Table of Contents Author Guidelines Submit a Manuscript
Neurology Research International
Volume 2011, Article ID 458427, 9 pages
http://dx.doi.org/10.1155/2011/458427
Review Article

SOD1 Transcriptional and Posttranscriptional Regulation and Its Potential Implications in ALS

1Laboratory of Experimental Neurobiology, IRCCS, National Neurological Institute “C. Mondino,” Via Mondino 2, 27100 Pavia, Italy
2Department of Neurological Sciences, University of Pavia, 27100 Pavia, Italy

Received 15 November 2010; Accepted 3 February 2011

Academic Editor: Prabhakara V. Choudary

Copyright © 2011 Pamela Milani et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. H. E. Parge, R. A. Hallewell, and J. A. Tainer, “Atomic structures of wild-type and thermostable mutant recombinant human Cu,Zn superoxide dismutase,” Proceedings of the National Academy of Sciences of the United States of America, vol. 89, no. 13, pp. 6109–6113, 1992. View at Publisher · View at Google Scholar · View at Scopus
  2. T. Mann and D. Kleinin, “Homocuprein and heptacuprein, coppe-protein compound of bloods and liver in mammals,” Proceedings of the Royal Society B, vol. 126, pp. 303–315, 1938. View at Google Scholar
  3. J. M. McCord and I. Fridovich, “Superoxide dismutase. An enzymic function for erythrocuprein (hemocuprein),” Journal of Biological Chemistry, vol. 244, no. 22, pp. 6049–6055, 1969. View at Google Scholar · View at Scopus
  4. I. Fridovich, “Superoxide dismutases,” Annual Review of Biochemistry, vol. 44, pp. 147–159, 1975. View at Google Scholar · View at Scopus
  5. L. Y. Chang, J. W. Slot, H. J. Geuze, and J. D. Crapo, “Molecular immunocytochemistry of the CuZn superoxide dismutase in rat hepatocytes,” Journal of Cell Biology, vol. 107, no. 6, part 1, pp. 2169–2179, 1988. View at Google Scholar · View at Scopus
  6. E. C. Chang, B. F. Crawford, Z. Hong, T. Bilinski, and D. J. Kosman, “Genetic and biochemical characterization of Cu,Zn superoxide dismutase mutants in Saccharomyces cerevisiae,” Journal of Biological Chemistry, vol. 266, no. 7, pp. 4417–4424, 1991. View at Google Scholar · View at Scopus
  7. F. M. F. Alameddine and A. M. Zafari, “Genetic polymorphisms and oxidative stress in heart failure,” Congestive Heart Failure, vol. 8, no. 3, pp. 157–172, 2002. View at Google Scholar · View at Scopus
  8. L. W. Oberley and G. R. Buettner, “Role of superoxide dismutase in cancer: a review,” Cancer Research, vol. 39, no. 4, pp. 1141–1149, 1979. View at Google Scholar · View at Scopus
  9. M. Flekac, J. Skrha, J. Hilgertova, Z. Lacinova, and M. Jarolimkova, “Gene polymorphisms of superoxide dismutases and catalase in diabetes mellitus,” BMC Medical Genetics, vol. 9, article 30, 2008. View at Publisher · View at Google Scholar · View at Scopus
  10. R. de la Torre, A. Casado, E. López-Fernández, D. Carrascosa, V. Ramírez, and J. Sáez, “Overexpression of copper-zinc superoxide dismutase in trisomy 21,” Experientia, vol. 52, no. 9, pp. 871–873, 1996. View at Google Scholar · View at Scopus
  11. D. R. Rosen, T. Siddique, D. Patterson et al., “Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis,” Nature, vol. 362, no. 6415, pp. 59–62, 1993. View at Publisher · View at Google Scholar · View at Scopus
  12. H. Ohno, S. Iizuka, and T. Kondo, “The levels of superoxide dismutase, catalase, and carbonic anhydrase in erythrocytes of patients with Down's syndrome,” Klinische Wochenschrift, vol. 62, no. 6, pp. 287–288, 1984. View at Google Scholar
  13. D. Levanon, J. Lieman-Hurwitz, N. Dafni et al., “Architecture and anatomy of the chromosomal locus in human chromosome 21 encoding the Cu/Zn superoxide dismutase,” The EMBO Journal, vol. 4, no. 1, pp. 77–84, 1985. View at Google Scholar · View at Scopus
