Review Article

Synaptic Wnt/GSK3β Signaling Hub in Autism

Figure 1

Wnt/β-catenin signaling in ASDs. Wnt binding to FZD-LRP5/6 complex receptor at the membrane recruits the destruction complex and inhibits GSK3β activity thus stabilizing β-catenin in the cytoplasm and nucleus. Activation of the Wnt/β-catenin pathway facilitates synaptic plasticity through the activation of voltage gated ion channels that allows activation of CAMK and CREB mediated transcription. Mutations in TSC associated with ASD prevent β-catenin degradation which results in a gain of function of the Wnt pathway. In the presynaptic terminal cadherin mediated cell adhesion between synapses is weakened by phosphorylation of β-catenin and synaptic vesicle clustering is enhanced through DVL1. Clustering is also dependent on NLGN/NRXN cell adhesion complexes. Both lithium (LiCl) and VPA activate Wnt/β-catenin signaling through inhibition of GSK3β activity. Conversely, in the absence of a Wnt ligand, activated GSK3β targets β-catenin for proteosome-mediated degradation. Mutations associated with DISC1 fail to inhibit GSK3β and thus activate Wnt/β-catenin pathway. In the presynaptic side Wnt signaling buffering of synaptic vesicles is inhibited and adherens junctions mediated by cadherins are strengthened.