Table of Contents Author Guidelines Submit a Manuscript
Neurology Research International
Volume 2012, Article ID 257563, 12 pages
http://dx.doi.org/10.1155/2012/257563
Review Article

Programmed Necrosis: A Prominent Mechanism of Cell Death following Neonatal Brain Injury

1Neonatal Research Laboratory, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD 21287-3200, USA
2Division of Neonatology, Texas Tech University Health Sciences Center, Odessa, TX 79763, USA
3Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21287-3200, USA
4Division of Neuropathology, Johns Hopkins University School of Medicine, Baltimore, MD 21287-3200, USA
5Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21287-3200, USA

Received 28 November 2011; Accepted 2 February 2012

Academic Editor: Jianrong Li

Copyright © 2012 Raul Chavez-Valdez et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. Derrick, A. Drobyshevsky, X. Ji, and S. Tan, “A model of cerebral palsy from fetal hypoxia-ischemia,” Stroke, vol. 38, supplement 2, pp. 731–735, 2007. View at Publisher · View at Google Scholar · View at Scopus
  2. W. G. Myers, “The first radioindicator study in the life sciences with a man-made radionuclide: "Radioactive indicators in the study of phosphorus metabolism in rats, by O. Chievitz and G. Hevesy, reprinted from Nature 136: 754-755, Nov. 9, 1935,” Journal of Nuclear Medicine, vol. 16, no. 12, pp. 1106–1108, 1975. View at Google Scholar · View at Scopus
  3. J. E. Rice III, R. C. Vannucci, and J. B. Brierley, “The influence of immaturity on hypoxic-ischemic brain damage in the rat,” Annals of Neurology, vol. 9, no. 2, pp. 131–141, 1981. View at Google Scholar · View at Scopus
  4. F. J. Northington, D. M. Ferriero, and L. J. Martin, “Neurodegeneration in the thalamus following neonatal hypoxia-ischemia is programmed cell death,” Developmental Neuroscience, vol. 23, no. 3, pp. 186–191, 2001. View at Publisher · View at Google Scholar · View at Scopus
  5. J. Towfighi, N. Zec, J. Yager, C. Housman, and R. C. Vannucci, “Temporal evolution of neuropathologic changes in an immature rat model of cerebral hypoxia: a light microscopic study,” Acta Neuropathologica, vol. 90, no. 4, pp. 375–386, 1995. View at Publisher · View at Google Scholar · View at Scopus
  6. F. J. Northington, M. E. Zelaya, D. P. O'Riordan et al., “Failure to complete apoptosis following neonatal hypoxia-ischemia manifests as "continuum" phenotype of cell death and occurs with multiple manifestations of mitochondrial dysfunction in rodent forebrain,” Neuroscience, vol. 149, no. 4, pp. 822–833, 2007. View at Publisher · View at Google Scholar · View at Scopus
  7. F. J. Northington, R. Chavez-Valdez, E. M. Graham, S. Razdan, E. B. Gauda, and L. J. Martin, “Necrostatin decreases oxidative damage, inflammation, and injury after neonatal HI,” Journal of Cerebral Blood Flow and Metabolism, vol. 31, no. 1, pp. 178–189, 2011. View at Publisher · View at Google Scholar · View at Scopus
  8. F. J. Northington, R. Chavez-Valdez, and L. J. Martin, “Neuronal cell death in neonatal hypoxia-ischemia,” Annals of Neurology, vol. 69, no. 5, pp. 743–758, 2011. View at Publisher · View at Google Scholar
  9. F. K. M. Chan, J. Shisler, J. G. Bixby et al., “A role for tumor necrosis factor receptor-2 and receptor-interacting protein in programmed necrosis and antiviral responses,” Journal of Biological Chemistry, vol. 278, no. 51, pp. 51613–51621, 2003. View at Publisher · View at Google Scholar · View at Scopus
  10. N. Holler, R. Zaru, O. Micheau et al., “Fas triggers an alternative, caspase-8-independent cell death pathway using the kinase RIP as effector molecule,” Nature Immunology, vol. 1, no. 6, pp. 489–495, 2000. View at Google Scholar · View at Scopus
  11. D. Vercammen, R. Beyaert, G. Denecker et al., “Inhibition of caspases increases the sensitivity of L929 cells to necrosis mediated by tumor necrosis factor,” Journal of Experimental Medicine, vol. 187, no. 9, pp. 1477–1485, 1998. View at Publisher · View at Google Scholar · View at Scopus