  14. S. J. Seo, H. T. Kim, G. Cho, H. M. Rho, and G. Jung, “Sp1 and C/EBP-related factor regulate the transcription of human Cu/Zn SOD gene,” Gene, vol. 178, no. 1-2, pp. 177–185, 1996. View at Publisher · View at Google Scholar
  15. H. Y. Yoo, M. S. Chang, and H. M. Rho, “Heavy metal-mediated activation of the rat Cu/Zn superoxide dismutase gene via a metal-responsive element,” Molecular and General Genetics, vol. 262, no. 2, pp. 310–313, 1999. View at Publisher · View at Google Scholar · View at Scopus
  16. H. Y. Yoo, M. S. Chang, and H. M. Rho, “Induction of the rat Cu/Zn superoxide dismutase gene through the peroxisome proliferator-responsive element by arachidonic acid,” Gene, vol. 234, no. 1, pp. 87–91, 1999. View at Publisher · View at Google Scholar · View at Scopus
  17. H. Y. Yoo, M. S. Chang, and H. M. Rho, “The activation of the rat copper/zinc superoxide dismutase gene by hydrogen peroxide through the hydrogen peroxide-responsive element and by paraquat and heat shock through the same heat shock element,” Journal of Biological Chemistry, vol. 274, no. 34, pp. 23887–23892, 1999. View at Publisher · View at Google Scholar · View at Scopus
  18. Y. H. Kim, K. H. Park, and H. M. Rho, “Transcriptional activation of the Cu,Zn-superoxide dismutase gene through the AP2 site by ginsenoside Rb extracted from a medicinal plant, Panax ginseng,” Journal of Biological Chemistry, vol. 271, no. 40, pp. 24539–24543, 1996. View at Publisher · View at Google Scholar · View at Scopus
  19. L. Sherman, N. Dafni, J. Lieman Hurwitz, and Y. Groner, “Nucleotide sequence and expression of human chromosome 21-encoded superoxide dismutase mRNA,” Proceedings of the National Academy of Sciences of the United States of America, vol. 80, no. 181, pp. 5465–5469, 1983. View at Google Scholar · View at Scopus
  20. Y. Groner, J. Lieman-Hurwitz, N. Dafni et al., “Molecular structure and expression of the gene locus on chromosome 21 encoding the Cu/Zn superoxide dismutase and its relevance to Down syndrome,” Annals of the New York Academy of Sciences, vol. 450, pp. 133–156, 1985. View at Google Scholar
  21. S. J. Seo, S. S. Kang, G. Cho, H. M. Rho, and G. Jung, “C/EBPα and C/EBPβ play similar roles in the transcription of the human Cu/Zn SOD gene,” Gene, vol. 203, no. 1, pp. 11–15, 1997. View at Publisher · View at Google Scholar · View at Scopus
  22. T. C. Hour, Y. L. Lai, C. I. Kuan et al., “Transcriptional up-regulation of SOD1 by CEBPD: a potential target for cisplatin resistant human urothelial carcinoma cells,” Biochemical Pharmacology, vol. 80, no. 3, pp. 325–334, 2010. View at Publisher · View at Google Scholar · View at Scopus
  23. M. R. Briggs, J. T. Kadonaga, S. P. Bell, and R. Tjian, “Purification and biochemical characterization of the promoter-specific transcription factor, Sp1,” Science, vol. 234, no. 4772, pp. 47–52, 1986. View at Google Scholar · View at Scopus
  24. V. Afonso, G. Santos, P. Collin et al., “Tumor necrosis factor-α down-regulates human Cu/Zn superoxide dismutase 1 promoter via JNK/AP-1 signaling pathway,” Free Radical Biology and Medicine, vol. 41, no. 5, pp. 709–721, 2006. View at Publisher · View at Google Scholar · View at Scopus
  25. X. Cao, G. R. Guy, V. P. Sukhatme, and Y. H. Tan, “Regulation of the Egr-1 gene by tumor necrosis factor and interferons in primary human fibroblasts,” Journal of Biological Chemistry, vol. 267, no. 2, pp. 1345–1349, 1992. View at Google Scholar · View at Scopus
  26. L. R. Chaudhary, S. L. Cheng, and L. V. Avioli, “Induction of early growth response-1 gene by interleukin-1β and tumor necrosis factor-α in normal human bone marrow stromal and osteoblastic cells: regulation by a protein kinase C inhibitor,” Molecular and Cellular Biochemistry, vol. 156, no. 1, pp. 69–77, 1996. View at Google Scholar · View at Scopus
