Table of Contents Author Guidelines Submit a Manuscript
Neural Plasticity
Volume 2017, Article ID 5819514, 12 pages
https://doi.org/10.1155/2017/5819514
Review Article

Neural Vascular Mechanism for the Cerebral Blood Flow Autoregulation after Hemorrhagic Stroke

1College of Computer and Information Science, Southwest University, Chongqing, China
2Department of Neurosurgery, Southwest Hospital, Third Military Medical University, Chongqing, China
3College of Computer Science, Sichuan University, Chengdu, China

Correspondence should be addressed to Le Zhang; nc.ude.uws@qclgnahz and Yujie Chen; moc.liamxof@6886nehceijuy

Received 30 June 2017; Accepted 11 September 2017; Published 26 September 2017

Academic Editor: Sheng Wang

Copyright © 2017 Ming Xiao et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. G. Xi, R. F. Keep, and J. T. Hoff, “Mechanisms of brain injury after intracerebral haemorrhage,” Lancet Neurology, vol. 5, no. 1, pp. 53–63, 2006. View at Publisher · View at Google Scholar · View at Scopus
  2. M. N. Diringer, “Intracerebral hemorrhage: pathophysiology and management,” Critical Care Medicine, vol. 21, no. 10, pp. 1591–1603, 1993. View at Publisher · View at Google Scholar
  3. S. Prabhakaran and A. M. Naidech, “Ischemic brain injury after intracerebral hemorrhage: a critical review,” Stroke, vol. 43, no. 8, pp. 2258–2263, 2012. View at Publisher · View at Google Scholar · View at Scopus
  4. L. B. Morgenstern, J. C. Hemphill, C. Anderson et al., “Guidelines for the management of spontaneous intracerebral hemorrhage: a guideline for healthcare professionals from the American Heart Association/American Stroke Association,” Stroke, vol. 41, no. 9, pp. 2108–2129, 2010. View at Publisher · View at Google Scholar · View at Scopus
  5. D. W. Kang, M. K. Han, H. J. Kim et al., “New ischemic lesions coexisting with acute intracerebral hemorrhage,” Neurology, vol. 79, no. 9, pp. 848–855, 2012. View at Publisher · View at Google Scholar · View at Scopus
  6. S. M. Gregoire, A. Charidimou, N. Gadapa et al., “Acute ischaemic brain lesions in intracerebral haemorrhage: multicentre cross-sectional magnetic resonance imaging study,” Brain, vol. 134, Part 8, pp. 2376–2386, 2011. View at Publisher · View at Google Scholar · View at Scopus
  7. R. S. Menon, R. E. Burgess, J. J. Wing et al., “Predictors of highly prevalent brain ischemia in intracerebral hemorrhage,” Annals of Neurology, vol. 71, no. 2, pp. 199–205, 2012. View at Publisher · View at Google Scholar · View at Scopus
  8. S. Prabhakaran, R. Gupta, B. Ouyang et al., “Acute brain infarcts after spontaneous intracerebral hemorrhage: a diffusion-weighted imaging study,” Stroke, vol. 41, no. 1, pp. 89–94, 2010. View at Publisher · View at Google Scholar · View at Scopus
  9. W. T. Kimberly, A. Gilson, N. S. Rost et al., “Silent ischemic infarcts are associated with hemorrhage burden in cerebral amyloid angiopathy,” Neurology, vol. 72, no. 14, pp. 1230–1235, 2009. View at Publisher · View at Google Scholar · View at Scopus
  10. W. C. Ziai, “Hematology and inflammatory signaling of intracerebral hemorrhage,” Stroke, vol. 44, Supplement 1, no. 6, pp. S74–S78, 2013. View at Publisher · View at Google Scholar · View at Scopus
  11. J. Wang, “Preclinical and clinical research on inflammation after intracerebral hemorrhage,” Progress in Neurobiology, vol. 92, no. 4, pp. 463–477, 2010. View at Publisher · View at Google Scholar · View at Scopus
  12. Y. Hua, R. F. Keep, J. T. Hoff, and G. Xi, “Brain injury after intracerebral hemorrhage: the role of thrombin and iron,” Stroke, vol. 38, no. 2, pp. 759–762, 2007. View at Publisher · View at Google Scholar · View at Scopus
  13. G. A. Bateman, “Association between arterial inflow and venous outflow in idiopathic and secondary intracranial hypertension,” Journal of Clinical Neuroscience, vol. 13, no. 5, pp. 550–556, 2006, discussion 557. View at Publisher · View at Google Scholar · View at Scopus
  14. R. L. Macdonald, R. M. Pluta, and J. H. Zhang, “Cerebral vasospasm after subarachnoid hemorrhage: the emerging revolution,” Nature Clinical Practice Neurology, vol. 3, no. 5, pp. 256–263, 2007. View at Publisher · View at Google Scholar · View at Scopus
  15. R. L. Macdonald, N. F. Kassell, S. Mayer et al., “Clazosentan to overcome neurological ischemia and infarction occurring after subarachnoid hemorrhage (CONSCIOUS-1): randomized, double-blind, placebo-controlled phase 2 dose-finding trial,” Stroke, vol. 39, no. 11, pp. 3015–3021, 2008. View at Publisher · View at Google Scholar · View at Scopus
  16. R. L. Macdonald, R. T. Higashida, E. Keller et al., “Clazosentan, an endothelin receptor antagonist, in patients with aneurysmal subarachnoid haemorrhage undergoing surgical clipping: a randomised, double-blind, placebo-controlled phase 3 trial (CONSCIOUS-2),” Lancet Neurology, vol. 10, no. 7, pp. 618–625, 2011. View at Publisher · View at Google Scholar · View at Scopus
  17. J. Cahill and J. H. Zhang, “Subarachnoid hemorrhage: is it time for a new direction?” Stroke, vol. 40, Supplement 1, no. 3, pp. S86–S87, 2009. View at Publisher · View at Google Scholar · View at Scopus
  18. F. A. Sehba, R. M. Pluta, and J. H. Zhang, “Metamorphosis of subarachnoid hemorrhage research: from delayed vasospasm to early brain injury,” Molecular Neurobiology, vol. 43, no. 1, pp. 27–40, 2011. View at Publisher · View at Google Scholar · View at Scopus
  19. E. H. Lo and G. A. Rosenberg, “The neurovascular unit in health and disease: introduction,” Stroke, vol. 40, Supplement 1, no. 3, pp. S2–S3, 2009. View at Publisher · View at Google Scholar · View at Scopus