  12. T. V. Berghe, N. Vanlangenakker, E. Parthoens et al., “Necroptosis, necrosis and secondary necrosis converge on similar cellular disintegration features,” Cell Death and Differentiation, vol. 17, no. 6, pp. 922–930, 2010. View at Publisher · View at Google Scholar · View at Scopus
  13. Z. Dunai, P. I. Bauer, and R. Mihalik, “Necroptosis: biochemical, physiological and pathological aspects,” Pathology and Oncology Research, vol. 17, no. 4, pp. 791–800, 2011. View at Publisher · View at Google Scholar
  14. G. Kung, K. Konstantinidis, and R. N. Kitsis, “Programmed necrosis, not apoptosis, in the heart,” Circulation Research, vol. 108, no. 8, pp. 1017–1036, 2011. View at Publisher · View at Google Scholar
  15. M. E. Peter, “Programmed cell death: apoptosis meets necrosis,” Nature, vol. 471, no. 7338, pp. 310–312, 2011. View at Publisher · View at Google Scholar
  16. P. Vandenabeele, L. Galluzzi, T. Vanden Berghe, and G. Kroemer, “Molecular mechanisms of necroptosis: an ordered cellular explosion,” Nature Reviews Molecular Cell Biology, vol. 11, no. 10, pp. 700–714, 2010. View at Publisher · View at Google Scholar · View at Scopus
  17. N. Vanlangenakker, T. Vanden Berghe, and P. Vandenabeele, “Many stimuli pull the necrotic trigger, an overview,” Cell Death and Differentiation, vol. 19, no. 1, pp. 75–86, 2012. View at Publisher · View at Google Scholar
  18. Z. You, S. I. Savitz, J. Yang et al., “Necrostatin-1 reduces histopathology and improves functional outcome after controlled cortical impact in mice,” Journal of Cerebral Blood Flow and Metabolism, vol. 28, no. 9, pp. 1564–1573, 2008. View at Publisher · View at Google Scholar · View at Scopus
  19. A. Degterev, J. Hitomi, M. Germscheid et al., “Identification of RIP1 kinase as a specific cellular target of necrostatins,” Nature Chemical Biology, vol. 4, no. 5, pp. 313–321, 2008. View at Publisher · View at Google Scholar · View at Scopus
  20. V. Temkin, Q. Huang, H. Liu, H. Osada, and R. M. Pope, “Inhibition of ADP/ATP exchange in receptor-interacting protein-mediated necrosis,” Molecular and Cellular Biology, vol. 26, no. 6, pp. 2215–2225, 2006. View at Publisher · View at Google Scholar · View at Scopus
  21. A. Degterev, Z. Huang, M. Boyce et al., “Chemical inhibitor of nonapoptotic cell death with therapeutic potential for ischemic brain injury,” Nature Chemical Biology, vol. 1, no. 2, pp. 112–119, 2005. View at Publisher · View at Google Scholar · View at Scopus
  22. S. Y. Lim, S. M. Davidson, M. M. Mocanu, D. M. Yellon, and C. C. T. Smith, “The cardioprotective effect of necrostatin requires the cyclophilin-D component of the mitochondrial permeability transition pore,” Cardiovascular Drugs and Therapy, vol. 21, no. 6, pp. 467–469, 2007. View at Publisher · View at Google Scholar · View at Scopus
  23. H. M. Shen and S. Pervaiz, “TNF receptor superfamily-induced cell death: redox-dependent execution,” The FASEB Journal, vol. 20, no. 10, pp. 1589–1598, 2006. View at Publisher · View at Google Scholar · View at Scopus
  24. K. Motani, H. Kushiyama, R. Imamura, T. Kinoshita, T. Nishiuchi, and T. Suda, “Caspase-1 protein induces apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC)-mediated necrosis independently of its catalytic activity,” Journal of Biological Chemistry, vol. 286, no. 39, pp. 33963–33972, 2011. View at Publisher · View at Google Scholar
  25. H. C. Tu, D. Ren, G. X. Wang et al., “The p53-cathepsin axis cooperates with ROS to activate programmed necrotic death upon DNA damage,” Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 4, pp. 1093–1098, 2009. View at Publisher · View at Google Scholar · View at Scopus
  26. H. Hagberg, M. A. Wilson, H. Matsushita et al., “PARP-1 gene disruption in mice preferentially protects males from perinatal brain injury,” Journal of Neurochemistry, vol. 90, no. 5, pp. 1068–1075, 2004. View at Publisher · View at Google Scholar · View at Scopus
  27. M. Los, M. Mozoluk, D. Ferrari et al., “Activation and caspase-mediated inhibition of PARP: a molecular switch between fibroblast necrosis and apoptosis in death receptor signaling,” Molecular Biology of the Cell, vol. 13, no. 3, pp. 978–988, 2002. View at Publisher · View at Google Scholar · View at Scopus
