Table of Contents Author Guidelines Submit a Manuscript
Neural Plasticity
Volume 2017, Article ID 5965371, 19 pages
https://doi.org/10.1155/2017/5965371
Review Article

Botanicals as Modulators of Neuroplasticity: Focus on BDNF

Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy

Correspondence should be addressed to Francesca Calabrese; ti.iminu@eserbalac.acsecnarf

Received 7 June 2017; Revised 9 November 2017; Accepted 2 December 2017; Published 31 December 2017

Academic Editor: Stuart C. Mangel

Copyright © 2017 Enrico Sangiovanni et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. S. Lowel and W. Singer, “Selection of intrinsic horizontal connections in the visual cortex by correlated neuronal activity,” Science, vol. 255, no. 5041, pp. 209–212, 1992. View at Publisher · View at Google Scholar
  2. M. M. Poo, “Neurotrophins as synaptic modulators,” Nature Review Neuroscience, vol. 2, no. 1, pp. 24–32, 2001. View at Publisher · View at Google Scholar · View at Scopus
  3. E. J. Huang and L. F. Reichardt, “Neurotrophins: roles in neuronal development and function,” Annual Review of Neuroscience, vol. 24, no. 1, pp. 677–736, 2001. View at Publisher · View at Google Scholar · View at Scopus
  4. B. Lu, P. T. Pang, and N. H. Woo, “The yin and yang of neurotrophin action,” Nature Review Neuroscience, vol. 6, no. 8, pp. 603–614, 2005. View at Publisher · View at Google Scholar · View at Scopus
  5. F. Calabrese, R. Molteni, G. Racagni, and M. A. Riva, “Neuronal plasticity: a link between stress and mood disorders,” Psychoneuroendocrinology, vol. 34, Supplement 1, pp. S208–S216, 2009. View at Publisher · View at Google Scholar · View at Scopus
  6. R. B. Foltran and S. L. Diaz, “BDNF isoforms: a round trip ticket between neurogenesis and serotonin?” Journal of Neurochemistry, vol. 138, no. 2, pp. 204–221, 2016. View at Publisher · View at Google Scholar · View at Scopus
  7. T. Aid, A. Kazantseva, M. Piirsoo, K. Palm, and T. Timmusk, “Mouse and rat BDNF gene structure and expression revisited,” Journal of Neuroscience Research, vol. 85, no. 3, pp. 525–535, 2007. View at Publisher · View at Google Scholar · View at Scopus
  8. P. Pruunsild, A. Kazantseva, T. Aid, K. Palm, and T. Timmusk, “Dissecting the human BDNF locus: bidirectional transcription, complex splicing, and multiple promoters,” Genomics, vol. 90, no. 3, pp. 397–406, 2007. View at Publisher · View at Google Scholar · View at Scopus
  9. B. Lu, “BDNF and activity-dependent synaptic modulation,” Learn Memory, vol. 10, no. 2, pp. 86–98, 2003. View at Publisher · View at Google Scholar · View at Scopus
  10. Z. L. Zhou, E. J. Hong, S. Cohen et al., “Brain-specific phosphorylation of MeCP2 regulates activity-dependent Bdnf transcription, dendritic growth, and spine maturation,” Neuron, vol. 52, no. 2, pp. 255–269, 2006. View at Publisher · View at Google Scholar · View at Scopus
  11. R. Molteni, F. Calabrese, A. Cattaneo et al., “Acute stress responsiveness of the neurotrophin BDNF in the rat hippocampus is modulated by chronic treatment with the antidepressant duloxetine,” Neuropsychopharmacology, vol. 34, no. 9, p. 2196, 2009. View at Publisher · View at Google Scholar · View at Scopus
  12. K. Martinowich, H. Manji, and B. Lu, “New insights into BDNF function in depression and anxiety,” Nature Neuroscience, vol. 10, no. 9, pp. 1089–1093, 2007. View at Publisher · View at Google Scholar · View at Scopus
  13. B. Lu and K. Martinowich, “Cell biology of BDNF and its relevance to schizophrenia,” Novartis Foundation Symposia, vol. 289, pp. 119–129, 2008. View at Publisher · View at Google Scholar
  14. M. Mitre, A. Mariga, and M. V. Chao, “Neurotrophin signalling: novel insights into mechanisms and pathophysiology,” Clinical Science, vol. 131, no. 1, pp. 13–23, 2017. View at Publisher · View at Google Scholar
  15. A. H. Nagahara and M. H. Tuszynski, “Potential therapeutic uses of BDNF in neurological and psychiatric disorders,” Nature Review Drug Discovery, vol. 10, no. 3, pp. 209–219, 2011. View at Publisher · View at Google Scholar · View at Scopus
  16. S. Yanev, “Neurotrophic and metabotrophic potential of nerve growth factor and brain-derived neurotrophic factor: linking cardiometabolic and neuropsychiatric diseases,” World Journal of Pharmacology, vol. 2, no. 4, p. 92, 2013. View at Publisher · View at Google Scholar
  17. B. Lu, G. H. Nagappan, X. M. Guan, P. J. Nathan, and P. Wren, “BDNF-based synaptic repair as a disease-modifying strategy for neurodegenerative diseases,” Nature Reviews Neuroscience, vol. 14, no. 6, pp. 401–416, 2013. View at Publisher · View at Google Scholar · View at Scopus
  18. Q. X. Ng, N. Venkatanarayanan, and C. Y. X. Ho, “Clinical use of Hypericum perforatum (St John’ wort) in depression: a meta-analysis,” Journal of Affective Disorders, vol. 210, pp. 211–221, 2017. View at Publisher · View at Google Scholar
  19. S. Bent, A. Padula, D. H. Moore, M. Patterson, and W. Mehling, “Valerian for sleep: a systematic review and meta-analysis,” Journal of General Internal Medicine, vol. 20, p. 90, 2005. View at Google Scholar
  20. J. Sarris, E. McIntyre, and D. A. Camfield, “Plant-based medicines for anxiety disorders, part 1: a review of preclinical studies,” CNS Drugs, vol. 27, no. 3, pp. 207–219, 2013. View at Publisher · View at Google Scholar · View at Scopus
  21. P. M. Kidd, “A review of nutrients and botanicals in the integrative management of cognitive dysfunction,” Alternative Medicine Review, vol. 4, no. 3, pp. 144–161, 1999. View at Google Scholar
