Table of Contents Author Guidelines Submit a Manuscript
Neural Plasticity
Volume 2017 (2017), Article ID 1621629, 22 pages
https://doi.org/10.1155/2017/1621629
Research Article

AAV-KLF7 Promotes Descending Propriospinal Neuron Axonal Plasticity after Spinal Cord Injury

1Department of Anatomy, Basic Medical College, China Medical University, Shenyang 110122, China
2Department of Anatomy, Mudanjiang College of Medicine, Mudanjiang 157011, China
3Department of Pharmacy, Mudanjiang College of Medicine, Mudanjiang 157011, China
4Department of Pathology, Mudanjiang College of Medicine, Mudanjiang 157011, China
5Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA

Correspondence should be addressed to Ying Wang; moc.361@422077gnawgniy and Zhen-Yu Wang; nc.ude.umc.liam@gnawyz

Received 13 March 2017; Revised 27 May 2017; Accepted 12 June 2017; Published 13 August 2017

Academic Editor: Malgorzata Kossut

Copyright © 2017 Wen-Yuan Li et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. Apara and J. L. Goldberg, “Molecular mechanisms of the suppression of axon regeneration by KLF transcription factors,” Neural Regeneration Research, vol. 9, no. 15, pp. 1418–1421, 2014. View at Publisher · View at Google Scholar · View at Scopus
  2. J. E. Navarro-Zarza, C. Hernández-Díaz, M. A. Saavedra et al., “Preworkshop knowledge of musculoskeletal anatomy of rheumatology fellows and rheumatologists of seven North, Central, and South American countries,” Arthritis Care Research (Hoboken), vol. 66, no. 2, pp. 270–276, 2014. View at Publisher · View at Google Scholar · View at Scopus
  3. S. Parrinello, I. Napoli, S. Ribeiro et al., “EphB signaling directs peripheral nerve regeneration through Sox2-dependent Schwann cell sorting,” Cell, vol. 143, no. 1, pp. 145–155, 2010. View at Publisher · View at Google Scholar · View at Scopus
  4. I. Venkatesh and M. G. Blackmore, “Selecting optimal combinations of transcription factors to promote axon regeneration: why mechanisms matter,” Neuroscience Letters, vol. 652, pp. 64–73, 2017. View at Publisher · View at Google Scholar
  5. K. Bartus, J. Galino, N. D. James et al., “Neuregulin-1 controls an endogenous repair mechanism after spinal cord injury,” Brain, vol. 139, no. 5, pp. 1394–1416, 2016. View at Publisher · View at Google Scholar · View at Scopus
  6. R. Vavrek, J. Girgis, W. Tetzlaff, G. W. Hiebert, and K. Fouad, “BDNF promotes connections of corticospinal neurons onto spared descending interneurons in spinal cord injured rats,” Brain, vol. 129, Part 6, pp. 1534–1545, 2006. View at Publisher · View at Google Scholar · View at Scopus
  7. T. Broggini, L. Schnell, A. Ghoochani et al., “Plasticity related gene 3 (PRG3) overcomes myelin-associated growth inhibition and promotes functional recovery after spinal cord injury,” Aging (Albany NY), vol. 8, no. 10, pp. 2463–2487, 2016. View at Publisher · View at Google Scholar · View at Scopus
  8. M. Caiazzo, L. Colucci-D'Amato, M. T. Esposito et al., “Transcription factor KLF7 regulates differentiation of neuroectodermal and mesodermal cell lineages,” Experimental Cell Research, vol. 316, no. 14, pp. 2365–2376, 2010. View at Publisher · View at Google Scholar · View at Scopus
  9. M. B. Veldman, M. A. Bemben, R. C. Thompson, and D. Goldman, “Gene expression analysis of zebrafish retinal ganglion cells during optic nerve regeneration identifies KLF6a and KLF7a as important regulators of axon regeneration,” Developmental Biology, vol. 312, no. 2, pp. 596–612, 2007. View at Publisher · View at Google Scholar · View at Scopus
