Table of Contents Author Guidelines Submit a Manuscript
Neural Plasticity
Volume 2017, Article ID 6986983, 10 pages
https://doi.org/10.1155/2017/6986983
Review Article

Effect of Hypoxic Injury in Mood Disorder

Jilin Provincial Key Laboratory on Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun, Jilin 130041, China

Correspondence should be addressed to Junling Yang; nc.ude.ulj@gnilnuj and Ranji Cui; nc.ude.ulj@ijnariuc

Received 24 March 2017; Revised 26 May 2017; Accepted 6 June 2017; Published 22 June 2017

Academic Editor: Aijun Li

Copyright © 2017 Fenglian Zhao et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. S. R. Wainwright and L. A. Galea, “The neural plasticity theory of depression: assessing the roles of adult neurogenesis and PSA-NCAM within the hippocampus,” Neural Plasticity, vol. 2013, Article ID 805497, 1414 pages, 2013. View at Publisher · View at Google Scholar · View at Scopus
  2. M. Erecińska and I. A. Silver, “Tissue oxygen tension and brain sensitivity to hypoxia,” Respiration Physiology, vol. 128, no. 3, pp. 263–276, 2001. View at Publisher · View at Google Scholar · View at Scopus
  3. H. Zhang, X. Wang, J. Lin et al., “Reduced regional gray matter volume in patients with chronic obstructive pulmonary disease: a voxel-based morphometry study,” AJNR American Journal of Neuroradiology, vol. 34, no. 2, pp. 334–339, 2013. View at Publisher · View at Google Scholar · View at Scopus
  4. B. A. Abdel-Wahab and M. M. Abdel-Wahab, “Protective effect of resveratrol against chronic intermittent hypoxia-induced spatial memory deficits, hippocampal oxidative DNA damage and increased p47Phox NADPH oxidase expression in young rats,” Behavioural Brain Research, vol. 305, pp. 65–75, 2016. View at Publisher · View at Google Scholar · View at Scopus
  5. J. W. Kim, I. Tchernyshyov, G. L. Semenza, and C. V. Dang, “HIF-1-mediated expression of pyruvate dehydrogenase kinase: a metabolic switch required for cellular adaptation to hypoxia,” Cell Metabolism, vol. 3, no. 3, pp. 177–185, 2006. View at Publisher · View at Google Scholar · View at Scopus
  6. I. Papandreou, R. A. Cairns, L. Fontana, A. L. Lim, and N. C. Denko, “HIF-1 mediates adaptation to hypoxia by actively downregulating mitochondrial oxygen consumption,” Cell Metabolism, vol. 3, no. 3, pp. 187–197, 2006. View at Publisher · View at Google Scholar · View at Scopus
  7. P. J. Barnes, “Chronic obstructive pulmonary disease: effects beyond the lungs,” PLoS Medicine, vol. 7, no. 3, article e1000220, 2010. View at Google Scholar
  8. D. C. Lim and A. I. Pack, “Obstructive sleep apnea and cognitive impairment: addressing the blood-brain barrier,” Sleep Medicine Reviews, vol. 18, no. 1, pp. 35–48, 2014. View at Publisher · View at Google Scholar · View at Scopus
  9. X. Yin, X. Zhang, C. Lv et al., “Protocatechuic acid ameliorates neurocognitive functions impairment induced by chronic intermittent hypoxia,” Scientific Reports, vol. 5, p. 14507, 2015. View at Google Scholar
  10. N. Quillinan, P. S. Herson, and R. J. Traystman, “Neuropathophysiology of brain injury,” Anesthesiology Clinics, vol. 34, no. 3, pp. 453–464, 2016. View at Publisher · View at Google Scholar · View at Scopus
  11. P. Maiti, S. B. Singh, A. K. Sharma, S. Muthuraju, P. K. Banerjee, and G. Ilavazhagan, “Hypobaric hypoxia induces oxidative stress in rat brain,” Neurochemistry International, vol. 49, no. 8, pp. 709–716, 2006. View at Publisher · View at Google Scholar · View at Scopus
  12. A. Dosek, H. Ohno, Z. Acs, A. W. Taylor, and Z. Radak, “High altitude and oxidative stress,” Respiratory Physiology & Neurobiology, vol. 158, no. 2-3, pp. 128–131, 2007. View at Publisher · View at Google Scholar · View at Scopus
  13. Y. Wang, S. X. Zhang, and D. Gozal, “Reactive oxygen species and the brain in sleep apnea,” Respiratory Physiology & Neurobiology, vol. 174, no. 3, pp. 307–316, 2010. View at Publisher · View at Google Scholar · View at Scopus