  28. R. S. Moubarak, V. J. Yuste, C. Artus et al., “Sequential activation of poly(ADP-ribose) polymerase 1, calpains, and bax is essential in apoptosis-inducing factor-mediated programmed necrosis,” Molecular and Cellular Biology, vol. 27, no. 13, pp. 4844–4862, 2007. View at Publisher · View at Google Scholar · View at Scopus
  29. Y. Xu, S. Huang, Z. G. Liu, and J. Han, “Poly(ADP-ribose) polymerase-1 signaling to mitochondria in necrotic cell death requires RIP1/TRAF2-mediated JNK1 activation,” Journal of Biological Chemistry, vol. 281, no. 13, pp. 8788–8795, 2006. View at Publisher · View at Google Scholar · View at Scopus
  30. S. W. Yu, H. Wang, M. F. Poitras et al., “Mediation of poty(ADP-ribose) polymerase-1—dependent cell death by apoptosis-inducing factor,” Science, vol. 297, no. 5579, pp. 259–263, 2002. View at Publisher · View at Google Scholar · View at Scopus
  31. Y. Eguchi, S. Shimizu, and Y. Tsujimoto, “Intracellular ATP levels determine cell death fate by apoptosis or necrosis,” Cancer Research, vol. 57, no. 10, pp. 1835–1840, 1997. View at Google Scholar · View at Scopus
  32. O. Micheau and J. Tschopp, “Induction of TNF receptor I-mediated apoptosis via two sequential signaling complexes,” Cell, vol. 114, no. 2, pp. 181–190, 2003. View at Publisher · View at Google Scholar · View at Scopus
  33. M. Leist, B. Single, H. Naumann et al., “Inhibition of mitochondrial ATP generation by nitric oxide switches apoptosis to necrosis,” Experimental Cell Research, vol. 249, no. 2, pp. 396–403, 1999. View at Publisher · View at Google Scholar · View at Scopus
  34. M. Leist, B. Single, A. F. Castoldi, S. Kühnle, and P. Nicotera, “Intracellular adenosine triphosphate (ATP) concentration: a switch in the decision between apoptosis and necrosis,” Journal of Experimental Medicine, vol. 185, no. 8, pp. 1481–1486, 1997. View at Publisher · View at Google Scholar · View at Scopus
  35. M. Leist and M. Jäättelä, “Four deaths and a funeral: from caspases to alternative mechanisms,” Nature Reviews Molecular Cell Biology, vol. 2, no. 8, pp. 589–598, 2001. View at Publisher · View at Google Scholar · View at Scopus
  36. K. Blomgren, M. Leist, and L. Groc, “Pathological apoptosis in the developing brain,” Apoptosis, vol. 12, no. 5, pp. 993–1010, 2007. View at Publisher · View at Google Scholar · View at Scopus
  37. Y.-C. Ye, L. Yu, H.-J. Wang, S.-I. Tashiro, S. Onodera, and T. Ikejima, “TNFα-induced necroptosis and autophagy via supression of the p38-NF-κB survival pathway in L929 cells,” Journal of Pharmacological Sciences, vol. 117, no. 3, pp. 160–169, 2011. View at Publisher · View at Google Scholar
  38. H. Häcker and M. Karin, “Regulation and function of IKK and IKK-related kinases,” Science's STKE, vol. 2006, no. 357, p. re13, 2006. View at Publisher · View at Google Scholar · View at Scopus
  39. Q. L. Deveraux, N. Roy, H. R. Stennicke et al., “IAPs block apoptotic events induced by caspase-8 and cytochrome c by direct inhibition of distinct caspases,” EMBO Journal, vol. 17, no. 8, pp. 2215–2223, 1998. View at Publisher · View at Google Scholar · View at Scopus
  40. M. J. M. Bertrand, S. Milutinovic, K. M. Dickson et al., “cIAP1 and cIAP2 facilitate cancer cell survival by functioning as E3 ligases that promote RIP1 ubiquitination,” Molecular Cell, vol. 30, no. 6, pp. 689–700, 2008. View at Publisher · View at Google Scholar · View at Scopus
  41. C. H. Nijboer, M. A. van der Kooij, F. van Bel, F. Ohl, C. J. Heijnen, and A. Kavelaars, “Inhibition of the JNK/AP-1 pathway reduces neuronal death and improves behavioral outcome after neonatal hypoxic-ischemic brain injury,” Brain, Behavior, and Immunity, vol. 24, no. 5, pp. 812–821, 2010. View at Publisher · View at Google Scholar · View at Scopus
  42. N. Vanlangenakker, M. J. M. Bertrand, P. Bogaert, P. Vandenabeele, and T. Vanden Berghe, “TNF-induced necroptosis in L929 cells is tightly regulated by multiple TNFR1 complex i and II members,” Cell Death and Disease, vol. 2, no. 11, article e230, 2011. View at Publisher · View at Google Scholar
