Table of Contents Author Guidelines Submit a Manuscript
Neurology Research International
Volume 2011, Article ID 718987, 7 pages
http://dx.doi.org/10.1155/2011/718987
Review Article

Glial Cells in Amyotrophic Lateral Sclerosis

1Laboratory for Motor Neuron Disease, RIKEN Brain Science Institute, 2-1 Hirosawa, Wako-Shi, Saitama 351-0198, Japan
2CREST, Japan Science and Technology Agency, Tokyo 102-0075, Japan
3Department of State-of-the-Art and International Medicine, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan

Received 15 November 2010; Accepted 31 January 2011

Academic Editor: B. R. Ott

Copyright © 2011 Jurate Lasiene and Koji Yamanaka. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. D. R. Rosen, T. Siddique, D. Patterson et al., “Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis,” Nature, vol. 362, no. 6415, pp. 59–62, 1993. View at Publisher · View at Google Scholar · View at Scopus
  2. P. Pasinelli and R. H. Brown, “Molecular biology of amyotrophic lateral sclerosis: insights from genetics,” Nature Reviews Neuroscience, vol. 7, no. 9, pp. 710–723, 2006. View at Publisher · View at Google Scholar · View at Scopus
  3. L. I. Bruijn, T. M. Miller, and D. W. Cleveland, “Unraveling the mechanisms involved in motor neuron degeneration in ALS,” Annual Review of Neuroscience, vol. 27, pp. 723–749, 2004. View at Publisher · View at Google Scholar · View at Scopus
  4. B. J. Turner and K. Talbot, “Transgenics, toxicity and therapeutics in rodent models of mutant SOD1-mediated familial ALS,” Progress in Neurobiology, vol. 85, no. 1, pp. 94–134, 2008. View at Publisher · View at Google Scholar · View at Scopus
  5. J. D. Rothstein, M. van Kammen, A. I. Levey, L. J. Martin, and R. W. Kuncl, “Selective loss of glial glutamate transporter GLT-1 amyotrophic lateral sclerosis,” Annals of Neurology, vol. 38, no. 1, pp. 73–84, 1995. View at Publisher · View at Google Scholar · View at Scopus
  6. Y. Yang, O. Gozen, A. Watkins et al., “Presynaptic regulation of astroglial excitatory neurotransmitter transporter GLT1,” Neuron, vol. 61, no. 6, pp. 880–894, 2009. View at Publisher · View at Google Scholar · View at Scopus
  7. H. Kikuchi, G. Almer, S. Yamashita et al., “Spinal cord endoplasmic reticulum stress associated with a microsomal accumulation of mutant superoxide dismutase-1 in an ALS model,” Proceedings of the National Academy of Sciences of the United States of America, vol. 103, no. 15, pp. 6025–6030, 2006. View at Publisher · View at Google Scholar · View at Scopus
  8. J. Liu, C. Lillo, P. A. Jonsson et al., “Toxicity of familial ALS-linked SOD1 mutants from selective recruitment to spinal mitochondria,” Neuron, vol. 43, no. 1, pp. 5–17, 2004. View at Publisher · View at Google Scholar · View at Scopus
  9. M. M. Harraz, J. J. Marden, W. Zhou et al., “SOD1 mutations disrupt redox-sensitive Rac regulation of NADPH oxidase in a familial ALS model,” Journal of Clinical Investigation, vol. 118, no. 2, pp. 659–670, 2008. View at Publisher · View at Google Scholar · View at Scopus
  10. T. L. Williamson and D. W. Cleveland, “Slowing of axonal transport is a very early event in the toxicity of ALS-linked SOD1 mutants to motor neurons,” Nature Neuroscience, vol. 2, no. 1, pp. 50–56, 1999. View at Publisher · View at Google Scholar · View at Scopus
  11. Z. Zhong, R. Deane, Z. Ali et al., “ALS-causing SOD1 mutants generate vascular changes prior to motor neuron degeneration,” Nature Neuroscience, vol. 11, no. 4, pp. 420–422, 2008. View at Publisher · View at Google Scholar · View at Scopus
  12. M. E. Gurney, H. Pu, A. Y. Chiu et al., “Motor neuron degeneration in mice that express a human Cu,Zn superoxide dismutase mutation,” Science, vol. 264, no. 5166, pp. 1772–1775, 1994. View at Google Scholar · View at Scopus