  10. M. G. Blackmore, Z. Wang, J. K. Lerch et al., “Krüppel-like factor 7 engineered for transcriptional activation promotes axon regeneration in the adult corticospinal tract,” Proceedings of the National Academy of Sciences of the United States of America, vol. 109, no. 19, pp. 7517–7522, 2012. View at Publisher · View at Google Scholar · View at Scopus
  11. Y. Wang, W. Y. Li, P. Sun et al., “Sciatic nerve regeneration in KLF7-transfected acellular nerve allografts,” Neurological Research, vol. 38, no. 3, pp. 242–254, 2016. View at Publisher · View at Google Scholar · View at Scopus
  12. Z. Wang, K. Winsor, C. Nienhaus, E. Hess, and M. G. Blackmore, “Combined chondroitinase and KLF7 expression reduce net retraction of sensory and CST axons from sites of spinal injury,” Neurobiology of Disease, vol. 99, pp. 24–35, 2017. View at Publisher · View at Google Scholar
  13. A. C. Conta Steencken and D. J. Stelzner, “Loss of propriospinal neurons after spinal contusion injury as assessed by retrograde labeling,” Neuroscience, vol. 170, no. 3, pp. 971–980, 2010. View at Publisher · View at Google Scholar · View at Scopus
  14. G. Courtine, B. Song, R. R. Roy et al., “Recovery of supraspinal control of stepping via indirect propriospinal relay connections after spinal cord injury,” Nature Medicine, vol. 14, no. 1, pp. 69–74, 2008. View at Publisher · View at Google Scholar · View at Scopus
  15. K. C. Cowley, E. Zaporozhets, and B. J. Schmidt, “Propriospinal neurons are sufficient for bulbospinal transmission of the locomotor command signal in the neonatal rat spinal cord,” The Journal of Physiology, vol. 586, no. 6, pp. 1623–1635, 2008. View at Publisher · View at Google Scholar · View at Scopus
  16. K. N. Benthall, R. A. Hough, and A. D. McClellan, “Descending propriospinal neurons mediate restoration of locomotor function following spinal cord injury,” Journal of Neurophysiology, vol. 117, no. 1, pp. 215–229, 2017. View at Publisher · View at Google Scholar
  17. X. M. Xu, V. Guénard, N. Kleitman, and M. B. Bunge, “Axonal regeneration into Schwann cell-seeded guidance channels grafted into transected adult rat spinal cord,” The Journal of Comparative Neurology, vol. 351, no. 1, pp. 145–160, 1995. View at Publisher · View at Google Scholar · View at Scopus
  18. L. X. Deng, P. Deng, Y. Ruan et al., “A novel growth-promoting pathway formed by GDNF-overexpressing Schwann cells promotes propriospinal axonal regeneration, synapse formation, and partial recovery of function after spinal cord injury,” The Journal of Neuroscience, vol. 33, no. 13, pp. 5655–5667, 2013. View at Publisher · View at Google Scholar · View at Scopus
  19. L. X. Deng, C. Walker, and X. M. Xu, “Schwann cell transplantation and descending propriospinal regeneration after spinal cord injury,” Brain Research, vol. 1619, pp. 104–114, 2015. View at Publisher · View at Google Scholar · View at Scopus
  20. X. Y. Jiang, S. L. Fu, B. M. Nie et al., “Methods for isolating highly-enriched embryonic spinal cord neurons: a comparison between enzymatic and mechanical dissociations,” Journal of Neuroscience Methods, vol. 158, no. 1, pp. 13–18, 2006. View at Publisher · View at Google Scholar · View at Scopus