  20. J. H. Zhang, J. Badaut, J. Tang, A. Obenaus, R. Hartman, and W. J. Pearce, “The vascular neural network—a new paradigm in stroke pathophysiology,” Nature Reviews Neurology, vol. 8, no. 12, pp. 711–716, 2012. View at Publisher · View at Google Scholar · View at Scopus
  21. S. Chen, H. Feng, P. Sherchan et al., “Controversies and evolving new mechanisms in subarachnoid hemorrhage,” Progress in Neurobiology, vol. 115, pp. 64–91, 2014. View at Publisher · View at Google Scholar · View at Scopus
  22. J. E. Hardebo, J. Kåhrström, C. Owman, and L. G. Salford, “Endothelin is a potent constrictor of human intracranial arteries and veins,” Blood Vessels, vol. 26, no. 5, pp. 249–253, 1989. View at Publisher · View at Google Scholar · View at Scopus
  23. G. Chen, A. Tariq, J. Ai et al., “Different effects of clazosentan on consequences of subarachnoid hemorrhage in rats,” Brain Research, vol. 1392, pp. 132–139, 2011. View at Publisher · View at Google Scholar · View at Scopus
  24. Z. Dai, X. Deng, Z. Zhang et al., “MRI study of deep cerebral veins after subarachniod hemorrhage in rabbits,” Chinese Journal of Clinical Anatomy, vol. 30, no. 2, pp. 176–180, 2012. View at Google Scholar
  25. Z. Zhang, X. Deng, Z. Dai et al., “MRI image of the internal cerebral vein and basilar artery of rabbit following subarachnoid hemorrhage,” Chinese Journal of Clinical Anatomy, vol. 35, no. 2, pp. 137–140, 2012. View at Google Scholar
  26. B. L. Sun, C. B. Zheng, M. F. Yang, H. Yuan, S. M. Zhang, and L. X. Wang, “Dynamic alterations of cerebral pial microcirculation during experimental subarachnoid hemorrhage,” Cellular and Molecular Neurobiology, vol. 29, no. 2, pp. 235–241, 2009. View at Publisher · View at Google Scholar · View at Scopus
  27. E. Uhl, J. Lehmberg, H. J. Steiger, and K. Messmer, “Intraoperative detection of early microvasospasm in patients with subarachnoid hemorrhage by using orthogonal polarization spectral imaging,” Neurosurgery, vol. 52, no. 6, pp. 1307–1315, 2003, disacussion 1315-7. View at Publisher · View at Google Scholar
  28. E. Perkins, H. Kimura, A. D. Parent, and J. H. Zhang, “Evaluation of the microvasculature and cerebral ischemia after experimental subarachnoid hemorrhage in dogs,” Journal of Neurosurgery, vol. 97, no. 4, pp. 896–904, 2002. View at Publisher · View at Google Scholar
  29. B. Friedrich, F. Müller, S. Feiler, K. Schöller, and N. Plesnila, “Experimental subarachnoid hemorrhage causes early and long-lasting microarterial constriction and microthrombosis: an in-vivo microscopy study,” Journal of Cerebral Blood Flow and Metabolism, vol. 32, no. 3, pp. 447–455, 2012. View at Publisher · View at Google Scholar · View at Scopus
  30. M. Ishikawa, G. Kusaka, N. Yamaguchi et al., “Platelet and leukocyte adhesion in the microvasculature at the cerebral surface immediately after subarachnoid hemorrhage,” Neurosurgery, vol. 64, no. 3, pp. 546–553, 2009, discussion 553-4. View at Publisher · View at Google Scholar · View at Scopus
  31. L. K. Bittencourt, F. Palma-Filho, R. C. Domingues, and E. L. Gasparetto, “Subarachnoid hemorrhage in isolated cortical vein thrombosis: are presentation of an unusual condition,” Arquivos de Neuro-Psiquiatria, vol. 67, no. 4, pp. 1106–1108, 2009. View at Publisher · View at Google Scholar · View at Scopus
  32. F. A. Sehba, J. Hou, R. M. Pluta, and J. H. Zhang, “The importance of early brain injury after subarachnoid hemorrhage,” Progress in Neurobiology, vol. 97, no. 1, pp. 14–37, 2012. View at Publisher · View at Google Scholar · View at Scopus
  33. J. Cahill, J. W. Calvert, and J. H. Zhang, “Mechanisms of early brain injury after subarachnoid hemorrhage,” Journal of Cerebral Blood Flow and Metabolism, vol. 26, no. 11, pp. 1341–1353, 2006. View at Publisher · View at Google Scholar · View at Scopus
  34. A. H. Shah and R. J. Komotar, “Pathophysiology of acute hydrocephalus following subarachnoid hemorrhage,” World Neurosurgery, vol. 80, no. 3-4, pp. 304–306, 2013. View at Publisher · View at Google Scholar · View at Scopus
  35. S. Okubo, J. Strahle, R. F. Keep, Y. Hua, and G. Xi, “Subarachnoid hemorrhage-induced hydrocephalus in rats,” Stroke, vol. 44, no. 2, pp. 547–550, 2013. View at Publisher · View at Google Scholar · View at Scopus
  36. A. Csókay, G. Pataki, L. Nagy, and K. Belán, “Vascular tunnel construction in the treatment of severe brain swelling caused by trauma and SAH. (evidence based on intra-operative blood flow measure),” Neurological Research, vol. 24, no. 2, pp. 157–160, 2002. View at Publisher · View at Google Scholar · View at Scopus
  37. H. El Otmani, F. Moutaouakil, H. Fadel, and I. Slassi, “Subarachnoid hemorrhage induced by cerebral venous thrombosis,” Journal des Maladies Vasculaires, vol. 37, no. 6, pp. 323–325, 2012. View at Publisher · View at Google Scholar · View at Scopus
  38. Y. Kato, H. Takeda, D. Furuya et al., “Subarachnoid hemorrhage as the initial presentation of cerebral venous thrombosis,” Internal Medicine, vol. 49, no. 5, pp. 467–470, 2010. View at Publisher · View at Google Scholar · View at Scopus
  39. Y. Benabu, L. Mark, S. Daniel, and R. Glikstein, “Cerebral venous thrombosis presenting with subarachnoid hemorrhage: case report and review,” The American Journal of Emergency Medicine, vol. 27, no. 1, pp. 96–106, 2009. View at Publisher · View at Google Scholar · View at Scopus