  14. L. Lavie, “Obstructive sleep apnoea syndrome—an oxidative stress disorder,” Sleep Medicine Reviews, vol. 7, no. 1, pp. 35–51, 2003. View at Publisher · View at Google Scholar · View at Scopus
  15. E. D. Farfan-Garcia, M. C. Castillo-Hernandez, R. Pinto-Almazan, S. Rivas-Arancibia, J. M. Gallardo, and C. Guerra-Araiza, “Tibolone prevents oxidation and ameliorates cholinergic deficit induced by ozone exposure in the male rat hippocampus,” Neurochemical Research, vol. 39, no. 9, pp. 1776–1786, 2014. View at Publisher · View at Google Scholar · View at Scopus
  16. J. N. Keller, F. A. Schmitt, S. W. Scheff et al., “Evidence of increased oxidative damage in subjects with mild cognitive impairment,” Neurology, vol. 64, no. 7, pp. 1152–1156, 2005. View at Publisher · View at Google Scholar
  17. J. Wang, W. R. Markesbery, and M. A. Lovell, “Increased oxidative damage in nuclear and mitochondrial DNA in mild cognitive impairment,” Journal of Neurochemistry, vol. 96, no. 3, pp. 825–832, 2006. View at Publisher · View at Google Scholar · View at Scopus
  18. B. Zhou, M. Li, X. Cao et al., “Phenylethanoid glycosides of Pedicularis muscicola Maxim ameliorate high altitude-induced memory impairment,” Physiology & Behavior, vol. 157, pp. 39–46, 2016. View at Publisher · View at Google Scholar · View at Scopus
  19. M. K. Tobin, J. A. Bonds, R. D. Minshall, D. A. Pelligrino, F. D. Testai, and O. Lazarov, “Neurogenesis and inflammation after ischemic stroke: what is known and where we go from here,” Journal of Cerebral Blood Flow and Metabolism, vol. 34, no. 10, pp. 1573–1584, 2014. View at Publisher · View at Google Scholar · View at Scopus
  20. C. Iadecola and M. Alexander, “Cerebral ischemia and inflammation,” Current Opinion in Neurology, vol. 14, no. 1, pp. 89–94, 2001. View at Publisher · View at Google Scholar · View at Scopus
  21. M. L. Block, L. Zecca, and J. S. Hong, “Microglia-mediated neurotoxicity: uncovering the molecular mechanisms,” Nature Reviews. Neuroscience, vol. 8, no. 1, pp. 57–69, 2007. View at Publisher · View at Google Scholar · View at Scopus
  22. H. A. Jurgens, K. Amancherla, and R. W. Johnson, “Influenza infection induces neuroinflammation, alters hippocampal neuron morphology, and impairs cognition in adult mice,” The Journal of Neuroscience, vol. 32, no. 12, pp. 3958–3968, 2012. View at Publisher · View at Google Scholar · View at Scopus
  23. S. Elmore, “Apoptosis: a review of programmed cell death,” Toxicologic Pathology, vol. 35, no. 4, pp. 495–516, 2007. View at Publisher · View at Google Scholar · View at Scopus
  24. M. A. Moskowitz and E. H. Lo, “Neurogenesis and apoptotic cell death,” Stroke, vol. 34, no. 2, pp. 324–326, 2003. View at Publisher · View at Google Scholar · View at Scopus
  25. Q. Hu, X. Liang, D. Chen et al., “Delayed hyperbaric oxygen therapy promotes neurogenesis through reactive oxygen species/hypoxia-inducible factor-1α/β-catenin pathway in middle cerebral artery occlusion rats,” Stroke, vol. 45, no. 6, pp. 1807–1814, 2014. View at Publisher · View at Google Scholar · View at Scopus
  26. D. M. Ferriero, “Neonatal brain injury,” The New England Journal of Medicine, vol. 351, no. 19, pp. 1985–1995, 2004. View at Publisher · View at Google Scholar · View at Scopus
  27. M. Puka-Sundvall, B. Gajkowska, M. Cholewinski, K. Blomgren, J. W. Lazarewicz, and H. Hagberg, “Subcellular distribution of calcium and ultrastructural changes after cerebral hypoxia-ischemia in immature rats,” Brain Research Developmental Brain Research, vol. 125, no. 1-2, pp. 31–41, 2000. View at Publisher · View at Google Scholar · View at Scopus
  28. R. Chavez-Valdez, D. L. Flock, L. J. Martin, and F. J. Northington, “Endoplasmic reticulum pathology and stress response in neurons precede programmed necrosis after neonatal hypoxia-ischemia,” International Journal of Developmental Neuroscience, vol. 48, pp. 58–70, 2016. View at Publisher · View at Google Scholar · View at Scopus
  29. T. Inoue and Y. Suzuki-Karasaki, “Mitochondrial superoxide mediates mitochondrial and endoplasmic reticulum dysfunctions in TRAIL-induced apoptosis in Jurkat cells,” Free Radical Biology & Medicine, vol. 61, pp. 273–284, 2013. View at Publisher · View at Google Scholar · View at Scopus