  43. J. Hitomi, D. E. Christofferson, A. Ng et al., “Identification of a molecular signaling network that regulates a cellular necrotic cell death pathway,” Cell, vol. 135, no. 7, pp. 1311–1323, 2008. View at Publisher · View at Google Scholar · View at Scopus
  44. M. A. O'Donnell, E. Perez-Jimenez, A. Oberst et al., “Caspase 8 inhibits programmed necrosis by processing CYLD,” Nature Cell Biology, vol. 13, no. 12, pp. 1437–1442, 2011. View at Google Scholar
  45. Y. S. Kim, M. J. Morgan, S. Choksi, and Z. G. Liu, “TNF-induced activation of the Nox1 NADPH oxidase and its role in the induction of necrotic cell death,” Molecular Cell, vol. 26, no. 5, pp. 675–687, 2007. View at Publisher · View at Google Scholar · View at Scopus
  46. C. Zhu, L. Qiu, X. Wang et al., “Involvement of apoptosis-inducing factor in neuronal death after hypoxia-ischemia in the neonatal rat brain,” Journal of Neurochemistry, vol. 86, no. 2, pp. 306–317, 2003. View at Publisher · View at Google Scholar · View at Scopus
  47. C. Zhu, X. Wang, L. Qiu, C. Peeters-Scholte, H. Hagberg, and K. Blomgren, “Nitrosylation precedes caspase-3 activation and translocation of apoptosis-inducing factor in neonatal rat cerebral hypoxia-ischaemia,” Journal of Neurochemistry, vol. 90, no. 2, pp. 462–471, 2004. View at Publisher · View at Google Scholar · View at Scopus
  48. Y. Matsumori, S. M. Hong, K. Aoyama et al., “Hsp70 overexpression sequesters AIF and reduces neonatal hypoxic/ischemic brain injury,” Journal of Cerebral Blood Flow and Metabolism, vol. 25, no. 7, pp. 899–910, 2005. View at Publisher · View at Google Scholar · View at Scopus
  49. W. Yin, G. Cao, M. J. Johnnides et al., “TAT-mediated delivery of Bcl-xL protein is neuroprotective against neonatal hypoxic-ischemic brain injury via inhibition of caspases and AIF,” Neurobiology of Disease, vol. 21, no. 2, pp. 358–371, 2006. View at Publisher · View at Google Scholar · View at Scopus
  50. C. Zhu, F. Xu, X. Wang et al., “Different apoptotic mechanisms are activated in male and female brains after neonatal hypoxia-ischaemia,” Journal of Neurochemistry, vol. 96, no. 4, pp. 1016–1027, 2006. View at Publisher · View at Google Scholar · View at Scopus
  51. R. Askalan, C. Wang, H. Shi, E. Armstrong, and J. Y. Yager, “The effect of postischemic hypothermia on apoptotic cell death in the neonatal rat brain,” Developmental Neuroscience, vol. 33, no. 3-4, pp. 320–329, 2011. View at Publisher · View at Google Scholar
  52. K. Blomgren, C. Zhu, X. Wang et al., “Synergistic activation of caspase-3 by m-calpain after neonatal hypoxia-ischemia: a mechanism of "pathological apoptosis"?” Journal of Biological Chemistry, vol. 276, no. 13, pp. 10191–10198, 2001. View at Publisher · View at Google Scholar · View at Scopus
  53. M. Kawamura, W. Nakajima, A. Ishida, A. Ohmura, S. Miura, and G. Takada, “Calpain inhibitor MDL 28170 protects hypoxic-ischemic brain injury in neonatal rats by inhibition of both apoptosis and necrosis,” Brain Research, vol. 1037, no. 1-2, pp. 59–69, 2005. View at Publisher · View at Google Scholar · View at Scopus
  54. A. Ohmura, W. Nakajima, A. Ishida et al., “Prolonged hypothermia protects neonatal rat brain against hypoxic-ischemia by reducing both apoptosis and necrosis,” Brain and Development, vol. 27, no. 7, pp. 517–526, 2005. View at Publisher · View at Google Scholar · View at Scopus
  55. T. West, M. Atzeva, and D. M. Holtzman, “Pomegranate polyphenols and resveratrol protect the neonatal brain against hypoxic-ischemic injury,” Developmental Neuroscience, vol. 29, no. 4-5, pp. 363–372, 2007. View at Publisher · View at Google Scholar · View at Scopus
  56. V. Ginet, J. Puyal, G. Magnin, P. G. H. Clarke, and A. C. Truttmann, “Limited role of the c-Jun N-terminal kinase pathway in a neonatal rat model of cerebral hypoxia-ischemia,” Journal of Neurochemistry, vol. 108, no. 3, pp. 552–562, 2009. View at Publisher · View at Google Scholar · View at Scopus
  57. M. Zhou, W. Xu, G. Liao, X. Bi, and M. Baudry, “Neuroprotection against neonatal hypoxia/ischemia-induced cerebral cell death by prevention of calpain-mediated mGluR1α truncation,” Experimental Neurology, vol. 218, no. 1, pp. 75–82, 2009. View at Publisher · View at Google Scholar · View at Scopus