  40. R. Shukla, P. Vinod, S. Prakash, R. V. Phadke, and R. K. Gupta, “Subarachnoid haemorrhage as a presentation of cerebral venous sinus thrombosis,” The Journal of the Association of Physicians of India, vol. 54, pp. 42–44, 2006. View at Google Scholar
  41. A. Shad, T. J. Rourke, A. Hamidian Jahromi, and A. L. Green, “Straight sinus stenosis as a proposed cause of perimesencephalic non-aneurysmal haemorrhage,” Journal of Clinical Neuroscience, vol. 15, no. 7, pp. 839–841, 2008. View at Publisher · View at Google Scholar · View at Scopus
  42. J. Lee, E. M. Koh, C. S. Chung et al., “Underlying venous pathology causing perimesencephalic subarachnoid hemorrhage,” The Canadian Journal of Neurological Sciences, vol. 36, no. 5, pp. 638–642, 2009. View at Publisher · View at Google Scholar
  43. M. S. Sangra, E. Teasdale, M. A. Siddiqui, and K. W. Lindsay, “Perimesencephalic nonaneurysmal subarachnoid hemorrhage caused by jugular venous occlusion: case report,” Neurosurgery, vol. 63, no. 6, pp. E1202–E1203, 2008, discussion E1203. View at Publisher · View at Google Scholar
  44. M. S. Mathews, D. Brown, and M. Brant-Zawadzki, “Perimesencephalic nonaneurysmal hemorrhage associated with vein of Galen stenosis,” Neurology, vol. 70, 24 Part 2, pp. 2410-2411, 2008. View at Publisher · View at Google Scholar
  45. J. N. Song, H. Chen, M. Zhang, Y. L. Zhao, and X. D. Ma, “Dynamic change in cerebral microcirculation and focal cerebral metabolism in experimental subarachnoid hemorrhage in rabbits,” Metabolic Brain Disease, vol. 28, no. 1, pp. 33–43, 2013. View at Publisher · View at Google Scholar · View at Scopus
  46. Y. Kawamura, O. Narumi, M. Chin, and S. Yamagata, “Variant deep cerebral venous drainage in idiopathic subarachnoid hemorrhage,” Neurologia Medico-Chirurgica (Tokyo), vol. 51, no. 2, pp. 97–100, 2011. View at Publisher · View at Google Scholar · View at Scopus
  47. H. Yamakawa, N. Ohe, H. Yano, S. Yoshimura, and T. Iwama, “Venous drainage patterns in perimesencephalic nonaneurysmal subarachnoid hemorrhage,” Clinical Neurology and Neurosurgery, vol. 110, no. 6, pp. 587–591, 2008. View at Publisher · View at Google Scholar · View at Scopus
  48. J. F. Alén, A. Lagares, J. Campollo et al., “Idiopathic subarachnoid hemorrhage and venous drainage: are they related?” Neurosurgery, vol. 63, no. 6, pp. 1106–1111, 2008, discussion 1111-2. View at Publisher · View at Google Scholar · View at Scopus
  49. I. C. van der Schaaf, B. K. Velthuis, A. Gouw, and G. J. Rinkel, “Venous drainage in perimesencephalic hemorrhage,” Stroke, vol. 35, no. 7, pp. 1614–1618, 2004. View at Publisher · View at Google Scholar · View at Scopus
  50. A. Hashiguchi, C. Mimata, H. Ichimura, M. Morioka, and J. Kuratsu, “Venous aneurysm development associated with a dural arteriovenous fistula of the anterior cranial fossa with devastating hemorrhage—case report,” Neurologia Medico-Chirurgica (Tokyo), vol. 47, no. 2, pp. 70–73, 2007. View at Publisher · View at Google Scholar · View at Scopus
  51. T. Matsuyama, K. Okuchi, T. Seki, T. Higuchi, and Y. Murao, “Perimesencephalic nonaneurysmal subarachnoid hemorrhage caused by physical exertion,” Neurologia Medico-Chirurgica (Tokyo), vol. 46, no. 6, pp. 277–281, 2006, discussion 281-2. View at Publisher · View at Google Scholar · View at Scopus
  52. G. Faraco and C. Iadecola, “Hypertension: a harbinger of stroke and dementia,” Hypertension, vol. 62, no. 5, pp. 810–817, 2013. View at Publisher · View at Google Scholar · View at Scopus
  53. M. A. Fitzpatrick, A. L. Hinderliter, B. M. Egan, and S. Julius, “Decreased venous distensibility and reduced renin responsiveness in hypertension,” Hypertension, vol. 8, 6 Part 2, pp. II36–II43, 1986. View at Publisher · View at Google Scholar
  54. N. Ito, A. Takeshita, S. Higuchi, and M. Nakamura, “Venous abnormality in normotensive young men with a family history of hypertension,” Hypertension, vol. 8, no. 2, pp. 142–146, 1986. View at Publisher · View at Google Scholar
  55. S. Spector, A. Ooshima, K. Iwatsuki, G. Fuller, G. Cardinale, and S. Udenfriend, “Increased vascular collagen biosynthesis by hypertension and reversal by antihypertensive drugs,” Blood Vessels, vol. 15, no. 1–3, pp. 176–182, 1978. View at Publisher · View at Google Scholar · View at Scopus
  56. W. R. Brown and C. R. Thore, “Perivascular fibrosis in multiple sclerosis lesions,” Brain Pathology, vol. 21, no. 3, p. 355, 2011. View at Publisher · View at Google Scholar · View at Scopus
  57. D. D. Heistad and G. L. Baumbach, “Cerebral vascular changes during chronic hypertension: good guys and bad guys,” Journal of Hypertension Supplement, vol. 10, no. 7, pp. S71–S75, 1992. View at Google Scholar
  58. H. Al-Sarraf and L. Philip, “Effect of hypertension on the integrity of blood brain and blood CSF barriers, cerebral blood flow and CSF secretion in the rat,” Brain Research, vol. 975, no. 1-2, pp. 179–188, 2003. View at Publisher · View at Google Scholar · View at Scopus
  59. W. G. Mayhan, “Role of activation of bradykinin B2 receptors in disruption of the blood-brain barrier during acute hypertension,” Brain Research, vol. 738, no. 2, pp. 337–341, 1996. View at Publisher · View at Google Scholar · View at Scopus
  60. A. H. Werber and M. C. Fitch-Burke, “Pial venous pressure and acute hypertensive disruption of the blood-brain barrier in spontaneous and renal hypertension,” Brain Research, vol. 515, no. 1-2, pp. 235–240, 1990. View at Publisher · View at Google Scholar · View at Scopus
  61. W. G. Mayhan, F. M. Faraci, J. L. Siems, and D. D. Heistad, “Role of molecular charge in disruption of the blood-brain barrier during acute hypertension,” Circulation Research, vol. 64, no. 4, pp. 658–664, 1989. View at Publisher · View at Google Scholar