  22. S. Aguiar and T. Borowski, “Neuropharmacological review of the nootropic herb Bacopa monnieri,” Rejuvenation Research, vol. 16, no. 4, pp. 313–326, 2013. View at Publisher · View at Google Scholar · View at Scopus
  23. M. D. Pandareesh and T. Anand, “Neuromodulatory propensity of Bacopa monniera against scopolamine-induced cytotoxicity in PC12 cells via down-regulation of AChE and up-regulation of BDNF and muscarnic-1 receptor expression,” Cellular and Molecular Neurobiology, vol. 33, no. 7, pp. 875–884, 2013. View at Publisher · View at Google Scholar · View at Scopus
  24. M. D. Pandareesh and T. Anand, “Neuroprotective and anti-apoptotic propensity of Bacopa monniera extract against sodium nitroprusside induced activation of iNOS, heat shock proteins and apoptotic markers in PC12 cells,” Neurochemical Research, vol. 39, no. 5, pp. 800–814, 2014. View at Publisher · View at Google Scholar · View at Scopus
  25. R. Banerjee, S. Hazra, A. K. Ghosh, and A. C. Mondal, “Chronic administration of Bacopa monniera increases BDNF protein and mRNA expressions: a study in chronic unpredictable stress induced animal model of depression,” Psychiatry Investigation, vol. 11, no. 3, pp. 297–306, 2014. View at Publisher · View at Google Scholar · View at Scopus
  26. S. Hazra, S. Kumar, G. K. Saha, and A. C. Mondal, “Reversion of BDNF, Akt and CREB in hippocampus of chronic unpredictable stress induced rats: effects of phytochemical, Bacopa Monnieri,” Psychiatry Investigation, vol. 14, no. 1, pp. 74–80, 2017. View at Publisher · View at Google Scholar
  27. S. Kumar and A. C. Mondal, “Neuroprotective, neurotrophic and anti-oxidative role of Bacopa monnieri on CUS induced model of depression in rat,” Neurochemical Research, vol. 41, no. 11, pp. 3083–3094, 2016. View at Publisher · View at Google Scholar · View at Scopus
  28. B. Czeh, E. Fuchs, O. Wiborg, and M. Simon, “Animal models of major depression and their clinical implications,” Progress in Neuro-Psychopharmacology and Biological Psychiatry, vol. 64, pp. 293–310, 2016. View at Publisher · View at Google Scholar · View at Scopus
  29. X. T. Le, H. T. N. Pham, P. T. Do et al., “Bacopa monnieri ameliorates memory deficits in olfactory bulbectomized mice: possible involvement of glutamatergic and cholinergic systems,” Neurochemical Research, vol. 38, no. 10, pp. 2201–2215, 2013. View at Publisher · View at Google Scholar · View at Scopus
  30. M. D. Pandareesh, T. Anand, and F. Khanum, “Cognition enhancing and neuromodulatory propensity of Bacopa monniera extract against scopolamine induced cognitive impairments in rat hippocampus,” Neurochemical Research, vol. 41, no. 5, pp. 985–999, 2016. View at Publisher · View at Google Scholar · View at Scopus
  31. A. Konar, A. Gautam, and M. K. Thakur, “Bacopa monniera (CDRI-08) upregulates the expression of neuronal and glial plasticity markers in the brain of scopolamine induced amnesic mice,” Evidence-based Complementary and Alternative Medicine, vol. 2015, Article ID 837012, 9 pages, 2015. View at Publisher · View at Google Scholar · View at Scopus
  32. J. Preethi, H. K. Singh, and K. E. Rajan, “Possible involvement of standardized Bacopa monniera extract (CDRI-08) in epigenetic regulation of reelin and brain-derived neurotrophic factor to enhance memory,” Frontiers in Pharmacology, vol. 7, 2016. View at Publisher · View at Google Scholar · View at Scopus
  33. J. Preethi, H. K. Singh, J. S. Venkataraman, and K. E. Rajan, “Standardised extract of Bacopa monniera (CDRI-08) improves contextual fear memory by differentially regulating the activity of histone acetylation and protein phosphatases (PP1α, PP2A) in hippocampus,” Cellular and Molecular Neurobiology, vol. 34, no. 4, pp. 577–589, 2014. View at Publisher · View at Google Scholar · View at Scopus
  34. C. Lao-Peregrin, J. J. Ballesteros, M. Fernandez et al., “Caffeine-mediated BDNF release regulates long-term synaptic plasticity through activation of IRS2 signaling,” Addiction Biology, vol. 22, no. 6, pp. 1706–1718, 2016. View at Publisher · View at Google Scholar · View at Scopus
  35. A. Balkowiec and D. M. Katz, “Cellular mechanisms regulating activity-dependent release of native brain-derived neurotrophic factor from hippocampal neurons,” The Journal of Neuroscience, vol. 22, no. 23, pp. 10399–10407, 2002. View at Google Scholar
  36. S. Connolly and T. J. Kingsbury, “Caffeine modulates CREB-dependent gene expression in developing cortical neurons,” Biochemical and Biophysical Research Communications, vol. 397, no. 2, pp. 152–156, 2010. View at Publisher · View at Google Scholar · View at Scopus
  37. K. M. Capiotti, F. P. Menezes, L. R. Nazario et al., “Early exposure to caffeine affects gene expression of adenosine receptors, DARPP-32 and BDNF without affecting sensibility and morphology of developing zebrafish (Danio rerio),” Neurotoxicology and Teratology, vol. 33, no. 6, pp. 680–685, 2011. View at Publisher · View at Google Scholar · View at Scopus
  38. A. P. Ardais, A. S. Rocha, M. F. Borges et al., “Caffeine exposure during rat brain development causes memory impairment in a sex selective manner that is offset by caffeine consumption throughout life,” Behavioural Brain Research, vol. 303, pp. 76–84, 2016. View at Publisher · View at Google Scholar · View at Scopus