  30. K. Sinha, J. Das, P. B. Pal, and P. C. Sil, “Oxidative stress: the mitochondria-dependent and mitochondria-independent pathways of apoptosis,” Archives of Toxicology, vol. 87, no. 7, pp. 1157–1180, 2013. View at Publisher · View at Google Scholar · View at Scopus
  31. R. Sheng, X. Q. Liu, L. S. Zhang et al., “Autophagy regulates endoplasmic reticulum stress in ischemic preconditioning,” Autophagy, vol. 8, no. 3, pp. 310–325, 2012. View at Google Scholar
  32. A. M. Gorman, S. J. Healy, R. Jäger, and A. Samali, “Stress management at the ER: regulators of ER stress-induced apoptosis,” Pharmacology & Therapeutics, vol. 134, no. 3, pp. 306–316, 2012. View at Publisher · View at Google Scholar · View at Scopus
  33. E. Szegezdi, U. Fitzgerald, and A. Samali, “Caspase-12 and ER-stress-mediated apoptosis: the story so far,” Annals of the new York Academy of Sciences, vol. 1010, pp. 186–194, 2003. View at Publisher · View at Google Scholar · View at Scopus
  34. H. Yoshida, T. Okada, K. Haze et al., “ATF6 activated by proteolysis binds in the presence of NF-Y (CBF) directly to the cis-acting element responsible for the mammalian unfolded protein response,” Molecular and Cellular Biology, vol. 20, no. 18, pp. 6755–6767, 2000. View at Publisher · View at Google Scholar · View at Scopus
  35. X. H. Cai, X. C. Li, S. W. Jin et al., “Endoplasmic reticulum stress plays critical role in brain damage after chronic intermittent hypoxia in growing rats,” Experimental Neurology, vol. 257, pp. 148–156, 2014. View at Publisher · View at Google Scholar · View at Scopus
  36. A. I. Placido, C. M. Pereira, A. I. Duarte et al., “Modulation of endoplasmic reticulum stress: an opportunity to prevent neurodegeneration,” CNS & Neurological Disorders Drug Targets, vol. 14, no. 4, pp. 518–533, 2015. View at Publisher · View at Google Scholar
  37. M. J. Sateia, “Neuropsychological impairment and quality of life in obstructive sleep apnea,” Clinics in Chest Medicine, vol. 24, no. 2, pp. 249–259, 2003. View at Publisher · View at Google Scholar · View at Scopus
  38. R. A. Incalzi, A. Gemma, C. Marra, R. Muzzolon, O. Capparella, and P. Carbonin, “Chronic obstructive pulmonary disease. An original model of cognitive decline,” The American Review of Respiratory Disease, vol. 148, no. 2, pp. 418–424, 1993. View at Publisher · View at Google Scholar
  39. R. Antonelli-Incalzi, A. Corsonello, C. Pedone et al., “Drawing impairment predicts mortality in severe COPD,” Chest, vol. 130, no. 6, pp. 1687–1694, 2006. View at Publisher · View at Google Scholar · View at Scopus
  40. C. Ozge, A. Ozge, and O. Unal, “Cognitive and functional deterioration in patients with severe COPD,” Behavioural Neurology, vol. 17, no. 2, pp. 121–130, 2006. View at Publisher · View at Google Scholar
  41. W. W. Hung, J. P. Wisnivesky, A. L. Siu, and J. S. Ross, “Cognitive decline among patients with chronic obstructive pulmonary disease,” American Journal of Respiratory and Critical Care Medicine, vol. 180, no. 2, pp. 134–137, 2009. View at Publisher · View at Google Scholar · View at Scopus
  42. M. Alchanatis, N. Zias, N. Deligiorgis, A. Amfilochiou, G. Dionellis, and D. Orphanidou, “Sleep apnea-related cognitive deficits and intelligence: an implication of cognitive reserve theory,” Journal of Sleep Research, vol. 14, no. 1, pp. 69–75, 2005. View at Publisher · View at Google Scholar · View at Scopus
  43. B. S. Rao, T. R. Raju, and B. L. Meti, “Increased numerical density of synapses in CA3 region of hippocampus and molecular layer of motor cortex after self-stimulation rewarding experience,” Neuroscience, vol. 91, no. 3, pp. 799–803, 1999. View at Google Scholar
  44. R. Sprengelmeyer, J. D. Steele, B. Mwangi et al., “The insular cortex and the neuroanatomy of major depression,” Journal of Affective Disorders, vol. 133, no. 1-2, pp. 120–127, 2011. View at Publisher · View at Google Scholar · View at Scopus
