Table of Contents Author Guidelines Submit a Manuscript
Neural Plasticity
Volume 2017, Article ID 6971206, 7 pages
https://doi.org/10.1155/2017/6971206
Research Article

Navigated Transcranial Magnetic Stimulation: A Biologically Based Assay of Lower Extremity Impairment and Gait Velocity

1Division of Occupational Therapy, The Ohio State University, Columbus, OH, USA
2B.R.A.I.N. (Better Rehabilitation and Assessment for Improved Neuro-recovery) Laboratory, Ohio State University, Columbus, OH, USA
3The University of Cincinnati, Cincinnati, OH, USA
4Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA
5Nexstim, Ltd., Helsinki, Finland

Correspondence should be addressed to Heather T. Peters; ude.cmuso@yelsknat.rehtaeh

Received 29 December 2015; Revised 10 October 2016; Accepted 6 December 2016; Published 24 January 2017

Academic Editor: Guang H. Yue

Copyright © 2017 Heather T. Peters et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. H. S. Jørgensen, H. Nakayama, H. O. Raaschou, and T. S. Olsen, “Recovery of walking function in stroke patients: the copenhagen stroke study,” Archives of Physical Medicine and Rehabilitation, vol. 76, no. 1, pp. 27–32, 1995. View at Publisher · View at Google Scholar · View at Scopus
  2. D. T. Wade, V. A. Wood, A. Heller, J. Maggs, and R. Langton Hewer, “Walking after stroke. Measurement and recovery over the first 3 months,” Scandinavian Journal of Rehabilitation Medicine, vol. 19, no. 1, pp. 25–30, 1987. View at Google Scholar · View at Scopus
  3. R. B. Shepherd, “Exercise and training to optimize functional motor performance in stroke: driving neural reorganization?” Neural Plasticity, vol. 8, no. 1-2, pp. 121–129, 2001. View at Publisher · View at Google Scholar · View at Scopus
  4. K.-H. Mauritz, “Gait training in hemiplegia,” European Journal of Neurology, vol. 9, supplement 1, pp. 23–29, 2002. View at Google Scholar · View at Scopus
  5. M. K. Holden, K. M. Gill, M. R. Magliozzi, J. Nathan, and L. Piehl-Baker, “Clinical gait assessment in the neurologically impaired. Reliability and meaningfulness,” Physical Therapy, vol. 64, no. 1, pp. 35–40, 1984. View at Google Scholar · View at Scopus
  6. D. Podsiadlo and S. Richardson, “The timed ‘Up & Go’: a test of basic functional mobility for frail elderly persons,” Journal of the American Geriatrics Society, vol. 39, no. 2, pp. 142–148, 1991. View at Publisher · View at Google Scholar · View at Scopus
  7. A. R. Fugl Meyer, L. Jaasko, and I. Leyman, “The post stroke hemiplegic patient. I. A method for evaluation of physical performance,” Scandinavian Journal of Rehabilitation Medicine, vol. 7, no. 1, pp. 13–31, 1975. View at Google Scholar · View at Scopus
  8. K. Berg, S. Wood-Dauphinee, J. I. Williams, and D. Gayton, “Measuring balance in the elderly: preliminary development of an instrument,” Physiotherapy Canada, vol. 41, no. 6, pp. 304–311, 1989. View at Publisher · View at Google Scholar · View at Scopus
  9. J. Y. Lim, S. H. Jung, W.-S. Kim, and N.-J. Paik, “Incidence and risk factors of poststroke falls after discharge from inpatient rehabilitation,” PM&R, vol. 4, no. 12, pp. 945–953, 2012. View at Publisher · View at Google Scholar · View at Scopus
  10. Å. G. Andersson, K. Kamwendo, and P. Appelros, “Fear of falling in stroke patients: relationship with previous falls and functional characteristics,” International Journal of Rehabilitation Research, vol. 31, no. 3, pp. 261–264, 2008. View at Publisher · View at Google Scholar · View at Scopus