  27. X. Zhang and Y. Liu, “Suppression of HGF receptor gene expression by oxidative stress is mediated through the interplay between Sp1 and Egr-1,” American Journal of Physiology, vol. 284, no. 6, pp. F1216–F1225, 2003. View at Google Scholar
  28. N. A. Franken, R. ten Cate, C. van Bree, and J. Haveman, “Induction of the early response protein EGR-1 in human tumour cells after ionizing radiation is correlated with a reduction of repair of lethal lesions and an increase of repair of sublethal lesions,” International Journal of Oncology, vol. 24, no. 4, pp. 1027–1031, 2004. View at Google Scholar
  29. I. B. Copland and M. Post, “Stretch-activated signaling pathways responsible for early response gene expression in fetal lung epithelial cells,” Journal of Cellular Physiology, vol. 210, no. 1, pp. 133–143, 2007. View at Publisher · View at Google Scholar · View at Scopus
  30. E. Minc, P. de Coppet, P. Masson et al., “The human copper-zinc superoxide dismutase gene (SOD1) proximal promoter is regulated by Sp1, Egr-1, and WT1 via non-canonical binding sites,” Journal of Biological Chemistry, vol. 274, no. 1, pp. 503–509, 1999. View at Publisher · View at Google Scholar · View at Scopus
  31. S. Baldelli, K. Aquilano, G. Rotilio, and M. R. Ciriolo, “Glutathione and copper, zinc superoxide dismutase are modulated by overexpression of neuronal nitric oxide synthase,” International Journal of Biochemistry and Cell Biology, vol. 40, no. 11, pp. 2660–2670, 2008. View at Publisher · View at Google Scholar · View at Scopus
  32. B. K. Meyer and G. H. Perdew, “Characterization of the AhR-hsp90-XAP2 core complex and the role of the immunophilin-related protein XAP2 in AhR stabilization,” Biochemistry, vol. 38, no. 28, pp. 8907–8917, 1999. View at Publisher · View at Google Scholar · View at Scopus
  33. A. Kazlauskas, L. Poellinger, and I. Pongratz, “Evidence that the co-chaperone p23 regulates ligand responsiveness of the dioxin (aryl hydrocarbon) receptor,” Journal of Biological Chemistry, vol. 274, no. 19, pp. 13519–13524, 1999. View at Publisher · View at Google Scholar · View at Scopus
  34. J. Mimura and Y. Fujii-Kuriyama, “Functional role of AhR in the expression of toxic effects by TCDD,” Biochimica et Biophysica Acta, vol. 1619, no. 3, pp. 263–268, 2003. View at Publisher · View at Google Scholar · View at Scopus
  35. C. L. Wilson and S. Safe, “Mechanisms of ligand-induced aryl hydrocarbon receptor-mediated biochemical and toxic responses,” Toxicologic Pathology, vol. 26, no. 5, pp. 657–671, 1998. View at Google Scholar · View at Scopus
  36. T. A. Nguyen, D. Hoivik, J. E. Lee, and S. Safe, “Interactions of nuclear receptor coactivator/corepressor proteins with the aryl hydrocarbon receptor complex,” Archives of Biochemistry and Biophysics, vol. 367, no. 2, pp. 250–257, 1999. View at Publisher · View at Google Scholar · View at Scopus
  37. J. S. Cho, M. S. Chang, and H. M. Rho, “Transcriptional activation of the human Cu/Zn superoxide dismutase gene by 2,3,7,8-tetrachlorodibenzo-p-dioxin through the xenobiotic-responsive element,” Molecular Genetics and Genomics, vol. 266, no. 1, pp. 133–141, 2001. View at Publisher · View at Google Scholar · View at Scopus
  38. J. Li, M. J. Calkins, D. A. Johnson, and J. A. Johnson, “Role of Nrf2-dependent ARE-driven antioxidant pathway in neuroprotection,” Methods in Molecular Biology, vol. 399, pp. 67–78, 2007. View at Google Scholar · View at Scopus
  39. W. O. Osburn and T. W. Kensler, “Nrf2 signaling: an adaptive response pathway for protection against environmental toxic insults,” Mutation Research, vol. 659, no. 1-2, pp. 31–39, 2008. View at Publisher · View at Google Scholar · View at Scopus