  62. S. F. Rodrigues, S. A. Vital, and D. N. Granger, “Mild hypercholesterolemia blunts the proinflammatory and prothrombotic effects of hypertension on the cerebral microcirculation,” Journal of Cerebral Blood Flow and Metabolism, vol. 33, no. 4, pp. 483–489, 2013. View at Publisher · View at Google Scholar · View at Scopus
  63. T. J. Roberts, A. C. Chapman, and M. J. Cipolla, “PPAR-γ agonist rosiglitazone reverses increased cerebral venous hydraulic conductivity during hypertension,” American Journal of Physiology Heart and Circulatory Physiology, vol. 297, no. 4, pp. H1347–H1353, 2009. View at Publisher · View at Google Scholar · View at Scopus
  64. T. M. Ripp, I. A. Astanina, I. N. Vorozhtsova, V. F. Mordovin, and R. S. Karpov, “Function of the brain venous system and a 24-h profile of arterial pressure in hypertensive patients,” Terapevticheskiĭ Arkhiv, vol. 77, no. 12, pp. 22–25, 2005. View at Google Scholar
  65. D. J. Langer, T. M. Lasner, R. W. Hurst, E. S. Flamm, E. L. Zager, and J. T. King Jr, “Hypertension, small size, and deep venous drainage are associated with risk of hemorrhagic presentation of cerebral arteriovenous malformations,” Neurosurgery, vol. 42, no. 3, pp. 481–489, 1998. View at Publisher · View at Google Scholar · View at Scopus
  66. O. Z. Chi, H. M. Wei, J. Tse, S. L. Klein, and H. R. Weiss, “Cerebral microregional oxygen balance during chronic versus acute hypertension in middle cerebral artery occluded rats,” Anesthesia and Analgesia, vol. 82, no. 3, pp. 587–592, 1996. View at Publisher · View at Google Scholar · View at Scopus
  67. C. J. Nolan, P. Damm, and M. Prentki, “Type 2 diabetes across generations: from pathophysiology to prevention and management,” Lancet, vol. 378, no. 9786, pp. 169–181, 2011. View at Publisher · View at Google Scholar · View at Scopus
  68. P. C. Deedwania, “Diabetes is a vascular disease: the role of endothelial dysfunction in pathophysiology of cardiovascular disease in diabetes,” Cardiology Clinics, vol. 22, no. 4, pp. 505–509, 2004. View at Publisher · View at Google Scholar · View at Scopus
  69. M. A. Creager, T. F. Lüscher, F. Cosentino, and J. A. Beckman, “Diabetes and vascular disease: pathophysiology, clinical consequences, and medical therapy: part I,” Circulation, vol. 108, no. 12, pp. 1527–1532, 2003. View at Publisher · View at Google Scholar · View at Scopus
  70. A. Mafrici and R. Proietti, “Atherothrombosis in patients with type 2 diabetes mellitus: an overview of pathophysiology,” Giornale Italiano di Cardiologia (Rome), vol. 11, no. 6, pp. 467–477, 2010. View at Google Scholar
  71. L. S. Usdan, K. W. Choong, and M. E. McDonnell, “Type 2 diabetes mellitus manifesting with a cerebral vein thrombosis and ketoacidosis,” Endocrine Practice, vol. 13, no. 6, pp. 687–690, 2007. View at Publisher · View at Google Scholar
  72. M. J. Sasiadek, D. Sosnowska-Pacuszko, M. Zielinska, and T. Turek, “Cerebral venous thrombosis as a first presentation of diabetes,” Pediatric Neurology, vol. 35, no. 2, pp. 135–138, 2006. View at Publisher · View at Google Scholar · View at Scopus
  73. A. P. Carlotti, C. St George-Hyslop, A. M. Guerguerian, D. Bohn, K. S. Kamel, and M. Halperin, “Occult risk factor for the development of cerebral edema in children with diabetic ketoacidosis: possible role for stomach emptying,” Pediatric Diabetes, vol. 10, no. 8, pp. 522–533, 2009. View at Publisher · View at Google Scholar · View at Scopus
  74. I. Linfante and M. J. Cipolla, “Improving reperfusion therapies in the era of mechanical thrombectomy,” Translational Stroke Research, vol. 7, no. 4, pp. 294–302, 2016. View at Publisher · View at Google Scholar · View at Scopus
  75. F. Shimizu, Y. Sano, T. Maeda et al., “Peripheral nerve pericytes originating from the blood-nerve barrier expresses tight junctional molecules and transporters as barrier-forming cells,” Journal of Cellular Physiology, vol. 217, no. 2, pp. 388–399, 2008. View at Publisher · View at Google Scholar · View at Scopus
  76. Y. Zhan, P. R. Krafft, T. Lekic et al., “Imatinib preserves blood-brain barrier integrity following experimental subarachnoid hemorrhage in rats,” Journal of Neuroscience Research, vol. 93, no. 1, pp. 94–103, 2015. View at Publisher · View at Google Scholar · View at Scopus
  77. J. Yan, A. Manaenko, S. Chen et al., “Role of SCH79797 in maintaining vascular integrity in rat model of subarachnoid hemorrhage,” Stroke, vol. 44, no. 5, pp. 1410–1417, 2013. View at Publisher · View at Google Scholar · View at Scopus
  78. O. Altay, H. Suzuki, Y. Hasegawa et al., “Isoflurane attenuates blood-brain barrier disruption in ipsilateral hemisphere after subarachnoid hemorrhage in mice,” Stroke, vol. 43, no. 9, pp. 2513–2516, 2012. View at Publisher · View at Google Scholar · View at Scopus
  79. H. Suzuki, Y. Hasegawa, K. Kanamaru, and J. H. Zhang, “Mechanisms of osteopontin-induced stabilization of blood-brain barrier disruption after subarachnoid hemorrhage in rats,” Stroke, vol. 41, no. 8, pp. 1783–1790, 2010. View at Publisher · View at Google Scholar · View at Scopus
  80. Y. Chen, Y. Zhang, J. Tang et al., “Norrin protected blood-brain barrier via frizzled-4/β-catenin pathway after subarachnoid hemorrhage in rats,” Stroke, vol. 46, no. 2, pp. 529–536, 2015. View at Publisher · View at Google Scholar · View at Scopus
  81. F. M. O'Farrell and D. Attwell, “A role for pericytes in coronary no-reflow,” Nature Reviews. Cardiology, vol. 11, no. 7, pp. 427–432, 2014. View at Publisher · View at Google Scholar · View at Scopus