  21. H. Stewart, C. Bartlett, D. Ross-Thriepland, J. Shaw, S. Griffin, and M. Harris, “A novel method for the measurement of hepatitis C virus infectious titres using the IncuCyte ZOOM and its application to antiviral screening,” Journal of Virological Methods, vol. 218, pp. 59–65, 2015. View at Publisher · View at Google Scholar · View at Scopus
  22. P. H. Ozdinler and J. D. Macklis, “IGF-I specifically enhances axon outgrowth of corticospinal motor neurons,” Nature Neuroscience, vol. 9, no. 11, pp. 1371–1381, 2006. View at Publisher · View at Google Scholar · View at Scopus
  23. Y. P. Zhang, D. A. Burke, L. B. Shields et al., “Spinal cord contusion based on precise vertebral stabilization and tissue displacement measured by combined assessment to discriminate small functional differences,” Journal of Neurotrauma, vol. 25, no. 10, pp. 1227–1240, 2008. View at Publisher · View at Google Scholar · View at Scopus
  24. N. K. Liu, L. X. Deng, Y. P. Zhang et al., “Cytosolic phospholipase A2 protein as a novel therapeutic target for spinal cord injury,” Annals of Neurology, vol. 75, no. 5, pp. 644–658, 2014. View at Publisher · View at Google Scholar · View at Scopus
  25. M. A. Lewis, L. Hunihan, D. Franco et al., “Identification and characterization of compounds that potentiate NT-3-mediated Trk receptor activity,” Molecular Pharmacology, vol. 69, no. 4, pp. 1396–1404, 2006. View at Publisher · View at Google Scholar · View at Scopus
  26. A. Arbat-Plana, A. Torres-Espín, X. Navarro, and E. Udina, “Activity dependent therapies modulate the spinal changes that motoneurons suffer after a peripheral nerve injury,” Experimental Neurology, vol. 263, pp. 293–305, 2015. View at Publisher · View at Google Scholar · View at Scopus
  27. J. R. Wrathall, W. Li, and L. D. Hudson, “Myelin gene expression after experimental contusive spinal cord injury,” The Journal of Neuroscience, vol. 18, no. 21, pp. 8780–8793, 1998. View at Google Scholar
  28. F. De Graeve, S. Smaldone, F. Laub, M. Mlodzik, M. Bhat, and F. Ramirez, “Identification of the Drosophila progenitor of mammalian Kruppel-like factors 6 and 7 and a determinant of fly development,” Gene, vol. 314, pp. 55–62, 2003. View at Publisher · View at Google Scholar · View at Scopus
  29. J. S. Byers, A. L. Huguenard, D. Kuruppu, N. K. Liu, X. M. Xu, and D. R. Sengelaub, “Neuroprotective effects of testosterone on motoneuron and muscle morphology following spinal cord injury,” The Journal of Comparative Neurology, vol. 520, no. 12, pp. 2683–2696, 2012. View at Publisher · View at Google Scholar · View at Scopus
  30. N. K. Liu, W. L. Titsworth, Y. P. Zhang, A. I. Xhafa, C. B. Shields, and X. M. Xu, “Characterizing phospholipase A2-induced spinal cord injury-a comparison with contusive spinal cord injury in adult rats,” Translational Stroke Research, vol. 2, no. 4, pp. 608–618, 2011. View at Publisher · View at Google Scholar · View at Scopus
  31. D. N. Loy, D. S. Magnuson, Y. P. Zhang et al., “Functional redundancy of ventral spinal locomotor pathways,” The Journal of Neuroscience, vol. 22, no. 1, pp. 315–323, 2002. View at Google Scholar
  32. R. D. Linden, Y. P. Zhang, D. A. Burke, M. A. Hunt, J. E. Harpring, and C. B. Shields, “Magnetic motor evoked potential monitoring in the rat,” Journal of Neurosurgery, vol. 91, 2 Supplement, pp. 205–210, 1999. View at Google Scholar
  33. D. M. Basso, L. C. Fisher, A. J. Anderson, L. B. Jakeman, D. M. McTigue, and P. G. Popovich, “Basso Mouse Scale for locomotion detects differences in recovery after spinal cord injury in five common mouse strains,” Journal of Neurotrauma, vol. 23, no. 5, pp. 635–659, 2006. View at Publisher · View at Google Scholar