  13. M. M. Lino, C. Schneider, and P. Caroni, “Accumulation of SOD1 mutants in postnatal motoneurons does not cause motoneuron pathology or motoneuron disease,” Journal of Neuroscience, vol. 22, no. 12, pp. 4825–4832, 2002. View at Google Scholar · View at Scopus
  14. A. Pramatarova, J. Laganière, J. Roussel, K. Brisebois, and G. A. Rouleau, “Neuron-specific expression of mutant superoxide dismutase 1 in transgenic mice does not lead to motor impairment,” Journal of Neuroscience, vol. 21, no. 10, pp. 3369–3374, 2001. View at Google Scholar · View at Scopus
  15. Y. H. Gong, A. S. Parsadanian, A. Andreeva, W. D. Snider, and J. L. Elliott, “Restricted expression of G86R Cu/Zn superoxide dismutase in astrocytes results in astrocytosis but does not cause motoneuron degeneration,” Journal of Neuroscience, vol. 20, no. 2, pp. 660–665, 2000. View at Google Scholar · View at Scopus
  16. D. Jaarsma, E. Teuling, E. D. Haasdijk, C. I. de Zeeuw, and C. C. Hoogenraad, “Neuron-specific expression of mutant superoxide dismutase is sufficient to induce amyotrophic lateral sclerosis in transgenic mice,” Journal of Neuroscience, vol. 28, no. 9, pp. 2075–2088, 2008. View at Publisher · View at Google Scholar · View at Scopus
  17. A. M. Clement, M. D. Nguyen, E. A. Roberts et al., “Wild-type nonneuronal cells extend survival of SOD1 mutant motor neurons in ALS mice,” Science, vol. 302, no. 5642, pp. 113–117, 2003. View at Publisher · View at Google Scholar · View at Scopus
  18. K. Yamanaka, S. J. Chun, S. Boillee et al., “Astrocytes as determinants of disease progression in inherited amyotrophic lateral sclerosis,” Nature Neuroscience, vol. 11, no. 3, pp. 251–253, 2008. View at Publisher · View at Google Scholar · View at Scopus
  19. S. Boillée, K. Yamanaka, C. S. Lobsiger et al., “Onset and progression in inherited ALS determined by motor neurons and microglia,” Science, vol. 312, no. 5778, pp. 1389–1392, 2006. View at Publisher · View at Google Scholar · View at Scopus
  20. L. Wang, K. Sharma, G. Grisotti, and R. P. Roos, “The effect of mutant SOD1 dismutase activity on non-cell autonomous degeneration in familial amyotrophic lateral sclerosis,” Neurobiology of Disease, vol. 35, no. 2, pp. 234–240, 2009. View at Publisher · View at Google Scholar · View at Scopus
  21. L. Wang, D. H. Gutmann, and R. P. Roos, “Astrocyte loss of mutant SOD1 delays ALS disease onset and progression in G85R transgenic mice,” Human Molecular Genetics, vol. 20, no. 2, pp. 286–293, 2011. View at Publisher · View at Google Scholar
  22. E. D. Hall, J. A. Oostveen, and M. E. Gurney, “Relationship of microglial and astrocytic activation to disease onset and progression in a transgenic model of familial ALS,” GLIA, vol. 23, no. 3, pp. 249–256, 1998. View at Publisher · View at Google Scholar · View at Scopus
  23. M. E. Alexianu, M. Kozovska, and S. H. Appel, “Immune reactivity in a mouse model of familial ALS correlates with disease progression,” Neurology, vol. 57, no. 7, pp. 1282–1289, 2001. View at Google Scholar · View at Scopus
  24. U. K. Hanisch and H. Kettenmann, “Microglia: active sensor and versatile effector cells in the normal and pathologic brain,” Nature Neuroscience, vol. 10, no. 11, pp. 1387–1394, 2007. View at Publisher · View at Google Scholar · View at Scopus
  25. M. T. Heneka, J. J. Rodríguez, and A. Verkhratsky, “Neuroglia in neurodegeneration,” Brain Research Reviews, vol. 63, no. 1-2, pp. 189–211, 2010. View at Publisher · View at Google Scholar · View at Scopus
  26. P. L. McGeer, S. Itagaki, H. Tago, and E. G. McGeer, “Reactive microglia in patients with senile dementia of the Alzheimer type are positive for the histocompatibility glycoprotein HLA-DR,” Neuroscience Letters, vol. 79, no. 1-2, pp. 195–200, 1987. View at Google Scholar · View at Scopus