  82. D. M. Greif and A. Eichmann, “Vascular biology: brain vessels squeezed to death,” Nature, vol. 508, no. 7494, pp. 50-51, 2014. View at Publisher · View at Google Scholar · View at Scopus
  83. H. Ohkuma, K. Itoh, S. Shibata, and S. Suzuki, “Morphological changes of intraparenchymal arterioles after experimental subarachnoid hemorrhage in dogs,” Neurosurgery, vol. 41, no. 1, pp. 230–235, 1997, discussion 235-6. View at Publisher · View at Google Scholar · View at Scopus
  84. H. Johshita, N. F. Kassell, T. Sasaki, and H. Ogawa, “Impaired capillary perfusion and brain edema following experimental subarachnoid hemorrhage: a morphometric study,” Journal of Neurosurgery, vol. 73, no. 3, pp. 410–417, 1990. View at Publisher · View at Google Scholar
  85. Q. Li, Y. Chen, B. Li et al., “Hemoglobin induced NO/cGMP suppression deteriorate microcirculation via pericyte phenotype transformation after subarachnoid hemorrhage in rats,” Scientific Reports, vol. 6, article 22070, 2016. View at Publisher · View at Google Scholar · View at Scopus
  86. I. Spokoyny, R. Raman, K. Ernstrom et al., “Pooled assessment of computed tomography interpretation by vascular neurologists in the STRokE DOC telestroke network,” Journal of Stroke and Cerebrovascular Diseases, vol. 23, no. 3, pp. 511–515, 2014. View at Publisher · View at Google Scholar · View at Scopus
  87. B. Obermeier, R. Daneman, and R. M. Ransohoff, “Development, maintenance and disruption of the blood-brain barrier,” Nature Medicine, vol. 19, no. 12, pp. 1584–1596, 2013. View at Publisher · View at Google Scholar · View at Scopus
  88. M. Hagedorn, M. Balke, A. Schmidt et al., “VEGF coordinates interaction of pericytes and endothelial cells during vasculogenesis and experimental angiogenesis,” Developmental Dynamics, vol. 230, no. 1, pp. 23–33, 2004. View at Publisher · View at Google Scholar · View at Scopus
  89. S. Sinha, M. H. Hoofnagle, P. A. Kingston, M. E. McCanna, and G. K. Owens, “Transforming growth factor-β1 signaling contributes to development of smooth muscle cells from embryonic stem cells,” American Journal of Physiology. Cell Physiology, vol. 287, no. 6, pp. C1560–C1568, 2004. View at Publisher · View at Google Scholar · View at Scopus
  90. K. Gaengel, G. Genové, A. Armulik, and C. Betsholtz, “Endothelial-mural cell signaling in vascular development and angiogenesis,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 29, no. 5, pp. 630–638, 2009. View at Publisher · View at Google Scholar · View at Scopus
  91. W. Cai, H. Liu, J. Zhao et al., “Pericytes in brain injury and repair after ischemic stroke,” Translational Stroke Research, vol. 8, no. 2, pp. 107–121, 2016. View at Publisher · View at Google Scholar · View at Scopus
  92. M. Kloc, J. Z. Kubiak, X. C. Li, and R. M. Ghobrial, “Pericytes, microvasular dysfunction, and chronic rejection,” Transplantation, vol. 99, no. 4, pp. 658–667, 2015. View at Publisher · View at Google Scholar · View at Scopus
  93. J. F. Arboleda-Velasquez, C. N. Valdez, C. K. Marko, and P. A. D'Amore, “From pathobiology to the targeting of pericytes for the treatment of diabetic retinopathy,” Current Diabetes Reports, vol. 15, no. 2, p. 573, 2015. View at Publisher · View at Google Scholar · View at Scopus
  94. O. V. Glinskii, V. H. Huxley, V. V. Glinskii, L. J. Rubin, and V. V. Glinsky, “Pulsed estrogen therapy prevents post-OVX porcine dura mater microvascular network weakening via a PDGF-BB-dependent mechanism,” PLoS One, vol. 8, no. 12, article e82900, 2013. View at Publisher · View at Google Scholar · View at Scopus
  95. F. Contard, A. Sabri, M. Glukhova et al., “Arterial smooth muscle cell phenotype in stroke-prone spontaneously hypertensive rats,” Hypertension, vol. 22, no. 5, pp. 665–676, 1993. View at Publisher · View at Google Scholar
  96. J. Wu, Y. Zhang, P. Yang et al., “Recombinant osteopontin stabilizes smooth muscle cell phenotype via integrin receptor/integrin-linked kinase/Rac-1 pathway after subarachnoid hemorrhage in rats,” Stroke, vol. 47, no. 5, pp. 1319–1327, 2016. View at Publisher · View at Google Scholar · View at Scopus
  97. M. H. Lee, B. J. Kwon, H. J. Seo et al., “Resveratrol inhibits phenotype modulation by platelet derived growth factor-bb in rat aortic smooth muscle cells,” Oxidative Medicine and Cellular Longevity, vol. 2014, Article ID 572430, 9 pages, 2014. View at Publisher · View at Google Scholar · View at Scopus
  98. T. Miyata, H. Iizasa, Y. Sai, J. Fujii, T. Terasaki, and E. Nakashima, “Platelet-derived growth factor-BB (PDGF-BB) induces differentiation of bone marrow endothelial progenitor cell-derived cell line TR-BME2 into mural cells, and changes the phenotype,” Journal of Cellular Physiology, vol. 204, no. 3, pp. 948–955, 2005. View at Publisher · View at Google Scholar · View at Scopus
  99. P. Munot, D. E. Saunders, D. M. Milewicz et al., “A novel distinctive cerebrovascular phenotype is associated with heterozygous Arg179 ACTA2 mutations,” Brain, vol. 135, no. Pt 8, pp. 2506–2514, 2012. View at Publisher · View at Google Scholar · View at Scopus
  100. C. K. Griswold, “A model of the physiological basis of a multivariate phenotype that is mediated by Ca2+ signaling and controlled by ryanodine receptor composition,” Journal of Theoretical Biology, vol. 282, no. 1, pp. 14–22, 2011. View at Publisher · View at Google Scholar · View at Scopus
  101. Y. Chimori, K. Hayashi, K. Kimura et al., “Phenotype-dependent expression of cadherin 6B in vascular and visceral smooth muscle cells,” FEBS Letters, vol. 469, no. 1, pp. 67–71, 2000. View at Publisher · View at Google Scholar · View at Scopus