  40. W. Li and A. N. Kong, “Molecular mechanisms of Nrf2-mediated antioxidant response,” Molecular Carcinogenesis, vol. 48, no. 2, pp. 91–104, 2009. View at Publisher · View at Google Scholar · View at Scopus
  41. T. Nguyen, P. Nioi, and C. B. Pickett, “The Nrf2-antioxidant response element signaling pathway and its activation by oxidative stress,” Journal of Biological Chemistry, vol. 284, no. 20, pp. 13291–13295, 2009. View at Publisher · View at Google Scholar · View at Scopus
  42. E. Y. Park and H. M. Rho, “The transcriptional activation of the human copper/zinc superoxide dismutase gene by 2,3,7,8-tetrachlorodibenzo-p-dioxin through two different regulator sites, the antioxidant responsive element and xenobiotic responsive element,” Molecular and Cellular Biochemistry, vol. 240, no. 1-2, pp. 47–55, 2002. View at Publisher · View at Google Scholar · View at Scopus
  43. H. Dreger, K. Westphal, N. Wilck et al., “Protection of vascular cells from oxidative stress by proteasome inhibition depends on Nrf2,” Cardiovascular Research, vol. 85, no. 2, pp. 395–403, 2010. View at Publisher · View at Google Scholar · View at Scopus
  44. E. O'Dea and A. Hoffmann, “The regulatory logic of the NF-kappaB signaling system.,” Cold Spring Harbor Perspectives in Biology, vol. 2, no. 1, Article ID a000216, 2010. View at Publisher · View at Google Scholar
  45. S. Ghosh and M. S. Hayden, “New regulators of NF-κB in inflammation,” Nature Reviews Immunology, vol. 8, no. 11, pp. 837–848, 2008. View at Publisher · View at Google Scholar · View at Scopus
  46. S. Vallabhapurapu and M. Karin, “Regulation and function of NF-κB transcription factors in the immune system,” Annual Review of Immunology, vol. 27, pp. 693–733, 2009. View at Publisher · View at Google Scholar · View at Scopus
  47. R. Schreck, P. Rieber, and P. A. Baeuerle, “Reactive oxygen intermediates as apparently widely used messengers in the activation of the NF-κB transcription factor and HIV-1,” The EMBO Journal, vol. 10, no. 8, pp. 2247–2258, 1991. View at Google Scholar · View at Scopus
  48. C. K. Sen and L. Packer, “Antioxidant and redox regulation of gene transcription,” FASEB Journal, vol. 10, no. 7, pp. 709–720, 1996. View at Google Scholar · View at Scopus
  49. S. K. Manna, H. J. Zhang, T. Yan, L. W. Oberley, and B. B. Aggarwal, “Overexpression of manganese superoxide dismutase suppresses tumor necrosis factor-induced apoptosis and activation of nuclear transcription factor-κB and activated protein-1,” Journal of Biological Chemistry, vol. 273, no. 21, pp. 13245–13254, 1998. View at Publisher · View at Google Scholar · View at Scopus
  50. N. Li and M. Karin, “Is NF-κB the sensor of oxidative stress?” FASEB Journal, vol. 13, no. 10, pp. 1137–1143, 1999. View at Google Scholar · View at Scopus
  51. A. I. Rojo, M. Salinas, D. Martín, R. Perona, and A. Cuadrado, “Regulation of Cu/Zn-superoxide dismutase expression via the phosphatidylinositol 3 kinase/Akt pathway and nuclear factor-κB,” Journal of Neuroscience, vol. 24, no. 33, pp. 7324–7334, 2004. View at Publisher · View at Google Scholar · View at Scopus
  52. T. Tagami, L. D. Madison, T. Nagaya, and J. L. Jameson, “Nuclear receptor corepressors activate rather than suppress basal transcription of genes that are negatively regulated by thyroid hormone,” Molecular and Cellular Biology, vol. 17, no. 5, pp. 2642–2648, 1997. View at Google Scholar · View at Scopus
  53. D. L. Bodenner, M. A. Mroczynski, B. D. Weintraub, S. Radovick, and F. E. Wondisford, “A detailed functional and structural analysis of a major thyroid hormone inhibitory element in the human thyrotropin β-subunit gene,” Journal of Biological Chemistry, vol. 266, no. 32, pp. 21666–21673, 1991. View at Google Scholar · View at Scopus