  58. C. Zhu, U. Hallin, Y. Ozaki et al., “Nuclear translocation and calpain-dependent reduction of Bcl-2 after neonatal cerebral hypoxia-ischemia,” Brain, Behavior, and Immunity, vol. 24, no. 5, pp. 822–830, 2010. View at Publisher · View at Google Scholar · View at Scopus
  59. H. Shen, X. Hu, C. Liu et al., “Ethyl pyruvate protects against hypoxic-ischemic brain injury via anti-cell death and anti-inflammatory mechanisms,” Neurobiology of Disease, vol. 37, no. 3, pp. 711–722, 2010. View at Publisher · View at Google Scholar · View at Scopus
  60. S. Carloni, A. Carnevali, M. Cimino, and W. Balduini, “Extended role of necrotic cell death after hypoxia-ischemia-induced neurodegeneration in the neonatal rat,” Neurobiology of Disease, vol. 27, no. 3, pp. 354–361, 2007. View at Publisher · View at Google Scholar · View at Scopus
  61. K. S. E. Payton, R. A. Sheldon, D. W. Mack et al., “Antioxidant status alters levels of fas-associated death domain-like IL-1B-converting enzyme inhibitory protein following neonatal hypoxia-ischemia,” Developmental Neuroscience, vol. 29, no. 4-5, pp. 403–411, 2007. View at Publisher · View at Google Scholar · View at Scopus
  62. F. J. Northington, D. M. Ferriero, D. L. Flock, and L. J. Martin, “Delayed neurodegeneration in neonatal rat thalamus after hypoxia-ischemia is apoptosis,” Journal of Neuroscience, vol. 21, no. 6, pp. 1931–1938, 2001. View at Google Scholar · View at Scopus
  63. E. M. Graham, R. A. Sheldon, D. L. Flock et al., “Neonatal mice lacking functional Fas death receptors are resistant to hypoxic-ischemic brain injury,” Neurobiology of Disease, vol. 17, no. 1, pp. 89–98, 2004. View at Publisher · View at Google Scholar · View at Scopus
  64. Y. Matsumori, F. J. Northington, S. M. Hong et al., “Reduction of caspase-8 and -9 cleavage is associated with increased c-FLIP and increased binding of Apaf-1 and Hsp70 after neonatal hypoxic/ischemic injury in mice overexpressing Hsp70,” Stroke, vol. 37, no. 2, pp. 507–512, 2006. View at Publisher · View at Google Scholar · View at Scopus
  65. G. Pirianov, K. G. Brywe, C. Mallard et al., “Deletion of the c-Jun N-terminal kinase 3 gene protects neonatal mice against cerebral hypoxic-ischaemic injury,” Journal of Cerebral Blood Flow and Metabolism, vol. 27, no. 5, pp. 1022–1032, 2007. View at Publisher · View at Google Scholar
  66. C. H. Nijboer, C. J. Heijnen, M. A. Van Der Kooij et al., “Targeting the p53 pathway to protect the neonatal ischemic brain,” Annals of Neurology, vol. 70, no. 2, pp. 255–264, 2011. View at Publisher · View at Google Scholar
  67. S. Carloni, E. Mazzoni, M. Cimino et al., “Simvastatin reduces caspase-3 activation and inflammatory markers induced by hypoxia-ischemia in the newborn rat,” Neurobiology of Disease, vol. 21, no. 1, pp. 119–126, 2006. View at Publisher · View at Google Scholar · View at Scopus
  68. S. S. Martin, J. R. Perez-Polo, K. M. Noppens, and M. R. Grafe, “Biphasic changes in the levels of poly(ADP-ribose) polymerase-1 and caspase 3 in the immature brain following hypoxia-ischemia,” International Journal of Developmental Neuroscience, vol. 23, no. 8, pp. 673–686, 2005. View at Publisher · View at Google Scholar · View at Scopus
  69. C. H. Nijboer, C. J. Heijnen, F. Groenendaal, F. Van Bel, and A. Kavelaars, “Alternate pathways preserve tumor necrosis factor-α production after nuclear factor-κB inhibition in neonatal cerebral hypoxia-ischemia,” Stroke, vol. 40, no. 10, pp. 3362–3368, 2009. View at Publisher · View at Google Scholar · View at Scopus
  70. D. E. Christofferson and J. Yuan, “Necroptosis as an alternative form of programmed cell death,” Current Opinion in Cell Biology, vol. 22, no. 2, pp. 263–268, 2010. View at Publisher · View at Google Scholar · View at Scopus
  71. C. K. Ea, L. Deng, Z. P. Xia, G. Pineda, and Z. J. Chen, “Activation of IKK by TNFα requires site-specific ubiquitination of RIP1 and polyubiquitin binding by NEMO,” Molecular Cell, vol. 22, no. 2, pp. 245–257, 2006. View at Publisher · View at Google Scholar · View at Scopus