  11. P. Doruk, “The impact of knee osteoarthritis on rehabilitation outcomes in hemiparetic stroke patients,” Journal of Back and Musculoskeletal Rehabilitation, vol. 26, no. 2, pp. 207–211, 2013. View at Publisher · View at Google Scholar · View at Scopus
  12. J. W. Gersten and W. Orr, “External work of walking in hemiparetic patients,” Scandinavian Journal of Rehabilitation Medicine, vol. 3, no. 1, pp. 85–88, 1971. View at Google Scholar · View at Scopus
  13. J. W. Gersten and W. Orr, “External work of walking in hemiparetic patients,” Scandinavian Journal of Rehabilitation Medicine, vol. 3, no. 1, pp. 38–88, 1971. View at Google Scholar
  14. S. Mulroy, J. Gronley, W. Weiss, C. Newsam, and J. Perry, “Use of cluster analysis for gait pattern classification of patients in the early and late recovery phases following stroke,” Gait and Posture, vol. 18, no. 1, pp. 114–125, 2003. View at Publisher · View at Google Scholar · View at Scopus
  15. D. Barthélemy, M. J. Grey, J. B. Nielsen, and L. Bouyer, “Involvement of the corticospinal tract in the control of human gait,” Progress in Brain Research, vol. 192, pp. 181–197, 2011. View at Publisher · View at Google Scholar · View at Scopus
  16. H. Blumenfeld, Corticospinal Tract and Other Motor Pathways. Neuroanatomy Through Clinical Cases, Sinauer Associates, Sunderland, Mass, USA, 2002.
  17. P. M. Rossini, C. Calautti, F. Pauri, and J.-C. Baron, “Post-stroke plastic reorganisation in the adult brain,” Lancet Neurology, vol. 2, no. 8, pp. 493–502, 2003. View at Publisher · View at Google Scholar · View at Scopus
  18. H. T. Hendricks, M. J. Zwarts, E. F. Plat, and J. Van Limbeek, “Systematic review for the early prediction of motor and functional outcome after stroke by using motor-evoked potentials,” Archives of Physical Medicine and Rehabilitation, vol. 83, no. 9, pp. 1303–1308, 2002. View at Publisher · View at Google Scholar · View at Scopus
  19. A. Turton, S. Wroe, N. Trepte, C. Fraser, and R. N. Lemon, “Contralateral and ipsilateral EMG responses to transcranial magnetic stimulation during recovery of arm and hand function after stroke,” Electroencephalography and Clinical Neurophysiology—Electromyography and Motor Control, vol. 101, no. 4, pp. 316–328, 1996. View at Publisher · View at Google Scholar · View at Scopus
  20. H. T. Hendricks, G. Hageman, and J. Van Limbeek, “Prediction of recovery from upper extremity paralysis after stroke by measuring evoked potentials,” Scandinavian Journal of Rehabilitation Medicine, vol. 29, no. 3, pp. 155–159, 1997. View at Google Scholar · View at Scopus
  21. S. Groppa, A. Oliviero, A. Eisen et al., “A practical guide to diagnostic transcranial magnetic stimulation: report of an IFCN committee,” Clinical Neurophysiology, vol. 123, no. 5, pp. 858–882, 2012. View at Publisher · View at Google Scholar · View at Scopus
  22. J. Reis, O. B. Swayne, Y. Vandermeeren et al., “Contribution of transcranial magnetic stimulation to the understanding of cortical mechanisms involved in motor control,” Journal of Physiology, vol. 586, no. 2, pp. 325–351, 2008. View at Publisher · View at Google Scholar · View at Scopus
  23. H. Peters, K. Dunning, S. Belagaje et al., “Navigated transcranial magnetic stimulation: a biologically-based assay of lower extremity impairment and gait velocity?” Archives of Physical Medicine and Rehabilitation, vol. 97, no. 10, article no. e113, 2016. View at Publisher · View at Google Scholar