  102. N. Henninger and M. Fisher, “Extending the time window for endovascular and pharmacological reperfusion,” Translational Stroke Research, vol. 7, no. 4, pp. 284–293, 2016. View at Publisher · View at Google Scholar · View at Scopus
  103. L. Chazalviel, B. Haelewyn, M. Degoulet et al., “Hyperbaric oxygen increases tissue-plasminogen activator-induced thrombolysis in vitro, and reduces ischemic brain damage and edema in rats subjected to thromboembolic brain ischemia,” Medical Gas Research, vol. 6, no. 2, pp. 64–69, 2016. View at Publisher · View at Google Scholar · View at Scopus
  104. B. Ovbiagele, J. L. Saver, S. Starkman et al., “Statin enhancement of collateralization in acute stroke,” Neurology, vol. 68, no. 24, pp. 2129–2131, 2007. View at Publisher · View at Google Scholar · View at Scopus
  105. J. L. Lucitti, N. J. Tarte, and J. E. Faber, “Chloride intracellular channel 4 is required for maturation of the cerebral collateral circulation,” American Journal of Physiology Heart and Circulatory Physiology, vol. 309, no. 7, pp. H1141–H1150, 2015. View at Publisher · View at Google Scholar · View at Scopus
  106. D. Chalothorn, H. Zhang, J. E. Smith, J. C. Edwards, and J. E. Faber, “Chloride intracellular channel-4 is a determinant of native collateral formation in skeletal muscle and brain,” Circulation Research, vol. 105, no. 1, pp. 89–98, 2009. View at Publisher · View at Google Scholar · View at Scopus
  107. M. R. Harrigan, S. R. Ennis, S. E. Sullivan, and R. F. Keep, “Effects of intraventricular infusion of vascular endothelial growth factor on cerebral blood flow, edema, and infarct volume,” Acta Neurochirurgica, vol. 145, no. 1, pp. 49–53, 2003. View at Publisher · View at Google Scholar · View at Scopus
  108. M. R. Harrigan, S. R. Ennis, T. Masada, and R. F. Keep, “Intraventricular infusion of vascular endothelial growth factor promotes cerebral angiogenesis with minimal brain edema,” Neurosurgery, vol. 50, no. 3, pp. 589–598, 2002. View at Publisher · View at Google Scholar
  109. T. Shimazu, I. Inoue, N. Araki et al., “A peroxisome proliferator-activated receptor-γ agonist reduces infarct size in transient but not in permanent ischemia,” Stroke, vol. 36, no. 2, pp. 353–359, 2005. View at Publisher · View at Google Scholar · View at Scopus
  110. J. Culman, M. Nguyen-Ngoc, T. Glatz, P. Gohlke, T. Herdegen, and Y. Zhao, “Treatment of rats with pioglitazone in the reperfusion phase of focal cerebral ischemia: a preclinical stroke trial,” Experimental Neurology, vol. 238, no. 2, pp. 243–253, 2012. View at Publisher · View at Google Scholar · View at Scopus
  111. M. A. Hill, Z. Sun, L. Martinez-Lemus, and G. A. Meininger, “New technologies for dissecting the arteriolar myogenic response,” Trends in Pharmacological Sciences, vol. 28, no. 7, pp. 308–315, 2007. View at Publisher · View at Google Scholar · View at Scopus
  112. C. Howarth, “The contribution of astrocytes to the regulation of cerebral blood flow,” Frontiers in Neuroscience, vol. 8, no. 8, p. 103, 2014. View at Publisher · View at Google Scholar · View at Scopus
  113. D. Stephenson, T. Yin, E. B. Smalstig et al., “Transcription factor nuclear factor-kappa B is activated in neurons after focal cerebral ischemia,” Journal of Cerebral Blood Flow & Metabolism, vol. 20, no. 3, pp. 592–603, 2000. View at Publisher · View at Google Scholar
  114. A. K. Samraj, A. H. Müller, A. S. Grell, and L. Edvinsson, “Role of unphosphorylated transcription factor STAT3 in late cerebral ischemia after subarachnoid hemorrhage,” Journal of Cerebral Blood Flow & Metabolism, vol. 34, no. 5, pp. 759–763, 2014. View at Publisher · View at Google Scholar · View at Scopus
  115. K. Jeyaseelan, K. Y. Lim, and A. Armugam, “MicroRNA expression in the blood and brain of rats subjected to transient focal ischemia by middle cerebral artery occlusion,” Stroke, vol. 39, no. 3, pp. 959–966, 2008. View at Publisher · View at Google Scholar · View at Scopus
  116. Y. Wang, J. Huang, Y. Ma et al., “MicroRNA-29b is a therapeutic target in cerebral ischemia associated with aquaporin 4,” Journal of Cerebral Blood Flow & Metabolism, vol. 35, no. 12, 2015. View at Publisher · View at Google Scholar · View at Scopus
  117. L. Zeng, J. Liu, Y. Wang et al., “MicroRNA-210 as a novel blood biomarker in acute cerebral ischemia,” Frontiers in Bioscience, vol. 3, no. 4, p. 1265, 2011. View at Publisher · View at Google Scholar
  118. K. J. Yin, Z. Deng, H. Huang et al., “miR-497 regulates neuronal death in mouse brain after transient focal cerebral ischemia,” Neurobiology of Disease, vol. 38, no. 1, p. 17, 2010. View at Publisher · View at Google Scholar · View at Scopus
  119. C. S. Gan, C. W. Wang, and K. S. Tan, “Circulatory microRNA-145 expression is increased in cerebral ischemia,” Genetics & Molecular Research, vol. 11, no. 1, p. 147, 2012. View at Publisher · View at Google Scholar · View at Scopus
  120. S. Saleem, P. D. Teal, W. B. Kleijn, T. O'Donnell, T. Witter, and Y. C. Tzeng, “Non-linear characterisation of cerebral pressure-flow dynamics in humans,” PLoS One, vol. 10, no. 9, article e0139470, 2015. View at Publisher · View at Google Scholar · View at Scopus
  121. G. D. Mitsis, P. N. Ainslie, M. J. Poulin, P. A. Robbins, and V. Z. Marmarelis, Nonlinear Modeling of the Dynamic Effects of Arterial Pressure and Blood Gas Variations on Cerebral Blood Flow in Healthy Humans, Springer, United States of America, 2004.