  54. G. M. Santos, V. Afonso, G. B. Barra et al., “Negative regulation of superoxide dismutase-1 promoter by thyroid hormone,” Molecular Pharmacology, vol. 70, no. 3, pp. 793–800, 2006. View at Publisher · View at Google Scholar · View at Scopus
  55. C. Andreassi and A. Riccio, “To localize or not to localize: mRNA fate is in 3′UTR ends,” Trends in Cell Biology, vol. 19, no. 9, pp. 465–474, 2009. View at Publisher · View at Google Scholar · View at Scopus
  56. A. Kilk, “Human CuZn superoxide dismutase enzymatic activity in cells is regulated by the length of the mRNA,” FEBS Letters, vol. 362, no. 3, pp. 323–327, 1995. View at Publisher · View at Google Scholar · View at Scopus
  57. G. Shaw and R. Kamen, “A conserved AU sequence from the 3′ untranslated region of GM-CSF mRNA mediates selective mRNA degradation,” Cell, vol. 46, no. 5, pp. 659–667, 1986. View at Google Scholar · View at Scopus
  58. A. Pascale, M. Amadio, and A. Quattrone, “Defining a neuron: neuronal ELAV proteins,” Cellular and Molecular Life Sciences, vol. 65, no. 1, pp. 128–140, 2008. View at Publisher · View at Google Scholar · View at Scopus
  59. R. S. Pillai, S. N. Bhattacharyya, and W. Filipowicz, “Repression of protein synthesis by miRNAs: how many mechanisms?” Trends in Cell Biology, vol. 17, no. 3, pp. 118–126, 2007. View at Publisher · View at Google Scholar · View at Scopus
  60. W. Filipowicz, S. N. Bhattacharyya, and N. Sonenberg, “Mechanisms of post-transcriptional regulation by microRNAs: are the answers in sight?” Nature Reviews Genetics, vol. 9, no. 2, pp. 102–114, 2008. View at Publisher · View at Google Scholar · View at Scopus
  61. Q. Wang, Y. Wang, A. W. Minto et al., “MicroRNA-377 is up-regulated and can lead to increased fibronectin production in diabetic nephropathy,” FASEB Journal, vol. 22, no. 12, pp. 4126–4135, 2008. View at Publisher · View at Google Scholar · View at Scopus
  62. T. Siddique, D. A. Fiolewicz, M. A. Pericak-Vance et al., “Linkage of a gene causing familial amyotrophic lateral sclerosis to chromosome 21 and evidence of genetic-locus heterogeneity,” The New England Journal of Medicine, vol. 324, no. 20, pp. 1381–1384, 1991. View at Google Scholar · View at Scopus
  63. H. X. Deng, A. Hentati, J. A. Tainer et al., “Amyotrophic lateral sclerosis and structural defects in Cu,Zn superoxide dismutase,” Science, vol. 261, no. 5124, pp. 1047–1051, 1993. View at Google Scholar · View at Scopus
  64. P. M. Andersen, “Amyotrophic lateral sclerosis associated with mutations in the CuZn superoxide dismutase gene,” Current Neurology and Neuroscience Reports, vol. 6, no. 1, pp. 37–46, 2006. View at Publisher · View at Google Scholar · View at Scopus
  65. R. Wroe, A. Wai-Ling Butler, P. M. Andersen, J. F. Powell, and A. Al-Chalabi, “ALSOD: the amyotrophic lateral sclerosis online database,” Amyotrophic Lateral Sclerosis, vol. 9, no. 4, pp. 249–250, 2008. View at Publisher · View at Google Scholar · View at Scopus
  66. P. M. Andersen, K. B. Sims, W. W. Xin et al., “Sixteen novel mutations in the Cu/Zn superoxide dismutase gene in amyotrophic lateral sclerosis: a decade of discoveries, defects and disputes,” Amyotrophic Lateral Sclerosis and Other Motor Neuron Disorders, vol. 4, no. 2, pp. 62–73, 2003. View at Publisher · View at Google Scholar · View at Scopus
  67. L. Zinman, H. N. Liu, C. Sato et al., “A mechanism for low penetrance in an ALS family with a novel SOD1 deletion,” Neurology, vol. 72, no. 13, pp. 1153–1159, 2009. View at Publisher · View at Google Scholar · View at Scopus
  68. P. Pasinelli and R. H. Brown, “Molecular biology of amyotrophic lateral sclerosis: insights from genetics,” Nature Reviews Neuroscience, vol. 7, no. 9, pp. 710–723, 2006. View at Publisher · View at Google Scholar · View at Scopus