  24. S. H. Peurala, I. M. Tarkka, M. Juhakoski et al., “Restoration of normal cortical excitability and gait ability in acute stroke after intensive rehabilitation,” Cerebrovascular Diseases, vol. 26, no. 2, pp. 208–209, 2008. View at Publisher · View at Google Scholar · View at Scopus
  25. S. Rossi, M. Hallett, P. M. Rossini et al., “Safety, ethical considerations, and application guidelines for the use of transcranial magnetic stimulation in clinical practice and research,” Clinical Neurophysiology, vol. 120, no. 12, pp. 2008–2039, 2009. View at Publisher · View at Google Scholar · View at Scopus
  26. J. Perry, M. Garrett, J. K. Gronley, and S. J. Mulroy, “Classification of walking handicap in the stroke population,” Stroke, vol. 26, no. 6, pp. 982–989, 1995. View at Publisher · View at Google Scholar · View at Scopus
  27. S. E. Lord, K. McPherson, H. K. McNaughton, L. Rochester, and M. Weatherall, “Community ambulation after stroke: how important and obtainable is it and what measures appear predictive?” Archives of Physical Medicine and Rehabilitation, vol. 85, no. 2, pp. 234–239, 2004. View at Publisher · View at Google Scholar · View at Scopus
  28. U.-B. Flansbjer, A. M. Holmbäck, D. Downham, C. Patten, and J. Lexell, “Reliability of gait performance tests in men and women with hemiparesis after stroke,” Journal of Rehabilitation Medicine, vol. 37, no. 2, pp. 75–82, 2005. View at Publisher · View at Google Scholar · View at Scopus
  29. J.-H. Lin, M.-J. Hsu, H.-W. Hsu, H.-C. Wu, and C.-L. Hsieh, “Psychometric comparisons of 3 functional ambulation measures for patients with stroke,” Stroke, vol. 41, no. 9, pp. 2021–2025, 2010. View at Publisher · View at Google Scholar · View at Scopus
  30. M. Hallett, “Transcranial magnetic stimulation: a primer,” Neuron, vol. 55, no. 2, pp. 187–199, 2007. View at Publisher · View at Google Scholar · View at Scopus
  31. L. Säisänen, P. Julkunen, E. Niskanen et al., “Motor potentials evoked by navigated transcranial magnetic stimulation in healthy subjects,” Journal of Clinical Neurophysiology, vol. 25, no. 6, pp. 367–372, 2008. View at Publisher · View at Google Scholar · View at Scopus
  32. N. H. Jung, I. Delvendahl, N. G. Kuhnke, D. Hauschke, S. Stolle, and V. Mall, “Navigated transcranial magnetic stimulation does not decrease the variability of motor-evoked potentials,” Brain Stimulation, vol. 3, no. 2, pp. 87–94, 2010. View at Publisher · View at Google Scholar · View at Scopus
  33. L. A. Wheaton, F. Villagra, D. F. Hanley, R. F. Macko, and L. W. Forrester, “Reliability of TMS motor evoked potentials in quadriceps of subjects with chronic hemiparesis after stroke,” Journal of the Neurological Sciences, vol. 276, no. 1-2, pp. 115–117, 2009. View at Publisher · View at Google Scholar · View at Scopus
  34. L. Piron, F. Piccione, P. Tonin, and M. Dam, “Clinical correlation between motor evoked potentials and gait recovery in poststroke patients,” Archives of Physical Medicine and Rehabilitation, vol. 86, no. 9, pp. 1874–1878, 2005. View at Publisher · View at Google Scholar · View at Scopus
  35. L. D'Olhaberriague, J.-M. E. Gamissans, J. Marrugat, A. Valls, C. O. Ley, and J.-L. Seoane, “Transcranial magnetic stimulation as a prognostic tool in stroke,” Journal of the Neurological Sciences, vol. 147, no. 1, pp. 73–80, 1997. View at Publisher · View at Google Scholar · View at Scopus
  36. C.-L. Yen, R.-Y. Wang, K.-K. Liao, C.-C. Huang, and Y.-R. Yang, “Gait training—induced change in corticomotor excitability in patients with chronic stroke,” Neurorehabilitation and Neural Repair, vol. 22, no. 1, pp. 22–30, 2008. View at Publisher · View at Google Scholar · View at Scopus