  45. F. S. Roman, B. Truchet, E. Marchetti, F. A. Chaillan, and B. Soumireu-Mourat, “Correlations between electrophysiological observations of synaptic plasticity modifications and behavioral performance in mammals,” Progress in Neurobiology, vol. 58, no. 1, pp. 61–87, 1999. View at Publisher · View at Google Scholar · View at Scopus
  46. R. C. Malenka and M. F. Bear, “LTP and LTD: an embarrassment of riches,” Neuron, vol. 44, no. 1, pp. 5–21, 2004. View at Publisher · View at Google Scholar · View at Scopus
  47. M. Tang, Z. Li, L. Chen et al., “The effect of quantum dots on synaptic transmission and plasticity in the hippocampal dentate gyrus area of anesthetized rats,” Biomaterials, vol. 30, no. 28, pp. 4948–4955, 2009. View at Publisher · View at Google Scholar · View at Scopus
  48. Y. Yang and N. Calakos, “Presynaptic long-term plasticity,” Frontiers in Synaptic Neuroscience, vol. 5, p. 8, 2013. View at Publisher · View at Google Scholar · View at Scopus
  49. H. E. Harooni, N. Naghdi, H. Sepehri, and A. H. Rohani, “The role of hippocampal nitric oxide (NO) on learning and immediate, short- and long-term memory retrieval in inhibitory avoidance task in male adult rats,” Behavioural Brain Research, vol. 201, no. 1, pp. 166–172, 2009. View at Publisher · View at Google Scholar · View at Scopus
  50. K. Yamada, Y. Noda, S. Nakayama et al., “Role of nitric oxide in learning and memory and in monoamine metabolism in the rat brain,” British Journal of Pharmacology, vol. 115, no. 5, pp. 852–858, 1995. View at Publisher · View at Google Scholar · View at Scopus
  51. A. Katzoff, T. Ben-Gedalya, and A. J. Susswein, “Nitric oxide is necessary for multiple memory processes after learning that a food is inedible in aplysia,” The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, vol. 22, no. 21, pp. 9581–9594, 2002. View at Google Scholar
  52. K. M. Kendrick, R. Guevara-Guzman, J. Zorrilla et al., “Formation of olfactory memories mediated by nitric oxide,” Nature, vol. 388, no. 6643, pp. 670–674, 1997. View at Publisher · View at Google Scholar · View at Scopus
  53. G. A. Böhme, C. Bon, M. Lemaire et al., “Altered synaptic plasticity and memory formation in nitric oxide synthase inhibitor-treated rats,” Proceedings of the National Academy of Sciences of the United States of America, vol. 90, no. 19, pp. 9191–9194, 1993. View at Publisher · View at Google Scholar · View at Scopus
  54. A. J. Susswein, A. Katzoff, N. Miller, and I. Hurwitz, “Nitric oxide and memory,” The Neuroscientist, vol. 10, no. 2, pp. 153–162, 2004. View at Publisher · View at Google Scholar · View at Scopus
  55. O. Arancio, M. Kiebler, C. J. Lee et al., “Nitric oxide acts directly in the presynaptic neuron to produce long-term potentiation in cultured hippocampal neurons,” Cell, vol. 87, no. 6, pp. 1025–1035, 1996. View at Publisher · View at Google Scholar · View at Scopus
  56. E. M. Schuman and D. V. Madison, “A requirement for the intercellular messenger nitric oxide in long-term potentiation,” Science, vol. 254, no. 5037, pp. 1503–1506, 1991. View at Publisher · View at Google Scholar
  57. M. Zhuo, S. A. Small, E. R. Kandel, and R. D. Hawkins, “Nitric oxide and carbon monoxide produce activity-dependent long-term synaptic enhancement in hippocampus,” Science, vol. 260, no. 5116, pp. 1946–1950, 1993. View at Publisher · View at Google Scholar
  58. X. X. Wang, Y. Y. Zha, B. Yang, L. Chen, and M. Wang, “Suppression of synaptic plasticity by fullerenol in rat hippocampus in vitro,” International Journal of Nanomedicine, vol. 11, pp. 4947–4955, 2016. View at Google Scholar
  59. S. M. Mirkov, A. N. Djordjevic, N. L. Andric et al., “Nitric oxide-scavenging activity of polyhydroxylated fullerenol, C60(OH)24,” Nitric Oxide, vol. 11, no. 2, pp. 201–207, 2004. View at Publisher · View at Google Scholar · View at Scopus
  60. D. J. Wolff, A. D. Papoiu, K. Mialkowski, C. F. Richardson, D. I. Schuster, and S. R. Wilson, “Inhibition of nitric oxide synthase isoforms by tris-malonyl-C(60)-fullerene adducts,” Archives of Biochemistry and Biophysics, vol. 378, no. 2, pp. 216–223, 2000. View at Publisher · View at Google Scholar · View at Scopus
