Table of Contents Author Guidelines Submit a Manuscript
Neural Plasticity
Volume 2017, Article ID 6871089, 11 pages
https://doi.org/10.1155/2017/6871089
Review Article

The Role of Neural Plasticity in Depression: From Hippocampus to Prefrontal Cortex

1Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, 218 Ziqiang Street, Changchun 130041, China
2Anesthesiology Department, The Second Hospital of Jilin University, 218 Ziqiang Street, Changchun 130041, China
3Anesthesiology Department, The Third Hospital of Jilin University, 126 Xiantai Street, Changchun 130033, China

Correspondence should be addressed to Wei Yang; nc.ude.ulj@2002gnayw and Ranji Cui; nc.ude.ulj@ijnariuc

Received 3 November 2016; Accepted 4 January 2017; Published 26 January 2017

Academic Editor: Aijun Li

Copyright © 2017 Wei Liu et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. S. R. Wainwright and L. A. M. Galea, “The neural plasticity theory of depression: assessing the roles of adult neurogenesis and psa-ncam within the hippocampus,” Neural Plasticity, vol. 2013, Article ID 805497, 14 pages, 2013. View at Publisher · View at Google Scholar · View at Scopus
  2. R. S. Duman, G. K. Aghajanian, G. Sanacora, and J. H. Krystal, “Synaptic plasticity and depression: new insights from stress and rapid-acting antidepressants,” Nature Medicine, vol. 22, no. 3, pp. 238–249, 2016. View at Publisher · View at Google Scholar · View at Scopus
  3. M. Kuhn, N. Höger, B. Feige, J. Blechert, C. Normann, and C. Nissen, “Fear extinction as a model for synaptic plasticity in major depressive disorder,” PLoS ONE, vol. 9, no. 12, Article ID e115280, 2014. View at Publisher · View at Google Scholar · View at Scopus
  4. C. Pittenger and R. S. Duman, “Stress, depression, and neuroplasticity: a convergence of mechanisms,” Neuropsychopharmacology, vol. 33, no. 1, pp. 88–109, 2008. View at Publisher · View at Google Scholar · View at Scopus
  5. R. C. Malenka and M. F. Bear, “LTP and LTD: an embarrassment of riches,” Neuron, vol. 44, no. 1, pp. 5–21, 2004. View at Publisher · View at Google Scholar · View at Scopus
  6. J. J. Kim and D. M. Diamond, “The stressed hippocampus, synaptic plasticity and lost memories,” Nature Reviews Neuroscience, vol. 3, no. 6, pp. 453–462, 2002. View at Publisher · View at Google Scholar · View at Scopus
  7. L. Xu, R. Anwyl, and M. J. Rowan, “Behavioural stress facilitates the induction of long-term depression in the hippocampus,” Nature, vol. 387, no. 6632, pp. 497–500, 1997. View at Publisher · View at Google Scholar · View at Scopus
  8. H. Son, M. Banasr, M. Choi et al., “Neuritin produces antidepressant actions and blocks the neuronal and behavioral deficits caused by chronic stress,” Proceedings of the National Academy of Sciences of the United States of America, vol. 109, no. 28, pp. 11378–11383, 2012. View at Publisher · View at Google Scholar · View at Scopus
  9. G. Masi and P. Brovedani, “The hippocampus, neurotrophic factors and depression: possible implications for the pharmacotherapy of depression,” CNS Drugs, vol. 25, no. 11, pp. 913–931, 2011. View at Publisher · View at Google Scholar · View at Scopus
  10. M. Gross, A. Sheinin, E. Nesher et al., “Early onset of cognitive impairment is associated with altered synaptic plasticity and enhanced hippocampal GluA1 expression in a mouse model of depression,” Neurobiology of Aging, vol. 36, no. 5, pp. 1938–1952, 2015. View at Publisher · View at Google Scholar · View at Scopus
  11. A. Dellarole, P. Morton, R. Brambilla et al., “Neuropathic pain-induced depressive-like behavior and hippocampal neurogenesis and plasticity are dependent on TNFR1 signaling,” Brain, Behavior, and Immunity, vol. 41, no. 1, pp. 65–81, 2014. View at Publisher · View at Google Scholar · View at Scopus
  12. W. N. Marsden, “Synaptic plasticity in depression: molecular, cellular and functional correlates,” Progress in Neuro-Psychopharmacology and Biological Psychiatry, vol. 43, pp. 168–184, 2013. View at Publisher · View at Google Scholar · View at Scopus
  13. Y. She, J. Xu, Y. Duan et al., “Possible antidepressant effects and mechanism of electroacupuncture in behaviors and hippocampal synaptic plasticity in a depression rat model,” Brain Research, vol. 1629, pp. 291–297, 2015. View at Publisher · View at Google Scholar · View at Scopus
  14. M. Gómez-Galán, T. Femenía, E. Åberg et al., “Running opposes the effects of social isolation on synaptic plasticity and transmission in a rat model of depression,” PLOS ONE, vol. 11, no. 10, Article ID e0165071, 2016. View at Publisher · View at Google Scholar