  39. S. Mioranzza, F. Nunes, D. M. Marques et al., “Prenatal caffeine intake differently affects synaptic proteins during fetal brain development,” International Journal of Developmental Neuroscience, vol. 36, pp. 45–52, 2014. View at Publisher · View at Google Scholar · View at Scopus
  40. A. P. Ardais, M. F. Borges, A. S. Rocha, C. Sallaberry, R. A. Cunha, and L. O. Porciuncula, “Caffeine triggers behavioral and neurochemical alterations in adolescent rats,” Neuroscience, vol. 270, pp. 27–39, 2014. View at Publisher · View at Google Scholar · View at Scopus
  41. C. Sallaberry, F. Nunes, M. S. Costa et al., “Chronic caffeine prevents changes in inhibitory avoidance memory and hippocampal BDNF immunocontent in middle-aged rats,” Neuropharmacology, vol. 64, pp. 153–159, 2013. View at Publisher · View at Google Scholar · View at Scopus
  42. M. S. Costa, P. H. Botton, S. Mioranzza, D. O. Souza, and L. O. Porciuncula, “Caffeine prevents age-associated recognition memory decline and changes brain-derived neurotrophic factor and tirosine kinase receptor (TrkB) content in mice,” Neuroscience, vol. 153, no. 4, pp. 1071–1078, 2008. View at Publisher · View at Google Scholar · View at Scopus
  43. M. S. Costa, P. H. Botton, S. Mioranzza et al., “Caffeine improves adult mice performance in the object recognition task and increases BDNF and TrkB independent on phospho-CREB immunocontent in the hippocampus,” Neurochemistry International, vol. 53, no. 3-4, pp. 89–94, 2008. View at Publisher · View at Google Scholar · View at Scopus
  44. F. M. Ghoneim, H. A. Khalaf, A. Z. Elsamanoudy et al., “Protective effect of chronic caffeine intake on gene expression of brain derived neurotrophic factor signaling and the immunoreactivity of glial fibrillary acidic protein and Ki-67 in Alzheimer’s disease,” International Journal Clinical Experimental Pathology, vol. 8, no. 7, pp. 7710–7728, 2015. View at Google Scholar
  45. K. Han, N. Jia, J. Li, L. Yang, and L. Q. Min, “Chronic caffeine treatment reverses memory impairment and the expression of brain BNDF and TrkB in the PS1/APP double transgenic mouse model of Alzheimer’s disease,” Molecular Medicine Reports, vol. 8, no. 3, pp. 737–740, 2013. View at Publisher · View at Google Scholar · View at Scopus
  46. K. H. Alzoubi, M. Srivareerat, A. M. Aleisa, and K. A. Alkadhi, “Chronic caffeine treatment prevents stress-induced LTP impairment: the critical role of phosphorylated CaMKII and BDNF,” Journal of Molecular Neuroscience, vol. 49, no. 1, pp. 11–20, 2013. View at Publisher · View at Google Scholar · View at Scopus
  47. G. A. Moy and E. C. McNay, “Caffeine prevents weight gain and cognitive impairment caused by a high-fat diet while elevating hippocampal BDNF,” Physiology & Behavior, vol. 109, pp. 69–74, 2013. View at Publisher · View at Google Scholar · View at Scopus
  48. J. S. Samkoff and C. H. M. Jacques, “A review of studies concerning effects of sleep deprivation and fatigue on residents’ performance,” Academic Medicine, vol. 66, no. 11, pp. 687–693, 1991. View at Publisher · View at Google Scholar
  49. S. Sahu, H. Kauser, K. Ray, K. Kishore, S. Kumar, and U. Panjwani, “Caffeine and modafinil promote adult neuronal cell proliferation during 48 h of total sleep deprivation in rat dentate gyrus,” Experimental Neurology, vol. 248, pp. 470–481, 2013. View at Publisher · View at Google Scholar · View at Scopus
  50. I. A. Alhaider, A. M. Aleisa, T. T. Tran, and K. A. Alkadhi, “Caffeine prevents sleep loss-induced deficits in long-term potentiation and related signaling molecules in the dentate gyrus,” European Journal of Neuroscience, vol. 31, no. 8, pp. 1368–1376, 2010. View at Publisher · View at Google Scholar · View at Scopus
  51. K. A. Alkadhi and I. A. Alhaider, “Caffeine and REM sleep deprivation: effect on basal levels of signaling molecules in area CA1,” Molecular and Cellular Neuroscience, vol. 71, pp. 125–131, 2016. View at Publisher · View at Google Scholar · View at Scopus
  52. I. A. Alhaider, A. M. Aleisa, T. T. Tran, and K. A. Alkadhi, “Sleep deprivation prevents stimulation-induced increases of levels of P-CREB and BDNF: protection by caffeine,” Molecular and Cellular Neuroscience, vol. 46, no. 4, pp. 742–751, 2011. View at Publisher · View at Google Scholar · View at Scopus
  53. T. Reyes-Izquierdo, B. Nemzer, C. Shu et al., “Modulatory effect of coffee fruit extract on plasma levels of brain-derived neurotrophic factor in healthy subjects,” British Journal of Nutrition, vol. 110, no. 03, pp. 420–425, 2013. View at Publisher · View at Google Scholar · View at Scopus
  54. M. R. Khazdair, M. H. Boskabady, M. Hosseini, R. Rezaee, and A. M. Tsatsakis, “The effects of Crocus sativus (saffron) and its constituents on nervous system: a review,” Avicenna Journal of Phytomedicine, vol. 5, no. 5, pp. 376–391, 2015. View at Google Scholar
  55. F. V. Hassani, V. Naseri, B. M. Razavi, S. Mehri, K. Abnous, and H. Hosseinzadeh, “Antidepressant effects of crocin and its effects on transcript and protein levels of CREB, BDNF, and VGF in rat hippocampus,” Daru Journal of Pharmaceutical Sciences, vol. 22, no. 1, p. 16, 2014. View at Publisher · View at Google Scholar · View at Scopus
  56. T. Ghasemi, K. Abnous, F. Vahdati, S. Mehri, B. M. Razavi, and H. Hosseinzadeh, “Antidepressant effect of Crocus sativus aqueous extract and its effect on CREB, BDNF, and VGF transcript and protein levels in rat hippocampus,” Drug Research, vol. 65, no. 07, pp. 337–343, 2015. View at Publisher · View at Google Scholar · View at Scopus