  27. J. I. Engelhardt and S. H. Appel, “IgG reactivity in the spinal cord and motor cortex in amyotrophic lateral sclerosis,” Archives of Neurology, vol. 47, no. 11, pp. 1210–1216, 1990. View at Google Scholar · View at Scopus
  28. M. R. Turner, A. Cagnin, F. E. Turkheimer et al., “Evidence of widespread cerebral microglial activation in amyotrophic lateral sclerosis: an [11C](R)-PK11195 positron emission tomography study,” Neurobiology of Disease, vol. 15, no. 3, pp. 601–609, 2004. View at Publisher · View at Google Scholar · View at Scopus
  29. G. Almer, S. Vukosavic, N. Romero, and S. Przedborski, “Inducible nitric oxide synthase up-regulation in a transgenic mouse model of familial amyotrophic lateral sclerosis,” Journal of Neurochemistry, vol. 72, no. 6, pp. 2415–2425, 1999. View at Publisher · View at Google Scholar · View at Scopus
  30. J. L. Elliott, “Cytokine upregulation in a murine model of familial amyotrophic lateral sclerosis,” Molecular Brain Research, vol. 95, no. 1-2, pp. 172–178, 2001. View at Publisher · View at Google Scholar · View at Scopus
  31. T. Yoshihara, S. Ishigaki, M. Yamamoto et al., “Differential expression of inflammation- and apoptosis-related genes in spinal cords of a mutant SOD1 transgenic mouse model of familial amyotrophic lateral sclerosis,” Journal of Neurochemistry, vol. 80, no. 1, pp. 158–167, 2002. View at Publisher · View at Google Scholar · View at Scopus
  32. K. Hensley, J. Fedynyshyn, S. Ferrell et al., “Message and protein-level elevation of tumor necrosis factor α (TNFα) and TNFα-modulating cytokines in spinal cords of the G93A-SOD1 mouse model for amyotrophic lateral sclerosis,” Neurobiology of Disease, vol. 14, no. 1, pp. 74–80, 2003. View at Publisher · View at Google Scholar · View at Scopus
  33. K. Hensley, R. A. Floyd, B. Gordon et al., “Temporal patterns of cytokine and apoptosis-related gene expression in spinal cords of the G93A-SOD1 mouse model of amyotrophic lateral sclerosis,” Journal of Neurochemistry, vol. 82, no. 2, pp. 365–374, 2002. View at Publisher · View at Google Scholar · View at Scopus
  34. P. Weydt, E. C. Yuen, B. R. Ransom, and T. Möller, “Increased cytotoxic potential of microglia from ALS-transgenic mice,” GLIA, vol. 48, no. 2, pp. 179–182, 2004. View at Publisher · View at Google Scholar · View at Scopus
  35. Q. Xiao, W. Zhao, D. R. Beers et al., “Mutant SOD1 microglia are more neurotoxic relative to wild-type microglia,” Journal of Neurochemistry, vol. 102, no. 6, pp. 2008–2019, 2007. View at Publisher · View at Google Scholar · View at Scopus
  36. D. R. Beers, J. S. Henkel, Q. Xiao et al., “Wild-type microglia extend survival in PU.1 knockout mice with familial amyotrophic lateral sclerosis,” Proceedings of the National Academy of Sciences of the United States of America, vol. 103, no. 43, pp. 16021–16026, 2006. View at Publisher · View at Google Scholar · View at Scopus
  37. J. Kang and S. Rivest, “MyD88-deficient bone marrow cells accelerate onset and reduce survival in a mouse model of amyotrophic lateral sclerosis,” Journal of Cell Biology, vol. 179, no. 6, pp. 1219–1230, 2007. View at Publisher · View at Google Scholar · View at Scopus
  38. B. Ajami, J. L. Bennett, C. Krieger, W. Tetzlaff, and F. M. V. Rossi, “Local self-renewal can sustain CNS microglia maintenance and function throughout adult life,” Nature Neuroscience, vol. 10, no. 12, pp. 1538–1543, 2007. View at Publisher · View at Google Scholar · View at Scopus
  39. A. Mildner, H. Schmidt, M. Nitsche et al., “Microglia in the adult brain arise from Ly-6ChiCCR2+ monocytes only under defined host conditions,” Nature Neuroscience, vol. 10, no. 12, pp. 1544–1553, 2007. View at Publisher · View at Google Scholar · View at Scopus