  61. L. H. Xu, H. Xie, Z. H. Shi et al., “Critical role of endoplasmic reticulum stress in chronic intermittent hypoxia-induced deficits in synaptic plasticity and long-term memory,” Antioxidants & Redox Signaling, vol. 23, no. 9, pp. 695–710, 2015. View at Publisher · View at Google Scholar · View at Scopus
  62. R. M. Harper, R. Kumar, P. M. Macey, M. A. Woo, and J. A. Ogren, “Affective brain areas and sleep-disordered breathing,” Progress in Brain Research, vol. 209, pp. 275–293, 2014. View at Google Scholar
  63. J. Zhang, A. Malik, H. B. Choi, R. W. Ko, L. Dissing-Olesen, and B. A. MacVicar, “Microglial CR3 activation triggers long-term synaptic depression in the hippocampus via NADPH oxidase,” Neuron, vol. 82, no. 1, pp. 195–207, 2014. View at Publisher · View at Google Scholar · View at Scopus
  64. Y. N. Zhao, H. Y. Wang, J. M. Li et al., “Hippocampal mitogen-activated protein kinase activation is associated with intermittent hypoxia in a rat model of obstructive sleep apnea syndrome,” Molecular Medicine Reports, vol. 13, no. 1, pp. 137–145, 2016. View at Publisher · View at Google Scholar · View at Scopus
  65. M. Schröder and R. J. Kaufman, “The mammalian unfolded protein response,” Annual Review of Biochemistry, vol. 74, pp. 739–789, 2005. View at Publisher · View at Google Scholar · View at Scopus
  66. D. van der Vlies, A. J. B. I. Makkinje, A. J. Verkleij, K. W. Wirtz, and J. A. Post, “Oxidation of ER resident proteins upon oxidative stress: effects of altering cellular redox/antioxidant status and implications for protein maturation,” Antioxidants & Redox Signaling, vol. 5, no. 4, pp. 381–387, 2003. View at Publisher · View at Google Scholar
  67. W. Deng, “Neurobiology of injury to the developing brain,” Nature Reviews Neurology, vol. 6, no. 6, pp. 328–336, 2010. View at Publisher · View at Google Scholar · View at Scopus
  68. T. Inder, P. S. Huppi, G. P. Zientara et al., “Early detection of periventricular leukomalacia by diffusion-weighted magnetic resonance imaging techniques,” The Journal of Pediatrics, vol. 134, no. 5, pp. 631–634, 1999. View at Publisher · View at Google Scholar
  69. P. M. Macey, C. A. Richard, R. Kumar et al., “Hippocampal volume reduction in congenital central hypoventilation syndrome,” PloS One, vol. 4, no. 7, article e6436, 2009. View at Google Scholar
  70. T. D. Cannon, T. G. van Erp, I. M. Rosso et al., “Fetal hypoxia and structural brain abnormalities in schizophrenic patients, their siblings, and controls,” Archives of General Psychiatry, vol. 59, no. 1, pp. 35–41, 2002. View at Publisher · View at Google Scholar
  71. B. Czéh and P. J. Lucassen, “What causes the hippocampal volume decrease in depression? Are neurogenesis, glial changes and apoptosis implicated,” European Archives of Psychiatry and Clinical Neuroscience, vol. 257, no. 5, pp. 250–260, 2007. View at Publisher · View at Google Scholar · View at Scopus
  72. M. T. Treadway, M. L. Waskom, D. G. Dillon et al., “Illness progression, recent stress, and morphometry of hippocampal subfields and medial prefrontal cortex in major depression,” Biological Psychiatry, vol. 77, no. 3, pp. 285–294, 2015. View at Publisher · View at Google Scholar · View at Scopus
  73. M. Koenigs and J. Grafman, “The functional neuroanatomy of depression: distinct roles for ventromedial and dorsolateral prefrontal cortex,” Behavioural Brain Research, vol. 201, no. 2, pp. 239–243, 2009. View at Publisher · View at Google Scholar · View at Scopus
  74. E. K. Miller and J. D. Cohen, “An integrative theory of prefrontal cortex function,” Annual Review of Neuroscience, vol. 24, pp. 167–202, 2001. View at Publisher · View at Google Scholar · View at Scopus
  75. G. Buzsáki and A. Draguhn, “Neuronal oscillations in cortical networks,” Science, vol. 304, no. 5679, pp. 1926–1929, 2004. View at Publisher · View at Google Scholar · View at Scopus