  15. Z. Zhang, W. Wang, P. Zhong et al., “Blockade of 2-arachidonoylglycerol hydrolysis produces antidepressant-like effects and enhances adult hippocampal neurogenesis and synaptic plasticity,” Hippocampus, vol. 25, no. 1, pp. 16–26, 2015. View at Publisher · View at Google Scholar · View at Scopus
  16. E. Zhang, S. Y. Yau, B. W. M. Lau et al., “Synaptic plasticity, but not hippocampal neurogenesis, mediated the counteractive effect of wolfberry on depression in rats,” Cell Transplantation, vol. 21, no. 12, pp. 2635–2649, 2012. View at Publisher · View at Google Scholar · View at Scopus
  17. S. W. Y. Chan, C. J. Harmer, R. Norbury, U. O'Sullivan, G. M. Goodwin, and M. J. Portella, “Hippocampal volume in vulnerability and resilience to depression,” Journal of Affective Disorders, vol. 189, pp. 199–202, 2016. View at Publisher · View at Google Scholar · View at Scopus
  18. F. Nifosì, T. Toffanin, H. Follador et al., “Reduced right posterior hippocampal volume in women with recurrent familial pure depressive disorder,” Psychiatry Research—Neuroimaging, vol. 184, no. 1, pp. 23–28, 2010. View at Publisher · View at Google Scholar · View at Scopus
  19. F. Bouckaert, F.-L. De Winter, L. Emsell et al., “Grey matter volume increase following electroconvulsive therapy in patients with late life depression: A Longitudinal MRI Study,” Journal of Psychiatry and Neuroscience, vol. 41, no. 2, pp. 105–114, 2016. View at Publisher · View at Google Scholar · View at Scopus
  20. Y. I. Sheline, “Depression and the hippocampus: cause or effect?” Biological Psychiatry, vol. 70, no. 4, pp. 308–309, 2011. View at Publisher · View at Google Scholar · View at Scopus
  21. R. S. Duman and G. K. Aghajanian, “Synaptic dysfunction in depression: potential therapeutic targets,” Science, vol. 338, no. 6103, pp. 68–72, 2012. View at Publisher · View at Google Scholar · View at Scopus
  22. B. S. McEwen, L. Eiland, R. G. Hunter, and M. M. Miller, “Stress and anxiety: structural plasticity and epigenetic regulation as a consequence of stress,” Neuropharmacology, vol. 62, no. 1, pp. 3–12, 2012. View at Publisher · View at Google Scholar · View at Scopus
  23. G. M. MacQueen, K. Yucel, V. H. Taylor, K. Macdonald, and R. Joffe, “Posterior hippocampal volumes are associated with remission rates in patients with major depressive disorder,” Biological Psychiatry, vol. 64, no. 10, pp. 880–883, 2008. View at Publisher · View at Google Scholar · View at Scopus
  24. E. Fuchs and E. Gould, “In vivo neurogenesis in the adult brain: regulation and functional implications,” European Journal of Neuroscience, vol. 12, no. 7, pp. 2211–2214, 2000. View at Publisher · View at Google Scholar · View at Scopus
  25. K. L. Spalding, O. Bergmann, K. Alkass et al., “Dynamics of hippocampal neurogenesis in adult humans,” Cell, vol. 153, no. 6, pp. 1219–1227, 2013. View at Publisher · View at Google Scholar · View at Scopus
  26. I. Imayoshi, M. Sakamoto, T. Ohtsuka et al., “Roles of continuous neurogenesis in the structural and functional integrity of the adult forebrain,” Nature Neuroscience, vol. 11, no. 10, pp. 1153–1161, 2008. View at Publisher · View at Google Scholar · View at Scopus
  27. B. L. Jacobs, H. Van Praag, and F. H. Gage, “Adult brain neurogenesis and psychiatry: a novel theory of depression,” Molecular Psychiatry, vol. 5, no. 3, pp. 262–269, 2000. View at Publisher · View at Google Scholar · View at Scopus
  28. D. Petrik, D. C. Lagace, and A. J. Eisch, “The neurogenesis hypothesis of affective and anxiety disorders: are we mistaking the scaffolding for the building?” Neuropharmacology, vol. 62, no. 1, pp. 21–34, 2012. View at Publisher · View at Google Scholar · View at Scopus
  29. B. R. Miller and R. Hen, “The current state of the neurogenic theory of depression and anxiety,” Current Opinion in Neurobiology, vol. 30, pp. 51–58, 2015. View at Publisher · View at Google Scholar · View at Scopus
  30. T. M. Madsen, A. Treschow, J. Bengzon, T. G. Bolwig, O. Lindvall, and A. Tingström, “Increased neurogenesis in a model of electroconvulsive therapy,” Biological Psychiatry, vol. 47, no. 12, pp. 1043–1049, 2000. View at Publisher · View at Google Scholar · View at Scopus
  31. B. W. Scott, J. M. Wojtowicz, and W. M. Burnham, “Neurogenesis in the dentate gyrus of the rat following electroconvulsive shock seizures,” Experimental Neurology, vol. 165, no. 2, pp. 231–236, 2000. View at Publisher · View at Google Scholar · View at Scopus