  40. N. D'Ambrosi, P. Finocchi, S. Apolloni et al., “The proinflammatory action of microglial P2 receptors is enhanced in SOD1 models for amyotrophic lateral sclerosis,” Journal of Immunology, vol. 183, no. 7, pp. 4648–4656, 2009. View at Publisher · View at Google Scholar · View at Scopus
  41. W. Zhao, D. R. Beers, J. S. Henkel et al., “Extracellular mutant SOD1 induces microglial-mediated motoneuron injury,” GLIA, vol. 58, no. 2, pp. 231–243, 2010. View at Publisher · View at Google Scholar · View at Scopus
  42. J. I. Engelhardt, J. Tajti, and S. H. Appel, “Lymphocytic infiltrates in the spinal cord in amyotrophic lateral sclerosis,” Archives of Neurology, vol. 50, no. 1, pp. 30–36, 1993. View at Google Scholar · View at Scopus
  43. D. R. Beers, J. S. Henkel, W. Zhao, J. Wang, and S. H. Appel, “CD4+ T cells support glial neuroprotection, slow disease progression, and modify glial morphology in an animal model of inherited ALS,” Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 40, pp. 15558–15563, 2008. View at Publisher · View at Google Scholar · View at Scopus
  44. I. M. Chiu, A. Chen, Y. Zheng et al., “T lymphocytes potentiate endogenous neuroprotective inflammation in a mouse model of ALS,” Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 46, pp. 17913–17918, 2008. View at Publisher · View at Google Scholar · View at Scopus
  45. R. Banerjee, R. L. Mosley, A. D. Reynolds et al., “Adaptive immune neuroprotection in G93A-SOD1 amyotrophic lateral sclerosis mice,” PLoS ONE, vol. 3, no. 7, article e2740, 2008. View at Publisher · View at Google Scholar · View at Scopus
  46. A. E. Fray, P. G. Ince, S. J. Banner et al., “The expression of the glial glutamate transporter protein EAAT2 in motor neuron disease: an immunohistochemical study,” European Journal of Neuroscience, vol. 10, no. 8, pp. 2481–2489, 1998. View at Publisher · View at Google Scholar · View at Scopus
  47. D. S. Howland, J. Liu, Y. She et al., “Focal loss of the glutamate transporter EAAT2 in a transgenic rat model of SOD1 mutant-mediated amyotrophic lateral sclerosis (ALS),” Proceedings of the National Academy of Sciences of the United States of America, vol. 99, no. 3, pp. 1604–1609, 2002. View at Publisher · View at Google Scholar · View at Scopus
  48. P. van Damme, E. Bogaert, M. Dewil et al., “Astrocytes regulate GluR2 expression in motor neurons and their vulnerability to excitotoxicity,” Proceedings of the National Academy of Sciences of the United States of America, vol. 104, no. 37, pp. 14825–14830, 2007. View at Publisher · View at Google Scholar · View at Scopus
  49. E. Ekestern, “Neurotrophic factors and amyotrophic lateral sclerosis,” Neurodegenerative Diseases, vol. 1, no. 2-3, pp. 88–100, 2004. View at Publisher · View at Google Scholar · View at Scopus
  50. M. Dewil, D. Lambrechts, R. Sciot et al., “Vascular endothelial growth factor counteracts the loss of phospho-Akt preceding motor neurone degeneration in amyotrophic lateral sclerosis,” Neuropathology and Applied Neurobiology, vol. 33, no. 5, pp. 499–509, 2007. View at Publisher · View at Google Scholar · View at Scopus
  51. M. Pehar, P. Cassina, M. R. Vargas et al., “Astrocytic production of nerve growth factor in motor neuron apoptosis: implications for amyotrophic lateral sclerosis,” Journal of Neurochemistry, vol. 89, no. 2, pp. 464–473, 2004. View at Publisher · View at Google Scholar · View at Scopus
  52. M. Nagai, D. B. Re, T. Nagata et al., “Astrocytes expressing ALS-linked mutated SOD1 release factors selectively toxic to motor neurons,” Nature Neuroscience, vol. 10, no. 5, pp. 615–622, 2007. View at Publisher · View at Google Scholar · View at Scopus