  57. ESCOP Monographs, Georg Thieme Verlag, Stuttgart, Germany, 2nd edition, 2009.
  58. F. Wu, H. Li, L. Zhao et al., “Protective effects of aqueous extract from Acanthopanax senticosus against corticosterone-induced neurotoxicity in PC12 cells,” Journal of Ethnopharmacology, vol. 148, no. 3, pp. 861–868, 2013. View at Publisher · View at Google Scholar · View at Scopus
  59. Y. Xu, C. Cui, C. Pang, Y. Christen, and Y. Luo, “Restoration of impaired phosphorylation of cyclic AMP response element-binding protein (CREB) by EGb 761 and its constituents in Aβ-expressing neuroblastoma cells,” European Journal of Neuroscience, vol. 26, no. 10, pp. 2931–2939, 2007. View at Publisher · View at Google Scholar · View at Scopus
  60. Y. Hou, M. A. Aboukhatwa, D. L. Lei, K. Manaye, I. Khan, and Y. Luo, “Anti-depressant natural flavonols modulate BDNF and beta amyloid in neurons and hippocampus of double TgAD mice,” Neuropharmacology, vol. 58, no. 6, pp. 911–920, 2010. View at Publisher · View at Google Scholar · View at Scopus
  61. Y. Nam, E. J. Shin, S. W. Shin et al., “YY162 prevents ADHD-like behavioral side effects and cytotoxicity induced by Aroclor1254 via interactive signaling between antioxidant potential, BDNF/TrkB, DAT and NET,” Food and Chemical Toxicology, vol. 65, pp. 280–292, 2014. View at Publisher · View at Google Scholar · View at Scopus
  62. Z. Zhang, D. Peng, H. Zhu, and X. Wang, “Experimental evidence of Ginkgo biloba extract EGB as a neuroprotective agent in ischemia stroke rats,” Brain Research Bulletin, vol. 87, no. 2-3, pp. 193–198, 2012. View at Publisher · View at Google Scholar · View at Scopus
  63. M. Belviranli and N. Okudan, “The effects of Ginkgo biloba extract on cognitive functions in aged female rats: the role of oxidative stress and brain-derived neurotrophic factor,” Behavioral Brain Research, vol. 278, pp. 453–461, 2015. View at Publisher · View at Google Scholar · View at Scopus
  64. Y. Zhao, Y. Zhang, and F. Pan, “The effects of EGb761 on lipopolysaccharide-induced depressive-like behaviour in C57BL/6J mice,” Central European Journal of Immunology, vol. 1, no. 1, pp. 11–17, 2015. View at Publisher · View at Google Scholar · View at Scopus
  65. J. Shi, Y. L. Tan, Z. R. Wang et al., “Ginkgo biloba and vitamin E ameliorate haloperidol-induced vacuous chewingmovement and brain-derived neurotrophic factor expression in a rat tardive dyskinesia model,” Pharmacology Biochemistry and Behavior, vol. 148, pp. 53–58, 2016. View at Publisher · View at Google Scholar · View at Scopus
  66. X. S. Qin, K. H. Jin, B. K. Ding, S. F. Xie, and H. Ma, “Effects of extract of Ginkgo biloba with venlafaxine on brain injury in a rat model of depression,” Chinese Medical Journal, vol. 118, no. 5, pp. 391–397, 2005. View at Google Scholar
  67. F. Tchantchou, P. N. Lacor, Z. Cao et al., “Stimulation of neurogenesis and synaptogenesis by bilobalide and quercetin via common final pathway in hippocampal neurons,” Journal of Alzheimer’s Disease, vol. 18, no. 4, pp. 787–798, 2009. View at Publisher · View at Google Scholar · View at Scopus
  68. X. Y. Zhang, W. F. Zhang, D. F. Zhou et al., “Brain-derived neurotrophic factor levels and its Val66Met gene polymorphism predict tardive dyskinesia treatment response to Ginkgo biloba,” Biological Psychiatry, vol. 72, no. 8, pp. 700–706, 2012. View at Publisher · View at Google Scholar · View at Scopus
  69. C. Di Lorenzo, M. Dell'Agli, E. Sangiovanni et al., “Correlation between catechin content and NF-κB inhibition by infusions of green and black tea,” Plant Foods Human Nutrition, vol. 68, no. 2, pp. 149–154, 2013. View at Publisher · View at Google Scholar · View at Scopus
  70. H. S. Cho, S. Kim, S. Y. Lee, J. A. Park, S. J. Kim, and H. S. Chun, “Protective effect of the green tea component, L-theanine on environmental toxins-induced neuronal cell death,” Neurotoxicology, vol. 29, no. 4, pp. 656–662, 2008. View at Publisher · View at Google Scholar · View at Scopus
  71. S. Nath, M. Bachani, D. Harshavardhana, and J. P. Steiner, “Catechins protect neurons against mitochondrial toxins and HIV proteins via activation of the BDNF pathway,” Journal of Neurovirology, vol. 18, no. 6, pp. 445–455, 2012. View at Publisher · View at Google Scholar
  72. C. Wakabayashi, T. Numakawa, M. Ninomiya, S. Chiba, and H. Kunugi, “Behavioral and molecular evidence for psychotropic effects in L-theanine,” Psychopharmacology, vol. 219, no. 4, pp. 1099–1109, 2012. View at Publisher · View at Google Scholar · View at Scopus
  73. T. P. Stringer, D. Guerrieri, C. Vivar, and H. van Praag, “Plant-derived flavanol (−)epicatechin mitigates anxiety in association with elevated hippocampal monoamine and BDNF levels, but does not influence pattern separation in mice,” Translational Psychiatry, vol. 5, no. 1, article e493, 2015. View at Publisher · View at Google Scholar · View at Scopus
  74. A. Takeda, K. Sakamoto, H. Tamano et al., “Facilitated neurogenesis in the developing hippocampus after intake of theanine, an amino acid in tea leaves, and object recognition memory,” Cellular and Molecular Neurobiology, vol. 31, no. 7, pp. 1079–1088, 2011. View at Publisher · View at Google Scholar · View at Scopus