  32. G. Chen, G. Rajkowska, F. Du, N. Seraji-Bozorgzad, and H. K. Manji, “Enhancement of hippocampal neurogenesis by lithium,” Journal of Neurochemistry, vol. 75, no. 4, pp. 1729–1734, 2000. View at Publisher · View at Google Scholar · View at Scopus
  33. J. Benninghoff, H. Grunze, C. Schindler et al., “Ziprasidone—not haloperidol—induces more de-novo neurogenesis of adult neural stem cells derived from murine hippocampus,” Pharmacopsychiatry, vol. 46, no. 1, pp. 10–15, 2013. View at Publisher · View at Google Scholar · View at Scopus
  34. G. Keilhoff, H.-G. Bernstein, A. Becker, G. Grecksch, and G. Wolf, “Increased neurogenesis in a rat ketamine model of schizophrenia,” Biological Psychiatry, vol. 56, no. 5, pp. 317–322, 2004. View at Publisher · View at Google Scholar · View at Scopus
  35. T. D. Perera, J. D. Coplan, S. H. Lisanby et al., “Antidepressant-induced neurogenesis in the hippocampus of adult nonhuman primates,” Journal of Neuroscience, vol. 27, no. 18, pp. 4894–4901, 2007. View at Publisher · View at Google Scholar · View at Scopus
  36. M. Boldrini, T. H. Butt, A. N. Santiago et al., “Benzodiazepines and the potential trophic effect of antidepressants on dentate gyrus cells in mood disorders,” International Journal of Neuropsychopharmacology, vol. 17, no. 12, pp. 1923–1933, 2014. View at Publisher · View at Google Scholar · View at Scopus
  37. B. Hallahan, J. Newell, J. C. Soares et al., “Structural magnetic resonance imaging in bipolar disorder: an international collaborative mega-analysis of individual adult patient data,” Biological Psychiatry, vol. 69, no. 4, pp. 326–335, 2011. View at Publisher · View at Google Scholar · View at Scopus
  38. I. Tendolkar, M. van Beek, I. van Oostrom et al., “Electroconvulsive therapy increases hippocampal and amygdala volume in therapy refractory depression: A Longitudinal Pilot Study,” Psychiatry Research—Neuroimaging, vol. 214, no. 3, pp. 197–203, 2013. View at Publisher · View at Google Scholar · View at Scopus
  39. Y. Huang, N. J. Coupland, R. M. Lebel et al., “Structural changes in hippocampal subfields in major depressive disorder: a high-field magnetic resonance imaging study,” Biological Psychiatry, vol. 74, no. 1, pp. 62–68, 2013. View at Publisher · View at Google Scholar · View at Scopus
  40. P. J. Lucassen, V. M. Heine, M. B. Muller et al., “Stress, depression and hippocampal apoptosis,” CNS and Neurological Disorders—Drug Targets, vol. 5, no. 5, pp. 531–546, 2006. View at Publisher · View at Google Scholar · View at Scopus
  41. Y.-H. Sung, M.-S. Shin, S. Cho et al., “Depression-like state in maternal rats induced by repeated separation of pups is accompanied by a decrease of cell proliferation and an increase of apoptosis in the hippocampus,” Neuroscience Letters, vol. 470, no. 1, pp. 86–90, 2010. View at Publisher · View at Google Scholar · View at Scopus
  42. S.-B. Baek, G. Bahn, S.-J. Moon et al., “The phosphodiesterase type-5 inhibitor, tadalafil, improves depressive symptoms, ameliorates memory impairment, as well as suppresses apoptosis and enhances cell proliferation in the hippocampus of maternal-separated rat pups,” Neuroscience Letters, vol. 488, no. 1, pp. 26–30, 2011. View at Publisher · View at Google Scholar · View at Scopus
  43. B. Czéh and P. J. Lucassen, “What causes the hippocampal volume decrease in depression? Are neurogenesis, glial changes and apoptosis implicated?” European Archives of Psychiatry and Clinical Neuroscience, vol. 257, no. 5, pp. 250–260, 2007. View at Publisher · View at Google Scholar · View at Scopus
  44. V. M. Heine, S. Maslam, J. Zareno, M. Joëls, and P. J. Lucassen, “Suppressed proliferation and apoptotic changes in the rat dentate gyrus after acute and chronic stress are reversible,” European Journal of Neuroscience, vol. 19, no. 1, pp. 131–144, 2004. View at Publisher · View at Google Scholar · View at Scopus
  45. X. Huang, Y.-S. Mao, C. Li, H. Wang, and J.-L. Ji, “Venlafaxine inhibits apoptosis of hippocampal neurons by up-regulating brain-derived neurotrophic factor in a rat depression model,” Pharmazie, vol. 69, no. 12, pp. 909–916, 2014. View at Publisher · View at Google Scholar · View at Scopus
  46. A. Djordjevic, J. Djordjevic, I. Elaković, M. Adzic, G. Matić, and M. B. Radojcic, “Fluoxetine affects hippocampal plasticity, apoptosis and depressive-like behavior of chronically isolated rats,” Progress in Neuro-Psychopharmacology and Biological Psychiatry, vol. 36, no. 1, pp. 92–100, 2012. View at Publisher · View at Google Scholar · View at Scopus