  34. E. Horiquini Barbosa, J. H. Vallim, J. J. Lachat, and V. L. de Castro, “Assessments of motor abnormalities on the grid-walking and foot-fault tests from undernutrition in Wistar rats,” Journal of Motor Behavior, vol. 48, no. 1, pp. 5–12, 2016. View at Publisher · View at Google Scholar · View at Scopus
  35. Y. Zou, M. Stagi, X. Wang et al., “Gene-silencing screen for mammalian axon regeneration identifies Inpp5f (Sac2) as an endogenous suppressor of repair after spinal cord injury,” The Journal of Neuroscience, vol. 35, no. 29, pp. 10429–10439, 2015. View at Publisher · View at Google Scholar · View at Scopus
  36. Y. Wang, W. Y. Li, H. Jia et al., “KLF7-transfected Schwann cell graft transplantation promotes sciatic nerve regeneration,” Neuroscience, vol. 340, pp. 319–332, 2017. View at Publisher · View at Google Scholar
  37. E. J. Huang and L. F. Reichardt, “Trk receptors: roles in neuronal signal transduction,” Annual Review of Biochemistry, vol. 72, pp. 609–642, 2003. View at Publisher · View at Google Scholar · View at Scopus
  38. M. G. Blackmore, D. L. Moore, R. P. Smith, J. L. Goldberg, J. L. Bixby, and V. P. Lemmon, “High content screening of cortical neurons identifies novel regulators of axon growth,” Molecular and Cellular Neurosciences, vol. 44, no. 1, pp. 43–54, 2010. View at Publisher · View at Google Scholar · View at Scopus
  39. F. Laub, L. Lei, H. Sumiyoshi et al., “Transcription factor KLF7 is important for neuronal morphogenesis in selected regions of the nervous system,” Molecular and Cellular Biology, vol. 25, no. 13, pp. 5699–5711, 2005. View at Publisher · View at Google Scholar · View at Scopus
  40. R. R. Williams, I. Venkatesh, D. D. Pearse, A. J. Udvadia, and M. B. Bunge, “MASH1/Ascl1a leads to GAP43 expression and axon regeneration in the adult CNS,” PLoS One, vol. 10, no. 3, article e0118918, 2015. View at Google Scholar
  41. B. W. Kusik, D. R. Hammond, and A. J. Udvadia, “Transcriptional regulatory regions of gap43 needed in developing and regenerating retinal ganglion cells,” Developmental Dynamics, vol. 239, no. 2, pp. 482–495, 2010. View at Publisher · View at Google Scholar · View at Scopus
  42. B. M. Laitman, L. Asp, J. N. Mariani et al., “The transcriptional activator Kruppel-like factor-6 is required for CNS myelination,” PLoS Biology, vol. 14, no. 5, article e1002467, 2016. View at Google Scholar
  43. C. Tep, T. H. Lim, P. O. Ko et al., “Oral administration of a small molecule targeted to block proNGF binding to p75 promotes myelin sparing and functional recovery after spinal cord injury,” The Journal of Neuroscience : The Official Journal of the Society for Neuroscience, vol. 33, no. 2, pp. 397–410, 2013. View at Publisher · View at Google Scholar · View at Scopus
  44. D. J. Stelzner, “Short-circuit recovery from spinal injury,” Nature Medicine, vol. 14, no. 1, pp. 19-20, 2008. View at Publisher · View at Google Scholar · View at Scopus
  45. Y. Ni, H. Nawabi, X. Liu et al., “Characterization of long descending premotor propriospinal neurons in the spinal cord,” The Journal of Neuroscience, vol. 34, no. 28, pp. 9404–9417, 2014. View at Publisher · View at Google Scholar · View at Scopus