  75. M. Assuncao, M. J. Santos-Marques, F. Carvalho, and J. P. Andrade, “Green tea averts age-dependent decline of hippocampal signaling systems related to antioxidant defenses and survival,” Free Radical Biology & Medicine, vol. 48, no. 6, pp. 831–838, 2010. View at Publisher · View at Google Scholar · View at Scopus
  76. Q. Li, H. F. Zhao, Z. F. Zhang et al., “Long-term administration of green tea catechins prevents age-related spatial learning and memory decline in C57BL/6 J mice by regulating hippocampal cyclic amp-response element binding protein signaling cascade,” Neuroscience, vol. 159, no. 4, pp. 1208–1215, 2009. View at Publisher · View at Google Scholar · View at Scopus
  77. T. E. Gibbons, B. D. Pence, G. Petr et al., “Voluntary wheel running, but not a diet containing (−)-epigallocatechin-3-gallate and β-alanine, improves learning, memory and hippocampal neurogenesis in aged mice,” Behavioural Brain Research, vol. 272, pp. 131–140, 2014. View at Publisher · View at Google Scholar · View at Scopus
  78. F. Guedj, C. Sebrie, I. Rivals et al., “Green tea polyphenols rescue of brain defects induced by overexpression of DYRK1A,” PLoS One, vol. 4, no. 2, 2009. View at Publisher · View at Google Scholar
  79. Q. Li, H. F. Zhao, Z. F. Zhang et al., “Long-term green tea catechin administration prevents spatial learning and memory impairment in senescence-accelerated mouse prone-8 mice by decreasing a β1-42 oligomers and upregulating synaptic plasticity-related proteins in the hippocampus,” Neuroscience, vol. 163, no. 3, pp. 741–749, 2009. View at Publisher · View at Google Scholar · View at Scopus
  80. Z. Y. Zhang, H. Wu, and H. C. Huang, “Epicatechin plus treadmill exercise are neuroprotective against moderate-stage amyloid precursor protein/presenilin 1 mice,” Pharmacognosy Magazine, vol. 12, no. 46, pp. 139–146, 2016. View at Publisher · View at Google Scholar
  81. Y. H. Yu, Y. Z. Wu, A. Szabo et al., “Teasaponin improves leptin sensitivity in the prefrontal cortex of obese mice,” Molecular Nutrition & Food Research, vol. 59, no. 12, pp. 2371–2382, 2015. View at Publisher · View at Google Scholar · View at Scopus
  82. S. S. Patel, N. Mahindroo, and M. Udayabanu, “Urtica dioica leaves modulates hippocampal smoothened-glioma associated oncogene-1 pathway and cognitive dysfunction in chronically stressed mice,” Biomedicine & Pharmacotherapy, vol. 83, pp. 676–686, 2016. View at Publisher · View at Google Scholar · View at Scopus
  83. V. Butterweck, H. Winterhoff, and M. Herkenham, “St John’s wort, hypericin, and imipramine: a comparative analysis of mRNA levels in brain areas involved in HPA axis control following short-term and long-term administration in normal and stressed rats,” Molecular Psychiatry, vol. 6, no. 5, pp. 547–564, 2001. View at Publisher · View at Google Scholar · View at Scopus
  84. M. L. Molendijk, B. A. A. Bus, P. Spinhoven et al., “Serum levels of brain-derived neurotrophic factor in major depressive disorder: state-trait issues, clinical features and pharmacological treatment,” Molecular Psychiatry, vol. 16, no. 11, pp. 1088–1095, 2011. View at Publisher · View at Google Scholar · View at Scopus
  85. M. Dell'agli and E. Bosisio, “Minor polar compounds of olive oil: composition, factors of variability and bioactivity,” Studies in Natural Products Chemistry, vol. 27, pp. 697–734, 2002. View at Publisher · View at Google Scholar · View at Scopus
  86. E. Muto, M. Dell'Agli, E. Sangiovanni et al., “Olive oil phenolic extract regulates interleukin-8 expression by transcriptional and posttranscriptional mechanisms in Caco-2 cells,” Molecular Nutrition & Food Research, vol. 59, no. 6, pp. 1217–1221, 2015. View at Publisher · View at Google Scholar · View at Scopus
  87. S. De Nicolo, L. Tarani, M. Ceccanti et al., “Effects of olive polyphenols administration on nerve growth factor and brain-derived neurotrophic factor in the mouse brain,” Nutrition, vol. 29, no. 4, pp. 681–687, 2013. View at Publisher · View at Google Scholar · View at Scopus
  88. V. Carito, A. Venditti, A. Bianco et al., “Effects of olive leaf polyphenols on male mouse brain NGF, BDNF and their receptors TrkA, TrkB and p75,” Natural Product Research, vol. 28, no. 22, pp. 1970–1984, 2014. View at Publisher · View at Google Scholar · View at Scopus
  89. C. S. Pase, A. M. Teixeira, K. Roversi et al., “Olive oil-enriched diet reduces brain oxidative damages and ameliorates neurotrophic factor gene expression in different life stages of rats,” The Journal of Nutritional Biochemistry, vol. 26, no. 11, pp. 1200–1207, 2015. View at Publisher · View at Google Scholar · View at Scopus
  90. A. Zheng, H. Li, K. Cao et al., “Maternal hydroxytyrosol administration improves neurogenesis and cognitive function in prenatally stressed offspring,” The Journal of Nutritional Biochemistry, vol. 26, no. 2, pp. 190–199, 2015. View at Publisher · View at Google Scholar · View at Scopus
  91. M. Arunsundar, T. S. Shanmugarajan, and V. Ravichandran, “3,4-Dihydroxyphenylethanol attenuates spatio-cognitive deficits in an Alzheimer’s disease mouse model: modulation of the molecular signals in neuronal survival-apoptotic programs,” Neurotoxicity Research, vol. 27, no. 2, pp. 143–155, 2015. View at Publisher · View at Google Scholar · View at Scopus