  72. P. Vandenabeele, T. Vanden Berghe, and N. Festjens, “Caspase inhibitors promote alternative cell death pathways,” Science's STKE, vol. 2006, no. 358, p. pe44, 2006. View at Publisher · View at Google Scholar · View at Scopus
  73. L. Wang, F. Du, and X. Wang, “TNF-α induces two distinct caspase-8 activation pathways,” Cell, vol. 133, no. 4, pp. 693–703, 2008. View at Publisher · View at Google Scholar · View at Scopus
  74. S. Feng, Y. Yang, Y. Mei et al., “Cleavage of RIP3 inactivates its caspase-independent apoptosis pathway by removal of kinase domain,” Cellular Signalling, vol. 19, no. 10, pp. 2056–2067, 2007. View at Publisher · View at Google Scholar · View at Scopus
  75. W. Declercq, T. Vanden Berghe, and P. Vandenabeele, “RIP kinases at the crossroads of cell death and survival,” Cell, vol. 138, no. 2, pp. 229–232, 2009. View at Publisher · View at Google Scholar · View at Scopus
  76. X. Sun, J. Yin, M. A. Starovasnik, W. J. Fairbrother, and V. M. Dixit, “Identification of a novel homotypic interaction motif required for the phosphorylation of receptor-interacting protein (RIP) by RIP3,” Journal of Biological Chemistry, vol. 277, no. 11, pp. 9505–9511, 2002. View at Publisher · View at Google Scholar · View at Scopus
  77. J. Thakar, K. Schleinkofer, C. Borner, and T. Dandekar, “RIP death domain structural interactions implicated in TNF-mediated proliferation and survival,” Proteins, vol. 63, no. 3, pp. 413–423, 2006. View at Publisher · View at Google Scholar · View at Scopus
  78. Y. Cho, S. Challa, D. Moquin et al., “Phosphorylation-driven assembly of the RIP1-RIP3 complex regulates programmed necrosis and virus-induced inflammation,” Cell, vol. 137, no. 6, pp. 1112–1123, 2009. View at Publisher · View at Google Scholar · View at Scopus
  79. M. Bonnet, D. Preukschat, P. -S. Welz et al., “The adaptor protein FADD protects epidermal keratinocytes from necroptosis in vivo and prevents skin inflammation,” Immunity, vol. 35, no. 4, pp. 572–582, 2011. View at Publisher · View at Google Scholar
  80. J. V. Lu, B. M. Weist, B. J. Van Raam et al., “Complementary roles of Fas-associated death domain (FADD) and receptor interacting protein kinase-3 (RIPK3) in T-cell homeostasis and antiviral immunity,” Proceedings of the National Academy of Sciences of the United States of America, vol. 108, no. 37, pp. 15312–15317, 2011. View at Publisher · View at Google Scholar
  81. S. Kreuz, D. Siegmund, J. J. Rumpf et al., “NFκB activation by Fas is mediated through FADD, caspase-8, and RIP and is inhibited by FLIP,” Journal of Cell Biology, vol. 166, no. 3, pp. 369–380, 2004. View at Publisher · View at Google Scholar · View at Scopus
  82. T. H. Lee, J. Shank, N. Cusson, and M. A. Kelliher, “The kinase activity of Rip1 is not required for tumor necrosis factor-α-induced IκB kinase or p38 MAP kinase activation or for the ubiquitination of Rip1 by Traf2,” Journal of Biological Chemistry, vol. 279, no. 32, pp. 33185–33191, 2004. View at Publisher · View at Google Scholar · View at Scopus
  83. D. Mueller-Burke, R. C. Koehler, and L. J. Martin, “Rapid NMDA receptor phosphorylation and oxidative stress precede striatal neurodegeneration after hypoxic ischemia in newborn piglets and are attenuated with hypothermia,” International Journal of Developmental Neuroscience, vol. 26, no. 1, pp. 67–76, 2008. View at Publisher · View at Google Scholar · View at Scopus
  84. K. Blomgren and H. Hagberg, “Free radicals, mitochondria, and hypoxia-ischemia in the developing brain,” Free Radical Biology and Medicine, vol. 40, no. 3, pp. 388–397, 2006. View at Publisher · View at Google Scholar · View at Scopus
  85. K. I. Fritz, F. Groenendaal, C. Andersen, S. T. Ohnishi, O. P. Mishra, and M. Delivoria-Papadopoulos, “Deleterious brain cell membrane effects after NMDA receptor antagonist administration to newborn piglets,” Brain Research, vol. 816, no. 2, pp. 438–445, 1999. View at Publisher · View at Google Scholar · View at Scopus
  86. R. C. Vannucci, R. M. Brucklacher, and S. J. Vannucci, “The effect of hyperglycemia on cerebral metabolism during hypoxia- ischemia in the immature rat,” Journal of Cerebral Blood Flow and Metabolism, vol. 16, no. 5, pp. 1026–1033, 1996. View at Google Scholar · View at Scopus