  47. M. T. Treadway, M. L. Waskom, D. G. Dillon et al., “Illness progression, recent stress, and morphometry of hippocampal subfields and medial prefrontal cortex in major depression,” Biological Psychiatry, vol. 77, no. 3, pp. 285–294, 2015. View at Publisher · View at Google Scholar · View at Scopus
  48. M. Koenigs and J. Grafman, “The functional neuroanatomy of depression: distinct roles for ventromedial and dorsolateral prefrontal cortex,” Behavioural Brain Research, vol. 201, no. 2, pp. 239–243, 2009. View at Publisher · View at Google Scholar · View at Scopus
  49. E. K. Miller and J. D. Cohen, “An integrative theory of prefrontal cortex function,” Annual Review of Neuroscience, vol. 24, pp. 167–202, 2001. View at Publisher · View at Google Scholar · View at Scopus
  50. H. S. Mayberg, A. M. Lozano, V. Voon et al., “Deep brain stimulation for treatment-resistant depression,” Neuron, vol. 45, no. 5, pp. 651–660, 2005. View at Publisher · View at Google Scholar · View at Scopus
  51. M. D. Greicius, B. H. Flores, V. Menon et al., “Resting-state functional connectivity in major depression: abnormally increased contributions from subgenual cingulate cortex and thalamus,” Biological Psychiatry, vol. 62, no. 5, pp. 429–437, 2007. View at Publisher · View at Google Scholar · View at Scopus
  52. H. S. Mayberg, S. K. Brannan, J. L. Tekell et al., “Regional metabolic effects of fluoxetine in major depression: serial changes and relationship to clinical response,” Biological Psychiatry, vol. 48, no. 8, pp. 830–843, 2000. View at Publisher · View at Google Scholar · View at Scopus
  53. H. S. Mayberg, M. Liotti, S. K. Brannan et al., “Reciprocal limbic-cortical function and negative mood: converging PET findings in depression and normal sadness,” American Journal of Psychiatry, vol. 156, no. 5, pp. 675–682, 1999. View at Google Scholar · View at Scopus
  54. J. M. Ellenbogen, M. O. Hurford, D. S. Liebeskind, G. B. Neimark, and D. Weiss, “Ventromedial frontal lobe trauma,” Neurology, vol. 64, no. 4, p. 757, 2005. View at Publisher · View at Google Scholar · View at Scopus
  55. P. S. Sachdev and J. Sachdev, “Long-term outcome of neurosurgery for the treatment of resistant depression,” Journal of Neuropsychiatry and Clinical Neurosciences, vol. 17, no. 4, pp. 478–485, 2005. View at Publisher · View at Google Scholar · View at Scopus
  56. K. Grajny, H. Pyata, K. Spiegel et al., “Depression symptoms in chronic left hemisphere stroke are related to dorsolateral prefrontal cortex damage,” The Journal of Neuropsychiatry and Clinical Neurosciences, vol. 28, no. 4, pp. 292–298, 2016. View at Publisher · View at Google Scholar
  57. N. Marrus, A. Belden, T. Nishino et al., “Ventromedial prefrontal cortex thinning in preschool-onset depression,” Journal of Affective Disorders, vol. 180, pp. 79–86, 2015. View at Publisher · View at Google Scholar · View at Scopus
  58. Y. Yang, D. Yang, G. Tang et al., “Proteomics reveals energy and glutathione metabolic dysregulation in the prefrontal cortex of a rat model of depression,” Neuroscience, vol. 247, pp. 191–200, 2013. View at Publisher · View at Google Scholar · View at Scopus
  59. Y. B. Wei, P. A. Melas, J. C. Villaescusa et al., “MicroRNA 101b is downregulated in the prefrontal cortex of a genetic model of depression and targets the glutamate transporter SLC1A1 (EAAT3) in vitro,” International Journal of Neuropsychopharmacology, vol. 19, no. 12, 2016. View at Publisher · View at Google Scholar
  60. J. Zhao, R. W. H. Verwer, D. J. van Wamelen et al., “Prefrontal changes in the glutamate-glutamine cycle and neuronal/glial glutamate transporters in depression with and without suicide,” Journal of Psychiatric Research, vol. 82, pp. 8–15, 2016. View at Publisher · View at Google Scholar · View at Scopus
  61. G. Treccani, K. Gaarn du Jardin, G. Wegener, and H. K. Müller, “Differential expression of postsynaptic NMDA and AMPA receptor subunits in the hippocampus and prefrontal cortex of the flinders sensitive line rat model of depression,” Synapse, vol. 70, no. 11, pp. 471–474, 2016. View at Publisher · View at Google Scholar
  62. W. Wang, H. Guo, S. Zhang et al., “Targeted metabolomic pathway analysis and validation revealed glutamatergic disorder in the prefrontal cortex among the chronic social defeat stress mice model of depression,” Journal of Proteome Research, vol. 15, no. 10, pp. 3784–3792, 2016. View at Publisher · View at Google Scholar