  92. A. Sanchez-Villegas, C. Galbete, M. A. Martinez-Gonzalez et al., “The effect of the Mediterranean diet on plasma brain-derived neurotrophic factor (BDNF) levels: the PREDIMED-NAVARRA randomized trial,” Nutritional Neuroscience, vol. 14, no. 5, pp. 195–201, 2011. View at Publisher · View at Google Scholar
  93. M. Ceccanti, V. Carito, M. Vitali et al., “Serum BDNF and NGF modulation by olive polyphenols in alcoholics during withdrawal,” Journal of Alcoholism & Drug Dependence, vol. 3, no. 4, pp. 214–219, 2015. View at Publisher · View at Google Scholar
  94. Z. F. Lu, Y. X. Shen, P. Zhang et al., “Ginsenoside Rg1 promotes proliferation and neurotrophin expression of olfactory ensheathing cells,” Journal of Asian Natural Products Research, vol. 12, no. 4, pp. 265–272, 2010. View at Publisher · View at Google Scholar · View at Scopus
  95. J. Ma, J. Liu, Q. Wang, H. Yu, Y. Chen, and L. Xiang, “The beneficial effect of ginsenoside Rg1 on Schwann cells subjected to hydrogen peroxide induced oxidative injury,” International Journal of Biological Sciences, vol. 9, no. 6, pp. 624–636, 2013. View at Publisher · View at Google Scholar · View at Scopus
  96. X. Li, M. Li, Y. Li, Q. Quan, and J. Wang, “Cellular and molecular mechanisms underlying the action of ginsenoside Rg1 against Alzheimer’s disease,” Neural Regeneration Research, vol. 7, no. 36, pp. 2860–2866, 2012. View at Google Scholar
  97. J. Y. Han, S. Y. Ahn, E. H. Oh et al., “Red ginseng extract attenuates kainate-induced excitotoxicity by antioxidative effects,” Evidence-based Complementary and Alternative Medicine, vol. 2012, Article ID 479016, 10 pages, 2012. View at Publisher · View at Google Scholar · View at Scopus
  98. X. Y. Liu, X. Y. Zhou, J. C. Hou et al., “Ginsenoside Rd promotes neurogenesis in rat brain after transient focal cerebral ischemia via activation of PI3K/Akt pathway,” Acta Pharmacologica Sinica, vol. 36, no. 4, pp. 421–428, 2015. View at Publisher · View at Google Scholar · View at Scopus
  99. H. Dang, Y. Chen, X. Liu et al., “Antidepressant effects of ginseng total saponins in the forced swimming test and chronic mild stress models of depression,” Progress in Neuro-Psychopharmacology and Biological Psychiatry, vol. 33, no. 8, pp. 1417–1424, 2009. View at Publisher · View at Google Scholar · View at Scopus
  100. B. Jiang, Z. Xiong, J. Yang et al., “Antidepressant-like effects of ginsenoside Rg1 are due to activation of the BDNF signalling pathway and neurogenesis in the hippocampus,” British Journal of Pharmacology, vol. 166, no. 6, pp. 1872–1887, 2012. View at Publisher · View at Google Scholar · View at Scopus
  101. J. Cui, L. Jiang, and H. Xiang, “Ginsenoside Rb3 exerts antidepressant-like effects in several animal models,” Journal of Psychopharmacology, vol. 26, no. 5, pp. 697–713, 2012. View at Publisher · View at Google Scholar · View at Scopus
  102. X. Zhu, R. Gao, Z. Liu et al., “Ginsenoside Rg1 reverses stress-induced depression-like behaviours and brain-derived neurotrophic factor expression within the prefrontal cortex,” European Journal of Neuroscience, vol. 44, no. 2, pp. 1878–1885, 2016. View at Publisher · View at Google Scholar · View at Scopus
  103. Z. Liu, Y. Qi, Z. Cheng, X. Zhu, C. Fan, and S. Y. Yu, “The effects of ginsenoside Rg1 on chronic stress induced depression-like behaviors, BDNF expression and the phosphorylation of PKA and CREB in rats,” Neuroscience, vol. 322, pp. 358–369, 2016. View at Publisher · View at Google Scholar · View at Scopus
  104. B. Lee, B. Sur, S. G. Cho et al., “Ginsenoside Rb1 rescues anxiety-like responses in a rat model of post-traumatic stress disorder,” Journal of Natural Medicines, vol. 70, no. 2, pp. 133–144, 2016. View at Publisher · View at Google Scholar · View at Scopus
  105. L. Chen, J. Dai, Z. Wang, H. Zhang, Y. Huang, and Y. Zhao, “Ginseng total saponins reverse corticosterone-induced changes in depression-like behavior and hippocampal plasticity-related proteins by interfering with GSK-3β-CREB signaling pathway,” Evidence-based Complementary and Alternative Medicine, vol. 2014, Article ID 506735, 11 pages, 2014. View at Publisher · View at Google Scholar · View at Scopus
  106. B. Lee, I. Shim, H. Lee, and D. H. Hahm, “Effect of ginsenoside Re on depression- and anxiety-like behaviors and cognition memory deficit induced by repeated immobilization in rats,” Journal of Microbiology and Biotechnology, vol. 22, no. 5, pp. 708–720, 2012. View at Publisher · View at Google Scholar · View at Scopus
  107. W. Kezhu, X. Pan, L. Cong et al., “Effects of ginsenoside Rg1 on learning and memory in a reward-directed instrumental conditioning task in chronic restraint stressed rats,” Phytotherapy Research, vol. 31, no. 1, pp. 81–89, 2016. View at Publisher · View at Google Scholar · View at Scopus
  108. M. Kim, S. O. Kim, M. Lee et al., “Effects of ginsenoside Rb1 on the stress-induced changes of BDNF and HSP70 expression in rat hippocampus,” Environmental Toxicology and Pharmacology, vol. 38, no. 1, pp. 257–262, 2014. View at Publisher · View at Google Scholar · View at Scopus
  109. B. Lee, J. Park, S. Kwon et al., “Effect of wild ginseng on scopolamine-induced acetylcholine depletion in the rat hippocampus,” Journal of Pharmacy and Pharmacology, vol. 62, no. 2, pp. 263–271, 2010. View at Publisher · View at Google Scholar · View at Scopus