  122. C. O. Tan, “Defining the characteristic relationship between arterial pressure and cerebral flow,” Journal of Applied Physiology, vol. 113, no. 8, pp. 1194–1200, 2012. View at Publisher · View at Google Scholar · View at Scopus
  123. G. D. Mitsis, A. Mahalingam, R. Zhang, B. D. Levine, and V. Z. Marmarelis, “Nonlinear analysis of dynamic cerebral autoregulation in humans under orthostatic stress,” in Engineering in Medicine and Biology Society, 2003. Proceedings of the 25th Annual International Conference of the IEEE, Cancun, Mexico, 2003. View at Publisher · View at Google Scholar
  124. C. C. Chiu and S. J. Yeh, “Assessment of cerebral autoregulation using time-domain cross-correlation analysis,” Computers in Biology & Medicine, vol. 31, no. 6, p. 471, 2001. View at Publisher · View at Google Scholar · View at Scopus
  125. B. Y. Liau, S. J. Yeh, and C. C. Chiu, “Using cross-correlation function to assess dynamic cerebral autoregulation in response to posture changes for stroke patients,” Computing in Cardiology, vol. 37, no. 23, pp. 605–608, 2011. View at Google Scholar
  126. M. Chacón, C. Blanco, R. Panerai, and D. Evans, “Nonlinear modeling of dynamic cerebral autoregulation using recurrent neural networks,” in 10th Iberoamerican Congress on Pattern Recognition, CIARP 2005, Havana, Cuba, November 15–18, 2005.
  127. H. Lu, R. Setiono, and H. Liu, “Effective data mining using neural networks,” IEEE Transactions on Knowledge & Data Engineering, vol. 8, no. 6, pp. 957–961, 1996. View at Publisher · View at Google Scholar · View at Scopus
  128. C. C. Chiu, Y. H. Hu, S. J. Yeh, and D. Y. Chou, “Classification of dynamic cerebral autoregulation in diabetics with autonomic neuropathy using support vector machine,” in International Conference on Bioinformatics & Computational Biology, BIOCOMP 2009, vol. 2, Las Vegas Nevada, United States of America, July 13–16, 2009.
  129. G. M. Fung, Machine Learning and Data Mining Via Mathematical Programming-Based Support Vector Machines, The University of Wisconsin-Madison, Madison, WI, USA, 2003.
  130. B. Y. Liau, S. J. Yeh, C. C. Chiu, and Y. C. Tsai, “Dynamic cerebral autoregulation assessment using chaotic analysis in diabetic autonomic neuropathy,” Medical & Biological Engineering & Computing, vol. 46, no. 1, pp. 1–9, 2008. View at Publisher · View at Google Scholar · View at Scopus
  131. G. Qi, G. Chen, S. Du, Z. Chen, and Z. Yuan, “Analysis of a new chaotic system,” Physica A Statistical Mechanics & Its Applications, vol. 352, no. 2–4, pp. 295–308, 2005. View at Publisher · View at Google Scholar · View at Scopus
  132. A. Mcafee and E. Brynjolfsson, “Big data: the management revolution,” Harvard Business Review, vol. 90, no. 10, p. 60, 2012. View at Google Scholar
  133. D. S. Liebeskind, “Big and bigger data in endovascular stroke therapy,” Expert Review of Neurotherapeutics, vol. 15, pp. 335–337, 2015. View at Publisher · View at Google Scholar · View at Scopus
  134. K. Nishimura, “Big data visualization of acute stroke care practices using a nationwide neurosurgeon survey,” Japanese Journal of Neurosurgery, vol. 24, no. 10, pp. 676–683, 2015. View at Publisher · View at Google Scholar · View at Scopus
  135. A. Nishimura, K. Nishimura, A. Kada, K. Iihara, and J-ASPECT Study GROUP, “Status and future perspectives of utilizing big data in neurosurgical and stroke research,” Neurologia Medico-Chirurgica, vol. 56, no. 11, pp. 655–663, 2016. View at Publisher · View at Google Scholar · View at Scopus
  136. N. P. Saeed, N. Pater, and T. G. Robinson, “Comparative overview of imaging techniques in stroke; measuring cerebral blood flow and estimating cerebral autoregulation,” International Journal of Stroke, vol. 7, pp. 61–61, 2012. View at Google Scholar
  137. M. Modat, G. R. Ridgway, Z. A. Taylor et al., “Fast free-form deformation using graphics processing units,” Computer Methods & Programs in Biomedicine, vol. 98, no. 3, pp. 278–284, 2010. View at Publisher · View at Google Scholar · View at Scopus
  138. S. Z. Ueng, M. Lathara, S. S. Baghsorkhi, and W. H. Wen-mei, “CUDA-lite: reducing GPU programming complexity,” Lecture Notes in Computer Science, vol. 8, pp. 1–15, 2008. View at Publisher · View at Google Scholar · View at Scopus
  139. B. Jiang, W. Dai, A. Khaliq, M. Carey, X. Zhou, and L. Zhang, “Novel 3D GPU based numerical parallel diffusion algorithms in cylindrical coordinates for health care simulation,” Mathematics and Computers in Simulation, vol. 109, pp. 1–19, 2015. View at Publisher · View at Google Scholar · View at Scopus
  140. B. Jiang, A. Struthers, Z. Sun et al., “Employing graphics processing unit technology, alternating direction implicit method and domain decomposition to speed up the numerical diffusion solver for the biomedical engineering research,” International Journal for Numerical Methods in Biomedical Engineering, vol. 27, no. 11, pp. 1829–1849, 2011. View at Publisher · View at Google Scholar · View at Scopus
  141. H. Peng, T. Peng, J. Wen et al., “Characterization of p38 MAPK isoforms for drug resistance study using systems biology approach,” Bioinformatics, vol. 30, no. 13, pp. 1899–1907, 2014. View at Publisher · View at Google Scholar · View at Scopus