  76. L. L. Colgin, “Oscillations and hippocampal-prefrontal synchrony,” Current Opinion in Neurobiology, vol. 21, no. 3, pp. 467–474, 2011. View at Publisher · View at Google Scholar · View at Scopus
  77. C. D. Schwindel and B. L. McNaughton, “Hippocampal-cortical interactions and the dynamics of memory trace reactivation,” Progress in Brain Research, vol. 193, pp. 163–177, 2011. View at Google Scholar
  78. L. W. Swanson, “A direct projection from Ammon’s horn to prefrontal cortex in the rat,” Brain Research, vol. 217, no. 1, pp. 150–154, 1981. View at Publisher · View at Google Scholar · View at Scopus
  79. A. M. Thierry, Y. Gioanni, E. Dégénétais, and J. Glowinski, “Hippocampo-prefrontal cortex pathway: anatomical and electrophysiological characteristics,” Hippocampus, vol. 10, no. 4, pp. 411–419, 2000. View at Publisher · View at Google Scholar
  80. M. D. Brockmann, M. Kukovic, M. Schönfeld, J. Sedlacik, and I. L. Hanganu-Opatz, “Hypoxia-ischemia disrupts directed interactions within neonatal prefrontal-hippocampal networks,” PloS One, vol. 8, no. 12, article e83074, 2013. View at Google Scholar
  81. J. Kim, J. Woo, Y. G. Park et al., “Thalamic T-type Ca2+ channels mediate frontal lobe dysfunctions caused by a hypoxia-like damage in the prefrontal cortex,” The Journal of Neuroscience, vol. 31, no. 11, pp. 4063–4073, 2011. View at Publisher · View at Google Scholar · View at Scopus
  82. B. S. McEwen, “Physiology and neurobiology of stress and adaptation: central role of the brain,” Physiological Reviews, vol. 87, no. 3, pp. 873–904, 2007. View at Publisher · View at Google Scholar · View at Scopus
  83. S. F. Sorrells and R. M. Sapolsky, “An inflammatory review of glucocorticoid actions in the CNS,” Brain, Behavior, and Immunity, vol. 21, no. 3, pp. 259–272, 2007. View at Publisher · View at Google Scholar · View at Scopus
  84. R. M. Sapolsky, “Glucocorticoids and hippocampal atrophy in neuropsychiatric disorders,” Archives of General Psychiatry, vol. 57, no. 10, pp. 925–935, 2000. View at Publisher · View at Google Scholar
  85. P. M. Miguel, B. F. Deniz, I. Deckmann et al., “Prefrontal cortex dysfunction in hypoxic-ischaemic encephalopathy contributes to executive function impairments in rats: potential contribution for attention-deficit/hyperactivity disorder,” The World Journal of Biological Psychiatry, pp. 1–14, 2017. View at Publisher · View at Google Scholar
  86. J. E. Lisman, “Bursts as a unit of neural information: making unreliable synapses reliable,” Trends in Neurosciences, vol. 20, no. 1, pp. 38–43, 1997. View at Publisher · View at Google Scholar · View at Scopus
  87. F. R. Sharp and M. Bernaudin, “HIF1 and oxygen sensing in the brain,” Nature Reviews Neuroscience, vol. 5, no. 6, pp. 437–448, 2004. View at Publisher · View at Google Scholar
  88. M. Zhang, J. Wu, L. Huo et al., “Environmental enrichment prevent the juvenile hypoxia-induced developmental loss of parvalbumin-immunoreactive cells in the prefrontal cortex and neurobehavioral alterations through inhibition of NADPH oxidase-2-derived oxidative stress,” Molecular Neurobiology, vol. 53, no. 10, pp. 7341–7350, 2016. View at Publisher · View at Google Scholar · View at Scopus
  89. M. E. Hasselmo and J. McGaughy, “High acetylcholine levels set circuit dynamics for attention and encoding and low acetylcholine levels set dynamics for consolidation,” Progress in Brain Research, vol. 145, pp. 207–231, 2004. View at Google Scholar
  90. B. W. Row, R. Liu, W. Xu, L. Kheirandish, and D. Gozal, “Intermittent hypoxia is associated with oxidative stress and spatial learning deficits in the rat,” American Journal of Respiratory and Critical Care Medicine, vol. 167, no. 11, pp. 1548–1553, 2003. View at Publisher · View at Google Scholar · View at Scopus
  91. B. W. Row, L. Kheirandish, Y. Cheng, P. P. Rowell, and D. Gozal, “Impaired spatial working memory and altered choline acetyltransferase (CHAT) immunoreactivity and nicotinic receptor binding in rats exposed to intermittent hypoxia during sleep,” Behavioural Brain Research, vol. 177, no. 2, pp. 308–314, 2007. View at Publisher · View at Google Scholar · View at Scopus