  53. F. P. Di Giorgio, G. L. Boulting, S. Bobrowicz, and K. C. Eggan, “Human embryonic stem cell-derived motor neurons are sensitive to the toxic effect of glial cells carrying an ALS-causing mutation,” Cell Stem Cell, vol. 3, no. 6, pp. 637–648, 2008. View at Publisher · View at Google Scholar · View at Scopus
  54. F. P. Di Giorgio, M. A. Carrasco, M. C. Siao, T. Maniatis, and K. Eggan, “Non-cell autonomous effect of glia on motor neurons in an embryonic stem cell-based ALS model,” Nature Neuroscience, vol. 10, no. 5, pp. 608–614, 2007. View at Publisher · View at Google Scholar · View at Scopus
  55. M. C. N. Marchetto, A. R. Muotri, Y. Mu, A. M. Smith, G. G. Cezar, and F. H. Gage, “Non-cell-autonomous effect of human SOD1 G37R astrocytes on motor neurons derived from human embryonic stem cells,” Cell Stem Cell, vol. 3, no. 6, pp. 649–657, 2008. View at Publisher · View at Google Scholar · View at Scopus
  56. M. R. Vargas, D. A. Johnson, D. W. Sirkis, A. Messing, and J. A. Johnson, “Nrf2 activation in astrocytes protects against neurodegeneration in mouse models of familial amyotrophic lateral sclerosis,” Journal of Neuroscience, vol. 28, no. 50, pp. 13574–13581, 2008. View at Publisher · View at Google Scholar · View at Scopus
  57. A. C. Lepore, C. Dejea, J. Carmen et al., “Selective ablation of proliferating astrocytes does not affect disease outcome in either acute or chronic models of motor neuron degeneration,” Experimental Neurology, vol. 211, no. 2, pp. 423–432, 2008. View at Publisher · View at Google Scholar · View at Scopus
  58. J. R. Faulkner, J. E. Herrmann, M. J. Woo, K. E. Tansey, N. B. Doan, and M. V. Sofroniew, “Reactive astrocytes protect tissue and preserve function after spinal cord injury,” Journal of Neuroscience, vol. 24, no. 9, pp. 2143–2155, 2004. View at Publisher · View at Google Scholar · View at Scopus
  59. A. C. Lepore, B. Rauck, C. Dejea et al., “Focal transplantation-based astrocyte replacement is neuroprotective in a model of motor neuron disease,” Nature Neuroscience, vol. 11, no. 11, pp. 1294–1301, 2008. View at Publisher · View at Google Scholar · View at Scopus
  60. S. Hayashi, A. Sakurai, M. Amari, and K. Okamoto, “Pathological study of the diffuse myelin pallor in the anterolateral columns of the spinal cord in amyotrophic lateral sclerosis,” Journal of the Neurological Sciences, vol. 188, no. 1-2, pp. 3–7, 2001. View at Publisher · View at Google Scholar · View at Scopus
  61. I. Niebroj-Dobosz, J. Rafałowska, A. Fidziańska, R. Gadamski, and P. Grieb, “Myelin composition of spinal cord in a model of amyotrophic lateral sclerosis (ALS) in SOD1G93A transgenic rats,” Folia Neuropathologica, vol. 45, no. 4, pp. 236–241, 2007. View at Google Scholar · View at Scopus
  62. K. Yamanaka, S. Boillee, E. A. Roberts et al., “Mutant SOD1 in cell types other than motor neurons and oligodendrocytes accelerates onset of disease in ALS mice,” Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 21, pp. 7594–7599, 2008. View at Publisher · View at Google Scholar · View at Scopus
  63. T. Magnus, J. Carmen, J. Deleon et al., “Adult glial precursor proliferation in mutant SOD1G93A mice,” GLIA, vol. 56, no. 2, pp. 200–208, 2008. View at Publisher · View at Google Scholar · View at Scopus
  64. S. H. Kang, M. Fukaya, J. K. Yang, J. D. Rothstein, and D. E. Bergles, “NG2+ CNS glial progenitors remain committed to the oligodendrocyte lineage in postnatal life and following neurodegeneration,” Neuron, vol. 68, no. 4, pp. 668–681, 2010. View at Publisher · View at Google Scholar
  65. W. T. Perrie, G. T. Lee, E. M. Curtis, J. Sparke, J. R. Buller, and M. L. Rossi, “Changes in the myelinated axons of femoral nerve in amyotrophic lateral sclerosis,” Journal of Neural Transmission, Supplement, no. 39, pp. 223–233, 1993. View at Google Scholar · View at Scopus