  63. X.-C. Liu, S. Erhardt, M. Goiny, G. Engberg, and A. A. Mathé, “Decreased levels of kynurenic acid in prefrontal cortex in a genetic animal model of depression,” Acta Neuropsychiatrica, pp. 1–5, 2016. View at Publisher · View at Google Scholar · View at Scopus
  64. D. Arnone, A. N. Mumuni, S. Jauhar, B. Condon, and J. Cavanagh, “Indirect evidence of selective glial involvement in glutamate-based mechanisms of mood regulation in depression: meta-analysis of absolute prefrontal neuro-metabolic concentrations,” European Neuropsychopharmacology, vol. 25, no. 8, pp. 1109–1117, 2015. View at Publisher · View at Google Scholar · View at Scopus
  65. G. Chen, D. Yang, Y. Yang et al., “Amino acid metabolic dysfunction revealed in the prefrontal cortex of a rat model of depression,” Behavioural Brain Research, vol. 278, pp. 286–292, 2015. View at Publisher · View at Google Scholar · View at Scopus
  66. P. Veeraiah, J. M. Noronha, S. Maitra et al., “Dysfunctional glutamatergic and γ-aminobutyric acidergic activities in prefrontal cortex of mice in social defeat model of depression,” Biological Psychiatry, vol. 76, no. 3, pp. 231–238, 2014. View at Publisher · View at Google Scholar · View at Scopus
  67. A. M. McEwen, D. T. A. Burgess, C. C. Hanstock et al., “Increased glutamate levels in the medial prefrontal cortex in patients with postpartum depression,” Neuropsychopharmacology, vol. 37, no. 11, pp. 2428–2435, 2012. View at Publisher · View at Google Scholar · View at Scopus
  68. A. G. Walker, C. J. Wenthur, Z. Xiang et al., “Metabotropic glutamate receptor 3 activation is required for long-term depression in medial prefrontal cortex and fear extinction,” Proceedings of the National Academy of Sciences of the United States of America, vol. 112, no. 4, pp. 1196–1201, 2015. View at Publisher · View at Google Scholar · View at Scopus
  69. O. Kaut, I. Schmitt, A. Hofmann et al., “Aberrant NMDA receptor DNA methylation detected by epigenome-wide analysis of hippocampus and prefrontal cortex in major depression,” European Archives of Psychiatry and Clinical Neuroscience, vol. 265, no. 4, pp. 331–341, 2015. View at Publisher · View at Google Scholar · View at Scopus
  70. K. Ma, L. Guo, A. Xu, S. Cui, and J.-H. Wang, “Molecular mechanism for stress-induced depression assessed by sequencing miRNA and mRNA in medial prefrontal cortex,” PLoS ONE, vol. 11, no. 7, Article ID e0159093, 2016. View at Publisher · View at Google Scholar · View at Scopus
  71. Y. Dwivedi, B. Roy, G. Lugli, H. Rizavi, H. Zhang, and N. R. Smalheiser, “Chronic corticosterone-mediated dysregulation of microRNA network in prefrontal cortex of rats: relevance to depression pathophysiology,” Translational psychiatry, vol. 5, p. e682, 2015. View at Publisher · View at Google Scholar · View at Scopus
  72. M. Kinou, R. Takizawa, K. Marumo et al., “Differential spatiotemporal characteristics of the prefrontal hemodynamic response and their association with functional impairment in schizophrenia and major depression,” Schizophrenia Research, vol. 150, no. 2-3, pp. 459–467, 2013. View at Publisher · View at Google Scholar · View at Scopus
  73. N. Tsujii, W. Mikawa, E. Tsujimoto et al., “Relationship between prefrontal hemodynamic responses and quality of life differs between melancholia and non-melancholic depression,” Psychiatry Research—Neuroimaging, vol. 253, pp. 26–35, 2016. View at Publisher · View at Google Scholar · View at Scopus
  74. S. Pu, K. Nakagome, T. Yamada et al., “Prefrontal activation predicts social functioning improvement after initial treatment in late-onset depression,” Journal of Psychiatric Research, vol. 62, pp. 62–70, 2015. View at Publisher · View at Google Scholar · View at Scopus
  75. H. Akashi, N. Tsujii, W. Mikawa, T. Adachi, E. Kirime, and O. Shirakawa, “Prefrontal cortex activation is associated with a discrepancy between self- and observer-rated depression severities of major depressive disorder: A Multichannel Near-Infrared Spectroscopy Study,” Journal of Affective Disorders, vol. 174, pp. 165–172, 2015. View at Publisher · View at Google Scholar · View at Scopus
  76. L. Schulze, S. Wheeler, M. P. McAndrews, C. J. E. Solomon, P. Giacobbe, and J. Downar, “Cognitive safety of dorsomedial prefrontal repetitive transcranial magnetic stimulation in major depression,” European Neuropsychopharmacology, vol. 26, no. 7, pp. 1213–1226, 2016. View at Publisher · View at Google Scholar · View at Scopus