  46. K. K. Fenrich and P. K. Rose, “Spinal interneuron axons spontaneously regenerate after spinal cord injury in the adult feline,” The Journal of Neuroscience, vol. 29, no. 39, pp. 12145–12158, 2009. View at Publisher · View at Google Scholar · View at Scopus
  47. M. P. Côté, M. R. Detloff, R. E. Wade Jr, M. A. Lemay, and J. D. Houlé, “Plasticity in ascending long propriospinal and descending supraspinal pathways in chronic cervical spinal cord injured rats,” Frontiers in Physiology, vol. 3, p. 330, 2012. View at Publisher · View at Google Scholar · View at Scopus
  48. J. R. Flynn, B. A. Graham, M. P. Galea, and R. J. Callister, “The role of propriospinal interneurons in recovery from spinal cord injury,” Neuropharmacology, vol. 60, no. 5, pp. 809–822, 2011. View at Publisher · View at Google Scholar · View at Scopus
  49. A. C. Conta and D. J. Stelzner, “Differential vulnerability of propriospinal tract neurons to spinal cord contusion injury,” The Journal of Comparative Neurology, vol. 479, no. 4, pp. 347–359, 2004. View at Publisher · View at Google Scholar · View at Scopus
  50. J. B. Kim, H. Lee, M. J. Araúzo-Bravo et al., “Oct4-induced oligodendrocyte progenitor cells enhance functional recovery in spinal cord injury model,” The EMBO Journal, vol. 34, no. 23, pp. 2971–2983, 2015. View at Publisher · View at Google Scholar · View at Scopus
  51. G. Raivich and M. Makwana, “The making of successful axonal regeneration: genes, molecules and signal transduction pathways,” Brain Research Reviews, vol. 53, no. 2, pp. 287–311, 2007. View at Publisher · View at Google Scholar · View at Scopus
  52. J. R. Siebert, F. A. Middleton, and D. J. Stelzner, “Long descending cervical propriospinal neurons differ from thoracic propriospinal neurons in response to low thoracic spinal injury,” BMC Neuroscience, vol. 11, p. 148, 2010. View at Publisher · View at Google Scholar · View at Scopus
  53. P. Caroni, “New EMBO members’ review: actin cytoskeleton regulation through modulation of PI(4,5)P(2) rafts,” The EMBO Journal, vol. 20, no. 16, pp. 4332–4336, 2001. View at Publisher · View at Google Scholar · View at Scopus
  54. I. Korshunova, V. Novitskaya, D. Kiryushko et al., “GAP-43 regulates NCAM-180-mediated neurite outgrowth,” Journal of Neurochemistry, vol. 100, no. 6, pp. 1599–1612, 2007. View at Publisher · View at Google Scholar · View at Scopus
  55. K. Moore, M. MacSween, and M. Shoichet, “Immobilized concentration gradients of neurotrophic factors guide neurite outgrowth of primary neurons in macroporous scaffolds,” Tissue Engineering, vol. 12, no. 2, pp. 267–278, 2006. View at Publisher · View at Google Scholar · View at Scopus
  56. J. Y. Kim, M. E. Sutton, D. J. Lu et al., “Activation of neurotrophin-3 receptor TrkC induces apoptosis in medulloblastomas,” Cancer Research, vol. 59, no. 3, pp. 711–719, 1999. View at Google Scholar
  57. Y. Muragaki, T. T. Chou, D. R. Kaplan, J. Q. Trojanowski, and V. M. Lee, “Nerve growth factor induces apoptosis in human medulloblastoma cell lines that express TrkA receptors,” The Journal of Neuroscience, vol. 17, no. 2, pp. 530–542, 1997. View at Google Scholar
  58. R. A. Segal, “Selectivity in neurotrophin signaling: theme and variations,” Annual Review of Neuroscience, vol. 26, pp. 299–330, 2003. View at Publisher · View at Google Scholar · View at Scopus
  59. R. Kalb, “The protean actions of neurotrophins and their receptors on the life and death of neurons,” Trends in Neurosciences, vol. 28, no. 1, pp. 5–11, 2005. View at Publisher · View at Google Scholar · View at Scopus