  142. L. Zhang, B. Jiang, Y. Wu et al., “Developing a multiscale, multi-resolution agent-based brain tumor model by graphics processing units,” Theoretical Biology & Medical Modelling, vol. 8, p. 46, 2011. View at Publisher · View at Google Scholar · View at Scopus
  143. L. Zhang, M. Qiao, H. Gao et al., “Investigation of mechanism of bone regeneration in a porous biodegradable calcium phosphate (CaP) scaffold by a combination of a multi-scale agent-based model and experimental optimization/validation,” Nanoscale, vol. 8, no. 31, p. 14877, 2016. View at Publisher · View at Google Scholar · View at Scopus
  144. L. Zhang, Y. Xue, B. Jiang et al., “Multiscale agent-based modelling of ovarian cancer progression under the stimulation of the STAT 3 pathway,” International Journal of Data Mining and Bioinformatics, vol. 9, no. 3, pp. 235–253, 2014. View at Publisher · View at Google Scholar · View at Scopus
  145. L. Zhang and S. Zhang, “Using game theory to investigate the epigenetic control mechanisms of embryo development: comment on: “epigenetic game theory: how to compute the epigenetic control of maternal-to-zygotic transition” by Qian Wang et al,” Physics of Life Reviews, vol. 20, pp. 140–142, 2017. View at Publisher · View at Google Scholar
  146. M. Jaeger, M. Soehle, M. U. Schuhmann, D. Winkler, and J. Meixensberger, “Correlation of continuously monitored regional cerebral blood flow and brain tissue oxygen,” Acta Neurochirurgica, vol. 147, no. 1, pp. 51–56, 2005, discussion 56. View at Publisher · View at Google Scholar · View at Scopus
  147. P. J. Sioutos, J. A. Orozco, L. P. Carter, M. E. Weinand, A. J. Hamilton, and F. C. Williams, “Continuous regional cerebral cortical blood flow monitoring in head-injured patients,” Neurosurgery, vol. 36, no. 5, pp. 943–949, 1995, discussion 949-50. View at Publisher · View at Google Scholar
  148. C. S. Robertson, S. P. Gopinath, J. C. Goodman, C. F. Contant, A. B. Valadka, and R. K. Narayan, “SjvO2 monitoring in head-injured patients,” Journal of Neurotrauma, vol. 12, no. 5, pp. 891–896, 1995. View at Publisher · View at Google Scholar · View at Scopus
  149. M. Sheinberg, M. J. Kanter, C. S. Robertson, C. F. Contant, R. K. Narayan, and R. G. Grossman, “Continuous monitoring of jugular venous oxygen saturation in head-injured patients,” Journal of Neurosurgery, vol. 76, no. 2, pp. 212–217, 1992. View at Publisher · View at Google Scholar
  150. G. K. Barcelos, Y. Tholance, S. Grousson et al., “Outcome of poor-grade subarachnoid hemorrhage as determined by biomarkers of glucose cerebral metabolism,” Neurocritical Care, vol. 18, no. 2, pp. 234–244, 2013. View at Publisher · View at Google Scholar · View at Scopus
  151. K. Ide and N. H. Secher, “Cerebral blood flow and metabolism during exercise,” Progress in Neurobiology, vol. 61, no. 4, pp. 397–414, 2000. View at Publisher · View at Google Scholar · View at Scopus
  152. R. Parthasarathy, M. Kate, J. L. Rempel et al., “Prognostic evaluation based on cortical vein score difference in stroke,” Stroke, vol. 44, no. 10, pp. 2748–2754, 2013. View at Publisher · View at Google Scholar · View at Scopus
  153. E. S. Connolly Jr, A. A. Rabinstein, J. R. Carhuapoma et al., “Guidelines for the management of aneurysmal subarachnoid hemorrhage: a guideline for healthcare professionals from the American Heart Association/American Stroke Association,” Stroke, vol. 43, no. 6, pp. 1711–1737, 2012. View at Publisher · View at Google Scholar · View at Scopus
  154. W. S. Smith, “Technology insight: recanalization with drugs and devices during acute ischemic stroke,” Nature Clinical Practice Neurology, vol. 3, no. 1, pp. 45–53, 2007. View at Publisher · View at Google Scholar · View at Scopus
  155. P. A. Ringleb, P. D. Schellinger, C. Schranz, and W. Hacke, “Thrombolytic therapy within 3 to 6 hours after onset of ischemic stroke: useful or harmful?” Stroke, vol. 33, no. 5, pp. 1437–1441, 2002. View at Publisher · View at Google Scholar · View at Scopus
  156. R. Medel, S. J. Monteith, R. W. Crowley, and A. S. Dumont, “A review of therapeutic strategies for the management of cerebral venous sinus thrombosis,” Neurosurgical Focus, vol. 27, no. 5, article E6, 2009. View at Publisher · View at Google Scholar · View at Scopus
  157. J. M. Simard, E. F. Aldrich, D. Schreibman, R. F. James, A. Polifka, and N. Beaty, “Low-dose intravenous heparin infusion in patients with aneurysmal subarachnoid hemorrhage: a preliminary assessment,” Journal of Neurosurgery, vol. 119, no. 6, pp. 1611–1619, 2013. View at Publisher · View at Google Scholar · View at Scopus
  158. P. Zamboni, A. Bertolotto, P. Boldrini et al., “Efficacy and safety of venous angioplasty of the extracranial veins for multiple sclerosis. Brave dreams study (brain venous drainage exploited against multiple sclerosis): study protocol for a randomized controlled trial,” Trials, vol. 13, p. 183, 2012. View at Publisher · View at Google Scholar · View at Scopus
  159. R. Burger, D. Duncker, N. Uzma, and V. Rohde, “Decompressive craniotomy: durotomy instead of duroplasty to reduce prolonged ICP elevation,” Acta Neurochirurgica Supplement, vol. 102, pp. 93–97, 2008. View at Publisher · View at Google Scholar