  92. M. P. Caulfield and N. J. Birdsall, “International Union of Pharmacology. XVII. Classification of muscarinic acetylcholine receptors,” Pharmacological Reviews, vol. 50, no. 2, pp. 279–290, 1998. View at Google Scholar
  93. C. L. Douglas, H. A. Baghdoyan, and R. Lydic, “Prefrontal cortex acetylcholine release, EEG slow waves, and spindles are modulated by M2 autoreceptors in C57BL/6J mouse,” Journal of Neurophysiology, vol. 87, no. 6, pp. 2817–2822, 2002. View at Google Scholar
  94. V. S. Hambrecht, P. E. Vlisides, B. W. Row, D. Gozal, H. A. Baghdoyan, and R. Lydic, “G proteins in rat prefrontal cortex (PFC) are differentially activated as a function of oxygen status and PFC region,” Journal of Chemical Neuroanatomy, vol. 37, no. 2, pp. 112–117, 2009. View at Publisher · View at Google Scholar · View at Scopus
  95. M. G. Baxter and E. A. Murray, “The amygdala and reward,” Nature Reviews Neuroscience, vol. 3, no. 7, pp. 563–573, 2002. View at Publisher · View at Google Scholar · View at Scopus
  96. J. Townsend and L. L. Altshuler, “Emotion processing and regulation in bipolar disorder: a review,” Bipolar Disorders, vol. 14, no. 4, pp. 326–339, 2012. View at Publisher · View at Google Scholar · View at Scopus
  97. K. Zou, W. Deng, T. Li et al., “Changes of brain morphometry in first-episode, drug-naïve, non-late-life adult patients with major depression: an optimized voxel-based morphometry study,” Biological Psychiatry, vol. 67, no. 2, pp. 186–188, 2010. View at Publisher · View at Google Scholar · View at Scopus
  98. M. Bellani, M. Baiano, and P. Brambilla, “Brain anatomy of major depression II. Focus on amygdala,” Epidemiology and Psychiatric Sciences, vol. 20, no. 1, pp. 33–36, 2011. View at Google Scholar
  99. M. L. Carty, J. A. Wixey, J. Kesby et al., “Long-term losses of amygdala corticotropin-releasing factor neurons are associated with behavioural outcomes following neonatal hypoxia-ischemia,” Behavioural Brain Research, vol. 208, no. 2, pp. 609–618, 2010. View at Publisher · View at Google Scholar · View at Scopus
  100. B. S. Peterson, B. Vohr, L. H. Staib et al., “Regional brain volume abnormalities and long-term cognitive outcome in preterm infants,” Jama, vol. 284, no. 15, pp. 1939–1947, 2000. View at Publisher · View at Google Scholar
  101. S. S. Babović, S. Žigić, and B. Šakić, “c-fos protein expression in the anterior amygdaloid area and nc. accumbens in the hypoxic rat brain,” Medicinski Pregled, vol. 67, no. 11-12, pp. 379–384, 2014. View at Publisher · View at Google Scholar
  102. U. K. Haukvik, T. McNeil, E. H. Lange et al., “Pre- and perinatal hypoxia associated with hippocampus/amygdala volume in bipolar disorder,” Psychological Medicine, vol. 44, no. 5, pp. 975–985, 2014. View at Google Scholar
  103. J. A. DeLeo, C. D. Applegate, J. L. Burchfiel, A. V. Lorenzo, and D. H. Hsi, “Perinatal exposure to anoxia alone does not alter the susceptibility to amygdaloid-kindled seizures in the adult rabbit,” Brain Research, vol. 522, no. 1, pp. 168–171, 1990. View at Publisher · View at Google Scholar · View at Scopus
  104. R. Kumar, K. Lee, P. M. Macey, M. A. Woo, and R. M. Harper, “Mammillary body and fornix injury in congenital central hypoventilation syndrome,” Pediatric Research, vol. 66, no. 4, pp. 429–434, 2009. View at Publisher · View at Google Scholar · View at Scopus
  105. R. Kumar, P. M. Macey, M. A. Woo, and R. M. Harper, “Rostral brain axonal injury in congenital central hypoventilation syndrome,” Journal of Neuroscience Research, vol. 88, no. 10, pp. 2146–2154, 2010. View at Publisher · View at Google Scholar · View at Scopus
  106. P. M. Macey, M. A. Woo, K. E. Macey et al., “Hypoxia reveals posterior thalamic, cerebellar, midbrain, and limbic deficits in congenital central hypoventilation syndrome,” Journal of Applied Physiology, vol. 98, no. 3, pp. 958–969, 2005. View at Publisher · View at Google Scholar · View at Scopus