  110. E. J. Kim, I. H. Jung, T. K. Van Le, J. J. Jeong, N. J. Kim, and D. H. Kim, “Ginsenosides Rg5 and Rh3 protect scopolamine-induced memory deficits in mice,” Journal of Ethnopharmacology, vol. 146, no. 1, pp. 294–299, 2013. View at Publisher · View at Google Scholar · View at Scopus
  111. S. Chu, J. Gu, L. Feng et al., “Ginsenoside Rg5 improves cognitive dysfunction and beta-amyloid deposition in STZ-induced memory impaired rats via attenuating neuroinflammatory responses,” International Immunopharmacology, vol. 19, no. 2, pp. 317–326, 2014. View at Publisher · View at Google Scholar · View at Scopus
  112. D. Zhu, M. Liu, Y. Yang et al., “Ginsenoside Rd ameliorates experimental autoimmune encephalomyelitis in C57BL/6 mice,” Journal of Neuroscience Research, vol. 92, no. 9, pp. 1217–1226, 2014. View at Publisher · View at Google Scholar · View at Scopus
  113. Y. Q. Shi, T. W. Huang, L. M. Chen et al., “Ginsenoside Rg1 attenuates amyloid-β content, regulates PKA/CREB activity, and improves cognitive performance in SAMP8 mice,” Journal of Alzheimer's Disease, vol. 19, no. 3, pp. 977–989, 2010. View at Publisher · View at Google Scholar · View at Scopus
  114. G. Zhu, Y. Wang, J. Li, and J. Wang, “Chronic treatment with ginsenoside Rg1 promotes memory and hippocampal long-term potentiation in middle-aged mice,” Neuroscience, vol. 292, pp. 81–89, 2015. View at Publisher · View at Google Scholar · View at Scopus
  115. F. Li, X. Wu, J. Li, and Q. Niu, “Ginsenoside Rg1 ameliorates hippocampal long-term potentiation and memory in an Alzheimer’s disease model,” Molecular Medicine Reports, vol. 13, no. 6, pp. 4904–4910, 2016. View at Publisher · View at Google Scholar · View at Scopus
  116. X. Q. Gao, C. X. Yang, G. J. Chen et al., “Ginsenoside Rb1 regulates the expressions of brain-derived neurotrophic factor and caspase-3 and induces neurogenesis in rats with experimental cerebral ischemia,” Journal of Ethnopharmacology, vol. 132, no. 2, pp. 393–399, 2010. View at Publisher · View at Google Scholar · View at Scopus
  117. Z. Jiang, Y. Wang, X. Zhang et al., “Preventive and therapeutic effects of ginsenoside Rb1 for neural injury during cerebral infarction in rats,” The American Journal of Chinese Medicine, vol. 41, no. 02, pp. 341–352, 2013. View at Publisher · View at Google Scholar · View at Scopus
  118. Q. Wan, X. Ma, Z. J. Zhang et al., “Ginsenoside reduces cognitive impairment during chronic cerebral hypoperfusion through brain-derived neurotrophic factor regulated by epigenetic modulation,” Molecular Neurobiology, vol. 54, no. 4, pp. 2889–2900, 2016. View at Publisher · View at Google Scholar · View at Scopus
  119. X. Zheng, Y. Liang, A. Kang et al., “Peripheral immunomodulation with ginsenoside Rg1 ameliorates neuroinflammation-induced behavioral deficits in rats,” Neuroscience, vol. 256, pp. 210–222, 2014. View at Publisher · View at Google Scholar · View at Scopus
  120. K. N. Salim, B. S. McEwen, and H. M. Chao, “Ginsenoside Rb1 regulates ChAT, NGF and trkA mRNA expression in the rat brain,” Molecular Brain Research, vol. 47, no. 1-2, pp. 177–182, 1997. View at Publisher · View at Google Scholar · View at Scopus
  121. J. Hou, J. Xue, M. Lee, J. Yu, and C. Sung, “Long-term administration of ginsenoside Rh1 enhances learning and memory by promoting cell survival in the mouse hippocampus,” International Journal of Molecular Medicine, vol. 33, no. 1, pp. 234–240, 2014. View at Publisher · View at Google Scholar · View at Scopus
  122. S. Kim, M. S. Kim, K. Park et al., “Hippocampus-dependent cognitive enhancement induced by systemic gintonin administration,” Journal of Ginseng Research, vol. 40, no. 1, pp. 55–61, 2016. View at Publisher · View at Google Scholar · View at Scopus
  123. L. T. Yi, J. Li, D. Geng et al., “Essential oil of Perilla frutescens-induced change in hippocampal expression of brain-derived neurotrophic factor in chronic unpredictable mild stress in mice,” Journal of Ethnopharmacology, vol. 147, no. 1, pp. 245–253, 2013. View at Publisher · View at Google Scholar · View at Scopus
  124. D. Miyazawa, Y. Yasui, K. Yamada, N. Ohara, and H. Okuyama, “Biochemical responses to dietary α-linolenic acid restriction proceed differently among brain regions in mice,” Biomedical Research, vol. 32, no. 4, pp. 237–245, 2011. View at Publisher · View at Google Scholar · View at Scopus
  125. D. Miyazawa, Y. Yasui, K. Yamada, N. Ohara, and H. Okuyama, “Regional differences of the mouse brain in response to an α-linolenic acid-restricted diet: neurotrophin content and protein kinase activity,” Life Sciences, vol. 87, no. 15-16, pp. 490–494, 2010. View at Publisher · View at Google Scholar · View at Scopus
  126. H. C. Lee, H. K. Ko, B. E. Huang, Y. H. Chu, and S. Y. Huang, “Antidepressant-like effects of Perilla frutescens seed oil during a forced swimming test,” Food & Function, vol. 5, no. 5, pp. 990–996, 2014. View at Publisher · View at Google Scholar · View at Scopus
  127. A. Y. Lee, J. M. Choi, J. Lee, M. H. Lee, S. Lee, and E. J. Cho, “Effects of vegetable oils with different fatty acid compositions on cognition and memory ability in Aβ25–35-induced Alzheimer’s disease mouse model,” Journal of Medicinal Food, vol. 19, no. 10, pp. 912–921, 2016. View at Publisher · View at Google Scholar · View at Scopus