  87. R. C. Vannucci, J. Towfighi, and S. J. Vannucci, “Secondary energy failure after cerebral hypoxia-ischemia in the immature rat,” Journal of Cerebral Blood Flow and Metabolism, vol. 24, no. 10, pp. 1090–1097, 2004. View at Publisher · View at Google Scholar · View at Scopus
  88. S. J. Vannucci, L. B. Seaman, and R. C. Vannucci, “Effects of hypoxia-ischemia on GLUT1 and GLUT3 glucose transporters in immature rat brain,” Journal of Cerebral Blood Flow and Metabolism, vol. 16, no. 1, pp. 77–81, 1996. View at Google Scholar · View at Scopus
  89. K. M. Irrinki, K. Mallilankaraman, R. J. Thapa et al., “Requirement of FADD, NEMO, and BAX/BAK for aberrant mitochondrial function in tumor necrosis factor alpha-induced necrosis,” Molecular and Cellular Biology, vol. 31, no. 18, pp. 3745–3758, 2011. View at Publisher · View at Google Scholar
  90. P. Nicotera, M. Leist, and E. Ferrando-May, “Intracellular ATP, a switch in the decision between apoptosis and necrosis,” Toxicology Letters, vol. 102-103, pp. 139–142, 1998. View at Publisher · View at Google Scholar · View at Scopus
  91. N. A. Riobó, E. Clementi, M. Melani et al., “Nitric oxide inhibits mitochondrial NADH:ubiquinone reductase activity through peroxynitrite formation,” Biochemical Journal, vol. 359, no. 1, pp. 139–145, 2001. View at Publisher · View at Google Scholar · View at Scopus
  92. B. Beltrán, A. Mathur, M. R. Duchen, J. D. Erusalimsky, and S. Moncada, “The effect of nitric oxide on cell respiration: a key to understanding its role in cell survival or death,” Proceedings of the National Academy of Sciences of the United States of America, vol. 97, no. 26, pp. 14602–14607, 2000. View at Publisher · View at Google Scholar · View at Scopus
  93. S. J. Chinta and J. K. Andersen, “Reversible inhibition of mitochondrial complex I activity following chronic dopaminergic glutathione depletion in vitro: implications for Parkinson's disease,” Free Radical Biology and Medicine, vol. 41, no. 9, pp. 1442–1448, 2006. View at Publisher · View at Google Scholar · View at Scopus
  94. J. S. Beckman and W. H. Koppenol, “Nitric oxide, superoxide, and peroxynitrite: the good, the bad, and the ugly,” American Journal of Physiology, vol. 271, no. 5, pp. C1424–C1437, 1996. View at Google Scholar · View at Scopus
  95. C. W. Davis, B. J. Hawkins, S. Ramasamy et al., “Nitration of the mitochondrial complex I subunit NDUFB8 elicits RIP1- and RIP3-mediated necrosis,” Free Radical Biology and Medicine, vol. 48, no. 2, pp. 306–317, 2010. View at Publisher · View at Google Scholar · View at Scopus
  96. R. Chavez-Valdez, L. J. Martin, D. L. Flock, and F. J. Northington, “RIP-1 Kinase Inhibition attenuates mitochondrial dysfunction in neurons and astrocytes following neonatal hypoxia-ischemia,” Journal of Neuroscience. In press.
  97. A. Guidarelli, L. Cerioni, and O. Cantoni, “Inhibition of complex III promotes loss of Ca2+ dependence for mitochondrial superoxide formation and permeability transition evoked by peroxynitrite,” Journal of Cell Science, vol. 120, no. 11, pp. 1908–1914, 2007. View at Publisher · View at Google Scholar · View at Scopus
  98. M. Whiteman, J. S. Armstrong, N. S. Cheung et al., “Peroxynitrite mediates calcium-dependent mitochondrial dysfunction and cell death via activation of calpains,” The FASEB Journal, vol. 18, no. 12, pp. 1395–1397, 2004. View at Publisher · View at Google Scholar · View at Scopus
  99. C. C. T. Smith, S. M. Davidson, S. Y. Lim, J. C. Simpkin, J. S. Hothersall, and D. M. Yellon, “Necrostatin: a potentially novel cardioprotective agent?” Cardiovascular Drugs and Therapy, vol. 21, no. 4, pp. 227–233, 2007. View at Publisher · View at Google Scholar · View at Scopus
  100. N. Wagener, M. Ackermann, S. Funes, and W. Neupert, “A pathway of protein translocation in mitochondria mediated by the AAA-ATPase Bcs1,” Molecular Cell, vol. 44, no. 2, pp. 191–202, 2011. View at Publisher · View at Google Scholar
  101. T. S. Hsu, P. M. Yang, J. S. Tsai, and L. Y. Lin, “Attenuation of cadmium-induced necrotic cell death by necrostatin-1: potential necrostatin-1 acting sites,” Toxicology and Applied Pharmacology, vol. 235, no. 2, pp. 153–162, 2009. View at Publisher · View at Google Scholar · View at Scopus