  77. L. B. Marangell, M. Martinez, R. A. Jurdi, and H. Zboyan, “Neurostimulation therapies in depression: a review of new modalities,” Acta Psychiatrica Scandinavica, vol. 116, no. 3, pp. 174–181, 2007. View at Publisher · View at Google Scholar · View at Scopus
  78. N. Bakker, S. Shahab, P. Giacobbe et al., “RTMS of the dorsomedial prefrontal cortex for major depression: safety, tolerability, effectiveness, and outcome predictors for 10 Hz versus intermittent theta-burst stimulation,” Brain Stimulation, vol. 8, no. 2, pp. 208–215, 2015. View at Publisher · View at Google Scholar · View at Scopus
  79. J. Downar, J. Geraci, T. V. Salomons et al., “Anhedonia and reward-circuit connectivity distinguish nonresponders from responders to dorsomedial prefrontal repetitive transcranial magnetic stimulation in major depression,” Biological Psychiatry, vol. 76, no. 3, pp. 176–185, 2014. View at Publisher · View at Google Scholar · View at Scopus
  80. J. Prasser, M. Schecklmann, T. B. Poeppl et al., “Bilateral prefrontal rTMS and theta burst TMS as an add-on treatment for depression: a randomized placebo controlled trial,” World Journal of Biological Psychiatry, vol. 16, no. 1, pp. 57–65, 2015. View at Publisher · View at Google Scholar · View at Scopus
  81. M. Cano, N. Cardoner, M. Urretavizcaya et al., “Modulation of limbic and prefrontal connectivity by electroconvulsive therapy in treatment-resistant depression: A Preliminary Study,” Brain Stimulation, vol. 9, no. 1, pp. 65–71, 2016. View at Publisher · View at Google Scholar · View at Scopus
  82. N. R. Williams, E. B. Short, T. Hopkins et al., “Five-year follow-up of bilateral epidural prefrontal cortical stimulation for treatment-resistant depression,” Brain Stimulation, vol. 9, no. 6, pp. 897–904, 2016. View at Publisher · View at Google Scholar
  83. J. Burgdorf, E. Colechio, P. Stanton, and J. Panksepp, “Positive Emotional learning induces resilience to depression: a role for NMDA receptor-mediated synaptic plasticity,” Current Neuropharmacology, vol. 15, no. 8, pp. 3–10, 2017. View at Publisher · View at Google Scholar
  84. D. M. Gerhard, E. S. Wohleb, and R. S. Duman, “Emerging treatment mechanisms for depression: focus on glutamate and synaptic plasticity,” Drug Discovery Today, vol. 21, no. 3, pp. 454–464, 2016. View at Publisher · View at Google Scholar · View at Scopus
  85. P. Belujon and A. A. Grace, “Restoring mood balance in depression: ketamine reverses deficit in dopamine-dependent synaptic plasticity,” Biological Psychiatry, vol. 76, no. 12, pp. 927–936, 2014. View at Publisher · View at Google Scholar · View at Scopus
  86. B. Gellén, K. Völgyi, B. A. Györffy et al., “Proteomic investigation of the prefrontal cortex in the rat clomipramine model of depression,” Journal of Proteomics, vol. 153, pp. 53–64, 2017. View at Publisher · View at Google Scholar
  87. F. Guo, Q. Zhang, B. Zhang et al., “Burst-firing patterns in the prefrontal cortex underlying the neuronal mechanisms of depression probed by antidepressants,” European Journal of Neuroscience, vol. 40, no. 10, pp. 3538–3547, 2014. View at Publisher · View at Google Scholar · View at Scopus
  88. S. Aboul-Fotouh, “Behavioral effects of nicotinic antagonist mecamylamine in a rat model of depression: prefrontal cortex level of BDNF protein and monoaminergic neurotransmitters,” Psychopharmacology, vol. 232, no. 6, pp. 1095–1105, 2015. View at Publisher · View at Google Scholar · View at Scopus
  89. T. Larrieu, L. M. Hilal, C. Fourrier et al., “Nutritional omega-3 modulates neuronal morphology in the prefrontal cortex along with depression-related behavior through corticosterone secretion,” Translational Psychiatry, vol. 4, no. 9, article e437, 2014. View at Publisher · View at Google Scholar · View at Scopus
  90. M. G. Baxter and E. A. Murray, “The amygdala and reward,” Nature Reviews Neuroscience, vol. 3, no. 7, pp. 563–573, 2002. View at Publisher · View at Google Scholar · View at Scopus
  91. M.-C. Ko, Y.-H. Hung, P.-Y. Ho, Y.-L. Yang, and K.-T. Lu, “Neonatal glucocorticoid treatment increased depression-like behaviour in adult rats,” International Journal of Neuropsychopharmacology, vol. 17, no. 12, pp. 1995–2004, 2014. View at Publisher · View at Google Scholar · View at Scopus