  107. K. Ibbotson, J. Yell, and P. T. Ronaldson, “Nrf2 signaling increases expression of ATP-binding cassette subfamily C mRNA transcripts at the blood-brain barrier following hypoxia-reoxygenation stress,” Fluids and Barriers of the CNS, vol. 14, no. 1, p. 6, 2017. View at Google Scholar
  108. X. Zhai, H. Lin, Y. Chen et al., “Hyperbaric oxygen preconditioning ameliorates hypoxia-ischemia brain damage by activating Nrf2 expression in vivo and in vitro,” Free Radical Research, vol. 50, no. 4, pp. 454–466, 2016. View at Publisher · View at Google Scholar · View at Scopus
  109. K. E. Nikolaou, A. Malamitsi-Puchner, T. Boutsikou et al., “The varying patterns of neurotrophin changes in the perinatal period,” Annals of the new York Academy of Sciences, vol. 1092, pp. 426–433, 2006. View at Publisher · View at Google Scholar · View at Scopus
  110. C. Hubold, U. E. Lang, H. Gehring et al., “Increased serum brain-derived neurotrophic factor protein upon hypoxia in healthy young men,” Journal of Neural Transmission, vol. 116, no. 10, pp. 1221–1225, 2009. View at Publisher · View at Google Scholar · View at Scopus
  111. M. Helan, B. Aravamudan, W. R. Hartman et al., “BDNF secretion by human pulmonary artery endothelial cells in response to hypoxia,” Journal of Molecular and Cellular Cardiology, vol. 68, pp. 89–97, 2014. View at Publisher · View at Google Scholar · View at Scopus
  112. N. I. Boyadjieva and D. K. Sarkar, “Cyclic adenosine monophosphate and brain-derived neurotrophic factor decreased oxidative stress and apoptosis in developing hypothalamic neuronal cells: role of microglia,” Alcoholism, Clinical and Experimental Research, vol. 37, no. 8, pp. 1370–1379, 2013. View at Publisher · View at Google Scholar · View at Scopus
  113. M. M. Poo, “Neurotrophins as synaptic modulators,” Nature Reviews Neuroscience, vol. 2, no. 1, pp. 24–32, 2001. View at Publisher · View at Google Scholar · View at Scopus
  114. A. L. Scott, M. Zhang, and C. A. Nurse, “Enhanced BDNF signalling following chronic hypoxia potentiates catecholamine release from cultured rat adrenal chromaffin cells,” The Journal of Physiology, vol. 593, no. 15, pp. 3281–3299, 2015. View at Publisher · View at Google Scholar · View at Scopus
  115. J. Wang, S. Zhang, H. Ma et al., “Chronic intermittent hypobaric hypoxia pretreatment ameliorates ischemia-induced cognitive dysfunction through activation of ERK1/2-CREB-BDNF pathway in anesthetized mice,” Neurochemical Research, vol. 42, no. 2, pp. 501–512, 2017. View at Publisher · View at Google Scholar · View at Scopus
  116. R. Deng, F. Y. Zhao, L. Zhang, D. Y. Li, and D. Z. Mu, “Role of STAT3 signaling pathway in hypoxic-ischemic brain damage of neonatal rats,” Zhongguo Dang Dai Er Ke Za Zhi = Chinese Journal of Contemporary Pediatrics, vol. 18, no. 1, pp. 78–84, 2016. View at Google Scholar
  117. M. Hristova, E. Rocha-Ferreira, X. Fontana et al., “Inhibition of signal transducer and activator of transcription 3 (STAT3) reduces neonatal hypoxic-ischaemic brain damage,” Journal of Neurochemistry, vol. 136, no. 5, pp. 981–994, 2016. View at Publisher · View at Google Scholar · View at Scopus
  118. S. J. Chen, J. F. Yang, F. P. Kong et al., “Overactivation of corticotropin-releasing factor receptor type 1 and aquaporin-4 by hypoxia induces cerebral edema,” Proceedings of the National Academy of Sciences of the United States of America, vol. 111, no. 36, pp. 13199–13204, 2014. View at Publisher · View at Google Scholar · View at Scopus
  119. B. Wei, L. Li, A. He, Y. Zhang, M. Sun, and Z. Xu, “Hippocampal NMDAR-Wnt-catenin signaling disrupted with cognitive deficits in adolescent offspring exposed to prenatal hypoxia,” Brain Research, vol. 1631, pp. 157–164, 2016. View at Publisher · View at Google Scholar · View at Scopus
  120. M. Zhu, M. Lu, Q. J. Li et al., “Hyperbaric oxygen suppresses hypoxic-ischemic brain damage in newborn rats,” Journal of Child Neurology, vol. 30, no. 1, pp. 75–82, 2015. View at Publisher · View at Google Scholar · View at Scopus