N. J. Dawson, and J. R. Slack, “Sacroiliac joint manipulation decreases the H-reflex,” Electromyography and Clinical Neurophysiology, vol. 35, no. 2, pp. 87–94, 1995. View at Google Scholar · View at Scopus
  51. E. Suter, G. McMorland, W. Herzog, and R. Bray, “Decrease in quadriceps inhibition after sacroiliac joint manipulation in patients with anterior knee pain,” Journal of Manipulative and Physiological Therapeutics, vol. 22, no. 3, pp. 149–153, 1999. View at Publisher · View at Google Scholar · View at Scopus
  52. E. Suter, G. McMorland, W. Herzog, and R. Bray, “Conservative lower back treatment reduces inhibition in knee-extensor muscles: a randomized controlled trial,” Journal of Manipulative and Physiological Therapeutics, vol. 23, no. 2, pp. 76–80, 2000. View at Publisher · View at Google Scholar · View at Scopus
  53. P. Marshall and B. Murphy, “The effect of sacroiliac joint manipulation on feed-forward activation times of the deep abdominal musculature,” Journal of Manipulative and Physiological Therapeutics, vol. 29, no. 3, pp. 196–202, 2006. View at Publisher · View at Google Scholar · View at Scopus
  54. B. Hillermann, A. N. Gomes, C. Korporaal, and D. Jackson, “A pilot study comparing the effects of spinal manipulative therapy with those of extra-spinal manipulative therapy on quadriceps muscle strength,” Journal of Manipulative and Physiological Therapeutics, vol. 29, no. 2, pp. 145–149, 2006. View at Publisher · View at Google Scholar · View at Scopus
  55. R. A. Leach, The Chiropractic Theories: A Textbook of Scientific Research, Lippincott Williams and Wilkins, Baltimore, Md, USA, 2004.
  56. C. Hawk, R. Khorsan, A. J. Lisi, R. J. Ferrance, and M. W. Evans, “Chiropractic care for nonmusculoskeletal conditions: a systematic review with implications for whole systems research,” Journal of Alternative and Complementary Medicine, vol. 13, no. 5, pp. 491–512, 2007. View at Publisher · View at Google Scholar · View at Scopus
  57. M. Schneider, M. Haas, R. Glick, J. Stevans, and D. Landsittel, “Comparison of spinal manipulation methods and usual medical care for acute and subacute low back pain: a randomized clinical trial,” Spine, vol. 40, pp. 209–217, 2015. View at Google Scholar
  58. R. M. Mieritz, J. Hartvigsen, E. Boyle, M. D. Jakobsen, P. Aagaard, and G. Bronfort, “Lumbar motion changes in chronic low back pain patients: a secondary analysis of data from a randomized clinical trial,” Spine Journal, vol. 14, no. 11, pp. 2618–2627, 2014. View at Publisher · View at Google Scholar · View at Scopus
  59. M. B. Botelho and B. B. Andrade, “Effect of cervical spine manipulative therapy on judo athletes' grip strength,” Journal of Manipulative and Physiological Therapeutics, vol. 35, no. 1, pp. 38–44, 2012. View at Publisher · View at Google Scholar · View at Scopus