  128. A. Panossian, G. Wikman, and J. Sarris, “Rosenroot (Rhodiola rosea): traditional use, chemical composition, pharmacology and clinical efficacy,” Phytomedicine, vol. 17, no. 7, pp. 481–493, 2010. View at Publisher · View at Google Scholar · View at Scopus
  129. H. B. Zhao, H. Ma, X. Q. Ha et al., “Salidroside induces rat mesenchymal stem cells to differentiate into dopaminergic neurons,” Cell Biology International, vol. 38, no. 4, pp. 462–471, 2014. View at Publisher · View at Google Scholar · View at Scopus
  130. L. P. Zhu, T. T. Wei, J. Gao et al., “Salidroside attenuates lipopolysaccharide (LPS) induced serum cytokines and depressive-like behavior in mice,” Neuroscience Letters, vol. 606, pp. 1–6, 2015. View at Publisher · View at Google Scholar · View at Scopus
  131. L. Bonaccini, A. Karioti, M. C. Bergonzi, and A. R. Bilia, “Effects of Salvia miltiorrhiza on CNS neuronal injury and degeneration: a plausible complementary role of Tanshinones and Depsides,” Planta Medica, vol. 81, no. 12-13, pp. 1003–1016, 2015. View at Publisher · View at Google Scholar · View at Scopus
  132. N. Zhang, T. Kang, Y. Xia et al., “Effects of salvianolic acid B on survival, self-renewal and neuronal differentiation of bone marrow derived neural stem cells,” European Journal of Pharmacology, vol. 697, no. 1–3, pp. 32–39, 2012. View at Publisher · View at Google Scholar · View at Scopus
  133. Y. Wang, J. Zhang, M. Han et al., “SMND-309 promotes neuron survival through the activation of the PI3K/Akt/CREB-signalling pathway,” Pharmaceutical Biology, vol. 54, no. 10, pp. 1982–1990, 2016. View at Publisher · View at Google Scholar · View at Scopus
  134. Y. W. Lee, D. H. Kim, S. J. Jeon et al., “Neuroprotective effects of salvianolic acid B on an Aβ25–35 peptide-induced mouse model of Alzheimer’s disease,” European Journal of Pharmacology, vol. 704, no. 1–3, pp. 70–77, 2013. View at Publisher · View at Google Scholar · View at Scopus
  135. Y. Teng, M. Q. Zhang, W. Wang et al., “Compound danshen tablet ameliorated aβ25-35-induced spatial memory impairment in mice via rescuing imbalance between cytokines and neurotrophins,” BMC Complementary and Alternative Medicine, vol. 14, no. 1, p. 23, 2014. View at Publisher · View at Google Scholar · View at Scopus
  136. J. H. Park, O. K. Park, B. Yan et al., “Neuroprotection via maintenance or increase of antioxidants and neurotrophic factors in ischemic gerbil hippocampus treated with tanshinone I,” Chinese Medical Journal, vol. 127, no. 19, pp. 3396–3405, 2014. View at Google Scholar
  137. M. Y. Chien, C. H. Chuang, C. M. Chern et al., “Salvianolic acid A alleviates ischemic brain injury through the inhibition of inflammation and apoptosis and the promotion of neurogenesis in mice,” Free Radical Biology & Medicine, vol. 99, pp. 508–519, 2016. View at Publisher · View at Google Scholar · View at Scopus
  138. Q. He, S. Wang, X. Liu et al., “Salvianolate lyophilized injection promotes post-stroke functional recovery via the activation of VEGF and BDNF-TrkB-CREB signaling pathway,” International Journal of Clinical Experimental Medicine, vol. 8, no. 1, pp. 108–122, 2015. View at Google Scholar
  139. F. Allam, A. T. Dao, G. Chugh et al., “Grape powder supplementation prevents oxidative stress-induced anxiety-like behavior, memory impairment, and high blood pressure in rats,” The Journal of Nutrition, vol. 143, no. 6, pp. 835–842, 2013. View at Publisher · View at Google Scholar · View at Scopus
  140. N. Solanki, I. Alkadhi, F. Atrooz, G. Patki, and S. Salim, “Grape powder prevents cognitive, behavioral, and biochemical impairments in a rat model of posttraumatic stress disorder,” Nutrition Research, vol. 35, no. 1, pp. 65–75, 2015. View at Publisher · View at Google Scholar · View at Scopus
  141. M. Fiore, G. Laviola, L. Aloe, V. di Fausto, R. Mancinelli, and M. Ceccanti, “Early exposure to ethanol but not red wine at the same alcohol concentration induces behavioral and brain neurotrophin alterations in young and adult mice,” Neurotoxicology, vol. 30, no. 1, pp. 59–71, 2009. View at Publisher · View at Google Scholar · View at Scopus
  142. M. Ceccanti, R. Mancinelli, P. Tirassa et al., “Early exposure to ethanol or red wine and long-lasting effects in aged mice. A study on nerve growth factor, brain-derived neurotrophic factor, hepatocyte growth factor, and vascular endothelial growth factor,” Neurobiology of Aging, vol. 33, no. 2, pp. 359–367, 2012. View at Publisher · View at Google Scholar · View at Scopus
  143. N. J. Dar, A. Hamid, and M. Ahmad, “Pharmacologic overview of Withania somnifera, the Indian ginseng,” Cellular and Molecular Life Sciences, vol. 72, no. 23, pp. 4445–4460, 2015. View at Publisher · View at Google Scholar · View at Scopus
  144. A. Konar, N. Shah, R. Singh et al., “Protective role of Ashwagandha leaf extract and its component withanone on scopolamine-induced changes in the brain and brain-derived cells,” PLoS One, vol. 6, no. 11, article e27265, 2011. View at Publisher · View at Google Scholar · View at Scopus
  145. I. Baitharu, V. Jain, S. N. Deep et al., “Withania somnifera root extract ameliorates hypobaric hypoxia induced memory impairment in rats,” Journal of Ethnopharmacology, vol. 145, no. 2, pp. 431–441, 2013. View at Publisher · View at Google Scholar · View at Scopus