  92. K. Zou, W. Deng, T. Li et al., “Changes of brain morphometry in first-episode, drug-naïve, non-late-life adult patients with major depression: an optimized voxel-based morphometry study,” Biological Psychiatry, vol. 67, no. 2, pp. 186–188, 2010. View at Publisher · View at Google Scholar · View at Scopus
  93. M. Bellani, M. Baiano, and P. Brambilla, “Brain anatomy of major depression II. Focus on amygdala,” Epidemiology and Psychiatric Sciences, vol. 20, no. 1, pp. 33–36, 2011. View at Publisher · View at Google Scholar · View at Scopus
  94. H. Lakshminarasimhan and S. Chattarji, “Stress leads to contrasting effects on the levels of brain derived neurotrophic factor in the hippocampus and amygdala,” PLoS ONE, vol. 7, no. 1, Article ID e30481, 2012. View at Publisher · View at Google Scholar · View at Scopus
  95. B. Karolewicz, K. Szebeni, T. Gilmore, D. MacIag, C. A. Stockmeier, and G. A. Ordway, “Elevated levels of NR2A and PSD-95 in the lateral amygdala in depression,” International Journal of Neuropsychopharmacology, vol. 12, no. 2, pp. 143–153, 2009. View at Publisher · View at Google Scholar · View at Scopus
  96. S.-D. Chen, Y.-L. Wang, S.-F. Liang, and F.-Z. Shaw, “Rapid amygdala kindling causes motor seizure and comorbidity of anxiety- and depression-like behaviors in rats,” Frontiers in Behavioral Neuroscience, vol. 10, article 129, 2016. View at Publisher · View at Google Scholar · View at Scopus
  97. W. Li, B. D. Ward, C. Xie et al., “Amygdala network dysfunction in late-life depression phenotypes: relationships with symptom dimensions,” Journal of Psychiatric Research, vol. 70, pp. 121–129, 2015. View at Publisher · View at Google Scholar · View at Scopus
  98. Y. F. Li, J. C. Yan, D. Q. Wang et al., “Magnetic resonance study of the structure and function of the hippocampus and amygdala in patients with depression,” Chinese Medical Journal, vol. 127, no. 20, pp. 3610–3615, 2014. View at Publisher · View at Google Scholar · View at Scopus
  99. N. Romanczuk-Seiferth, L. Pöhland, S. Mohnke et al., “Larger amygdala volume in first-degree relatives of patients with major depression,” NeuroImage: Clinical, vol. 5, pp. 62–68, 2014. View at Publisher · View at Google Scholar · View at Scopus
  100. M. Pilhatsch, N. C. Vetter, T. Hübner et al., “Amygdala-function perturbations in healthy mid-adolescents with familial liability for depression,” Journal of the American Academy of Child and Adolescent Psychiatry, vol. 53, no. 5, pp. 559–568, 2014. View at Publisher · View at Google Scholar · View at Scopus
  101. K. E. Wonch, C. B. de Medeiros, J. A. Barrett et al., “Postpartum depression and brain response to infants: differential amygdala response and connectivity,” Social Neuroscience, vol. 11, no. 6, pp. 600–617, 2016. View at Publisher · View at Google Scholar · View at Scopus
  102. Y. Yue, Y. Yuan, Z. Hou, W. Jiang, F. Bai, and Z. Zhang, “Abnormal functional connectivity of amygdala in late-onset depression was associated with cognitive deficits,” PLoS ONE, vol. 8, no. 9, Article ID e75058, 2013. View at Publisher · View at Google Scholar · View at Scopus
  103. K. R. Luking, G. Repovs, A. C. Belden et al., “Functional connectivity of the amygdala in early-childhood-onset depression,” Journal of the American Academy of Child and Adolescent Psychiatry, vol. 50, no. 10, pp. 1027.e3–1041.e3, 2011. View at Publisher · View at Google Scholar · View at Scopus
  104. C. G. Connolly, T. C. Ho, E. H. Blom et al., “Resting-state functional connectivity of the amygdala and longitudinal changes in depression severity in adolescent depression,” Journal of Affective Disorders, vol. 207, pp. 86–94, 2017. View at Publisher · View at Google Scholar
  105. J. R. Swartz, A. A. Prather, C. R. Di Iorio, R. Bogdan, and A. R. Hariri, “A functional interleukin-18 haplotype predicts depression and anxiety through increased threat-related amygdala reactivity in women but not men,” Neuropsychopharmacology, vol. 42, pp. 419–426, 2017. View at Publisher · View at Google Scholar · View at Scopus
  106. S. Davidson, L. Shanley, P. Cowie et al., “Analysis of the effects of depression associated polymorphisms on the activity of the BICC1 promoter in amygdala neurones,” Pharmacogenomics Journal, vol. 16, no. 4, pp. 366–374, 2016. View at Publisher · View at Google Scholar · View at Scopus
  107. A. Qiu, T. T. Anh, Y. Li et al., “Prenatal maternal depression alters amygdala functional connectivity in 6-month-old infants,” Translational Psychiatry, vol. 5, no. 2, article e508, 2015. View at Publisher · View at Google Scholar · View at Scopus