  69. K. Nishiyama, S. Murayama, S. Kwak, and I. Kanazawa, “Expression of the copper-zinc superoxide dismutase gene in amyotrophic lateral sclerosis,” Annals of Neurology, vol. 41, no. 4, pp. 551–556, 1997. View at Publisher · View at Google Scholar · View at Scopus
  70. F. L. Conforti, A. Magariello, R. Mazzei et al., “Abnormally high levels of SOD1 mRNA in a patient with amyotrophic lateral sclerosis,” Muscle and Nerve, vol. 29, no. 4, pp. 610–611, 2004. View at Publisher · View at Google Scholar · View at Scopus
  71. Y. M. Jiang, M. Yamamoto, Y. Kobayashi et al., “Gene expression profile of spinal motor neurons in sporadic amyotrophic lateral sclerosis,” Annals of Neurology, vol. 57, no. 2, pp. 236–251, 2005. View at Publisher · View at Google Scholar · View at Scopus
  72. X. S. Wang, Z. Simmons, W. Liu, P. Boyer, and J. Connor, “Differential expression of genes in amyotrophic lateral sclerosis revealed by profiling the post mortem cortex,” Amyotrophic Lateral Sclerosis, vol. 7, no. 4, pp. 201–216, 2006. View at Publisher · View at Google Scholar · View at Scopus
  73. S. Gagliardi, E. Cova, A. Davin et al., “SOD1 mRNA expression in sporadic amyotrophic lateral sclerosis,” Neurobiology of Disease, vol. 39, no. 2, pp. 198–203, 2010. View at Publisher · View at Google Scholar · View at Scopus
  74. E. Cova, C. Cereda, A. Galli et al., “Modified expression of Bcl-2 and SOD1 proteins in lymphocytes from sporadic ALS patients,” Neuroscience Letters, vol. 399, no. 3, pp. 186–190, 2006. View at Publisher · View at Google Scholar · View at Scopus
  75. S. M. Chou, C. Y. Han, H. S. Wang, H. Vlassara, and R. Bucala, “A receptor for advanced glycosylation endproducts (AGEs) is colocalized with neurofilament-bound AGEs and SOD1 in motoneurons of ALS: immunohistochemical study,” Journal of the Neurological Sciences, vol. 169, no. 1-2, pp. 87–92, 1999. View at Publisher · View at Google Scholar · View at Scopus
  76. S. Matsumoto, H. Kusaka, H. Ito, N. Shibata, T. Asayama, and T. Imai, “Sporadic amyotrophic lateral sclerosis with dementia and Cu/Zn superoxide dismutase-positive Lewy body-like inclusions,” Clinical Neuropathology, vol. 15, no. 1, pp. 41–46, 1996. View at Google Scholar · View at Scopus
  77. N. Shibata, A. Hirano, M. Kobayashi et al., “Cu/Zn superoxide dismutase-like immunoreactivity in Lewy body-like inclusions of sporadic amyotrophic lateral sclerosis,” Neuroscience Letters, vol. 179, no. 1-2, pp. 149–152, 1994. View at Publisher · View at Google Scholar · View at Scopus
  78. A. Gruzman, W. L. Wood, E. Alpert et al., “Common molecular signature in SOD1 for both sporadic and familial amyotrophic lateral sclerosis,” Proceedings of the National Academy of Sciences of the United States of America, vol. 104, no. 30, pp. 12524–12529, 2007. View at Publisher · View at Google Scholar · View at Scopus
  79. K. Forsberg, P. A. Jonsson, P. M. Andersen et al., “Novel antibodies reveal inclusions containing non-native SOD1 in sporadic ALS patients,” PLoS One, vol. 5, no. 7, Article ID e11552, 2010. View at Publisher · View at Google Scholar
  80. D. A. Bosco, G. Morfini, N. M. Karabacak et al., “Wild-type and mutant SOD1 share an aberrant conformation and a common pathogenic pathway in ALS,” Nature Neuroscience, vol. 13, no. 11, pp. 1396–1403, 2010. View at Publisher · View at Google Scholar
  81. J. D. Rothstein, “Current hypotheses for the underlying biology of amyotrophic lateral sclerosis,” Annals of Neurology, vol. 65, no. 1, pp. S3–S9, 2009. View at Publisher · View at Google Scholar · View at Scopus
  82. M. Watanabe, M. Dykes-Hoberg, V. Cizewski Culotta, D. L. Price, P. C. Wong, and J. D. Rothstein, “Histological evidence of protein aggregation in mutant SOD1 transgenic mice and in amyotrophic lateral sclerosis neural tissues,” Neurobiology of Disease, vol. 8, no. 6, pp. 933–941, 2001. View at Publisher · View at Google Scholar · View at Scopus