  66. B. J. Turner, S. Ackerley, K. E. Davies, and K. Talbot, “Dismutase-competent SOD1 mutant accumulation in myelinating Schwann cells is not detrimental to normal or transgenic ALS model mice,” Human Molecular Genetics, vol. 19, no. 5, pp. 815–824, 2009. View at Publisher · View at Google Scholar · View at Scopus
  67. C. S. Lobsiger, S. Boillee, M. McAlonis-Downes et al., “Schwann cells expressing dismutase active mutant SOD1 unexpectedly slow disease progression in ALS mice,” Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 11, pp. 4465–4470, 2009. View at Publisher · View at Google Scholar · View at Scopus
  68. J. Kriz, M. D. Nguyen, and J. P. Julien, “Minocycline slows disease progression in a mouse model of amyotrophic lateral sclerosis,” Neurobiology of Disease, vol. 10, no. 3, pp. 268–278, 2002. View at Publisher · View at Google Scholar · View at Scopus
  69. D. B. Drachman, K. Frank, M. Dykes-Hoberg et al., “Cyclooxygenase 2 inhibition protects motor neurons and prolongs survival in a transgenic mouse model of ALS,” Annals of Neurology, vol. 52, no. 6, pp. 771–778, 2002. View at Publisher · View at Google Scholar · View at Scopus
  70. S. Zhu, I. G. Stavrovskaya, M. Drozda et al., “Minocycline inhibits cytochrome c release and delays progression of amyotrophic lateral sclerosis in mice,” Nature, vol. 417, no. 6884, pp. 74–78, 2002. View at Publisher · View at Google Scholar · View at Scopus
  71. L. van den Bosch, P. Tilkin, G. Lemmens, and W. Robberecht, “Minocycline delays disease onset and mortality in a transgenic model of ALS,” NeuroReport, vol. 13, no. 8, pp. 1067–1070, 2002. View at Google Scholar · View at Scopus
  72. P. H. Gordon, D. H. Moore, R. G. Miller et al., “Efficacy of minocycline in patients with amyotrophic lateral sclerosis: a phase III randomised trial,” Lancet Neurology, vol. 6, no. 12, pp. 1045–1053, 2007. View at Publisher · View at Google Scholar · View at Scopus
  73. A. F. Keller, M. Gravel, and J. Kriz, “Treatment with minocycline after disease onset alters astrocyte reactivity and increases microgliosis in SOD1 mutant mice,” Experimental Neurology, vol. 228, no. 1, pp. 69–79, 2011. View at Publisher · View at Google Scholar
  74. M. E. Cudkowicz, J. M. Shefner, D. A. Schoenfeld et al., “Trial of celecoxib in amyotrophic lateral sclerosis,” Annals of Neurology, vol. 60, no. 1, pp. 22–31, 2006. View at Publisher · View at Google Scholar · View at Scopus
  75. M. Benatar, “Lost in translation: treatment trials in the SOD1 mouse and in human ALS,” Neurobiology of Disease, vol. 26, no. 1, pp. 1–13, 2007. View at Publisher · View at Google Scholar · View at Scopus
  76. A. C. Ludolph, C. Bendotti, E. Blaugrund et al., “Guidelines for preclinical animal research in ALS/MND: a consensus meeting,” Amyotrophic Lateral Sclerosis, vol. 11, no. 1-2, pp. 38–45, 2010. View at Publisher · View at Google Scholar · View at Scopus
  77. G. S. Pesiridis, V. M. Lee, and J. Q. Trojanowski, “Mutations in TDP-43 link glycine-rich domain functions to amyotrophic lateral sclerosis,” Human Molecular Genetics, vol. 18, pp. R156–R162, 2009. View at Google Scholar
  78. C. Lagier-Tourenne, M. Polymenidou, and D. W. Cleveland, “TDP-43 and FUS/TLS: emerging roles in RNA processing and neurodegeneration,” Human Molecular Genetics, vol. 19, no. 1, pp. R46–R64, 2010. View at Publisher · View at Google Scholar · View at Scopus
  79. E. C. Hirsch and S. Hunot, “Neuroinflammation in Parkinson's disease: a target for neuroprotection?” Lancet Neurology, vol. 8, no. 4, pp. 382–397, 2009. View at Publisher · View at Google Scholar · View at Scopus
  80. K. M. Lucin and T. Wyss-Coray, “Immune activation in brain aging and neurodegeneration: too much or too little?” Neuron, vol. 64, no. 1, pp. 110–122, 2009. View at Publisher · View at Google Scholar · View at Scopus