  108. M. Gilliam, E. E. Forbes, P. J. Gianaros, K. I. Erickson, L. M. Brennan, and D. S. Shaw, “Maternal depression in childhood and aggression in young adulthood: evidence for mediation by offspring amygdala-hippocampal volume ratio,” Journal of Child Psychology and Psychiatry and Allied Disciplines, vol. 56, no. 10, pp. 1083–1091, 2015. View at Publisher · View at Google Scholar · View at Scopus
  109. N. Doerig, T. Krieger, D. Altenstein et al., “Amygdala response to self-critical stimuli and symptom improvement in psychotherapy for depression,” British Journal of Psychiatry, vol. 208, no. 2, pp. 175–181, 2016. View at Publisher · View at Google Scholar · View at Scopus
  110. J. Liu, J. Fang, Z. Wang et al., “Transcutaneous vagus nerve stimulation modulates amygdala functional connectivity in patients with depression,” Journal of Affective Disorders, vol. 205, pp. 319–326, 2016. View at Publisher · View at Google Scholar · View at Scopus
  111. V. Zotev, H. Yuan, M. Misaki et al., “Correlation between amygdala BOLD activity and frontal EEG asymmetry during real-time fMRI neurofeedback training in patients with depression,” NeuroImage: Clinical, vol. 11, pp. 224–238, 2016. View at Publisher · View at Google Scholar · View at Scopus
  112. S. H. Joshi, R. T. Espinoza, T. Pirnia et al., “Structural plasticity of the hippocampus and amygdala induced by electroconvulsive therapy in major depression,” Biological Psychiatry, vol. 79, no. 4, pp. 282–292, 2016. View at Publisher · View at Google Scholar · View at Scopus
  113. R. Ramasubbu, A. Burgess, I. Gaxiola-Valdez et al., “Amygdala responses to quetiapine XR and citalopram treatment in major depression: the role of 5-HTTLPR-S/Lg polymorphisms,” Human Psychopharmacology, vol. 31, no. 2, pp. 144–155, 2016. View at Publisher · View at Google Scholar · View at Scopus
  114. M. Altinay, H. Karne, E. Beall, and A. Anand, “Quetiapine extended release open-label treatment associated changes in amygdala activation and connectivity in anxious depression: an fMRI study,” Journal of Clinical Psychopharmacology, vol. 36, no. 6, pp. 562–571, 2016. View at Publisher · View at Google Scholar
  115. C.-T. Li, M.-H. Chen, W.-C. Lin et al., “The effects of low-dose ketamine on the prefrontal cortex and amygdala in treatment-resistant depression: a randomized controlled study,” Human Brain Mapping, vol. 37, no. 3, pp. 1080–1090, 2016. View at Publisher · View at Google Scholar · View at Scopus
  116. J. E. Castro, E. Varea, C. Márquez, M. I. Cordero, G. Poirier, and C. Sandi, “Role of the amygdala in antidepressant effects on hippocampal cell proliferation and survival and on depression-like behavior in the rat,” PLoS ONE, vol. 5, no. 1, Article ID e8618, 2010. View at Publisher · View at Google Scholar · View at Scopus
  117. M. Sekio and K. Seki, “Lipopolysaccharide-induced depressive-like behavior is associated with α1-adrenoceptor dependent downregulation of the membrane glur1 subunit in the mouse medial prefrontal cortex and ventral tegmental area,” International Journal of Neuropsychopharmacology, vol. 18, no. 1, 2015. View at Publisher · View at Google Scholar · View at Scopus
  118. A. Haim, M. Sherer, and B. Leuner, “Gestational stress induces persistent depressive-like behavior and structural modifications within the postpartum nucleus accumbens,” European Journal of Neuroscience, vol. 40, no. 12, pp. 3766–3773, 2014. View at Publisher · View at Google Scholar · View at Scopus
  119. J.-F. Ge, C.-C. Qi, and J.-N. Zhou, “Imbalance of leptin pathway and hypothalamus synaptic plasticity markers are associated with stress-induced depression in rats,” Behavioural Brain Research, vol. 249, pp. 38–43, 2013. View at Publisher · View at Google Scholar · View at Scopus
  120. E. Albiñana, J. Gutierrez-Luengo, N. Hernández-Juarez et al., “Chondroitin sulfate induces depression of synaptic transmission and modulation of neuronal plasticity in rat hippocampal slices,” Neural Plasticity, vol. 2015, Article ID 463854, 12 pages, 2015. View at Publisher · View at Google Scholar · View at Scopus
  121. Y. He, D. Kulasiri, and S. Samarasinghe, “Modelling bidirectional modulations in synaptic plasticity: a biochemical pathway model to understand the emergence of long term potentiation (LTP) and long term depression (LTD),” Journal of Theoretical Biology, vol. 403, pp. 159–177, 2016. View at Publisher · View at Google Scholar · View at MathSciNet · View at Scopus