  102. Y. Lin, S. Choksi, H. M. Shen et al., “Tumor necrosis factor-induced nonapoptotic cell death requires receptor-interacting protein-mediated cellular reactive oxygen species accumulation,” Journal of Biological Chemistry, vol. 279, no. 11, pp. 10822–10828, 2004. View at Publisher · View at Google Scholar · View at Scopus
  103. X. Xu, C. C. Chua, J. Kong et al., “Necrostatin-1 protects against glutamate-induced glutathione depletion and caspase-independent cell death in HT-22 cells,” Journal of Neurochemistry, vol. 103, no. 5, pp. 2004–2014, 2007. View at Publisher · View at Google Scholar · View at Scopus
  104. C. Vande Velde, J. Cizeau, D. Dubik et al., “BNIP3 and genetic control of necrosis-like cell death through the mitochondrial permeability transition pore,” Molecular and Cellular Biology, vol. 20, no. 15, pp. 5454–5468, 2000. View at Publisher · View at Google Scholar · View at Scopus
  105. G. Chen, J. Cizeau, C. V. Velde et al., “Nix and Nip3 form a subfamily of pro-apoptotic mitochondrial proteins,” Journal of Biological Chemistry, vol. 274, no. 1, pp. 7–10, 1999. View at Publisher · View at Google Scholar · View at Scopus
  106. Y. Chen, W. Lewis, A. Diwan, E. H. Y. Cheng, S. J. Matkovich, and G. W. Dorn, “Dual autonomous mitochondrial cell death pathways are activated by Nix/BNip3L and induce cardiomyopathy,” Proceedings of the National Academy of Sciences of the United States of America, vol. 107, no. 20, pp. 9035–9042, 2010. View at Publisher · View at Google Scholar · View at Scopus
  107. Y. H. Yook, K. H. Kang, O. Maeng et al., “Nitric oxide induces BNIP3 expression that causes cell death in macrophages,” Biochemical and Biophysical Research Communications, vol. 321, no. 2, pp. 298–305, 2004. View at Publisher · View at Google Scholar · View at Scopus
  108. D. A. Kubli, M. N. Quinsay, C. Huang, Y. Lee, and A. B. Gustafsson, “Bnip3 functions as a mitochondrial sensor of oxidative stress during myocardial ischemia and reperfusion,” American Journal of Physiology, vol. 295, no. 5, pp. H2025–H2031, 2008. View at Publisher · View at Google Scholar · View at Scopus
  109. H. J. An, O. Maeng, K. H. Kang et al., “Activation of Ras up-regulates pro-apoptotic BNIP3 in nitric oxide-induced cell death,” Journal of Biological Chemistry, vol. 281, no. 45, pp. 33939–33948, 2006. View at Publisher · View at Google Scholar · View at Scopus
  110. R. K. Bruick, “Expression of the gene encoding the proapoptotic Nip3 protein is induced by hypoxia,” Proceedings of the National Academy of Sciences of the United States of America, vol. 97, no. 16, pp. 9082–9087, 2000. View at Publisher · View at Google Scholar · View at Scopus
  111. L. Cabon, P. Galán-Malo, A. Bouharrour et al., “BID regulates AIF-mediated caspase-independent necroptosis by promoting BAX activation,” Cell Death and Differentiation, vol. 19, no. 2, pp. 245–256, 2012. View at Publisher · View at Google Scholar
  112. G. Chinnadurai, S. Vijayalingam, and S. B. Gibson, “BNIP3 subfamily BH3-only proteins: mitochondrial stress sensors in normal and pathological functions,” Oncogene, vol. 27, supplement 1, pp. S114–S127, 2008. View at Publisher · View at Google Scholar · View at Scopus
  113. S. J. Hewett, J. K. Muir, D. Lobner, A. Symons, and D. W. Choi, “Potentiation of oxygen-glucose deprivation-induced neuronal death after induction of iNOS,” Stroke, vol. 27, no. 9, pp. 1586–1591, 1996. View at Google Scholar · View at Scopus
  114. P. Nicotera and S. A. Lipton, “Excitotoxins in neuronal apoptosis and necrosis,” Journal of Cerebral Blood Flow and Metabolism, vol. 19, no. 6, pp. 583–591, 1999. View at Google Scholar · View at Scopus
  115. G. Faraco, S. Fossati, M. E. Bianchi et al., “High mobility group box 1 protein is released by neural cells upon different stresses and worsens ischemic neurodegeneration in vitro and in vivo,” Journal of Neurochemistry, vol. 103, no. 2, pp. 590–603, 2007. View at Publisher · View at Google Scholar · View at Scopus
  116. J. D. E. Barks, Y. Q. Liu, Y. Shangguan, J. Li, J. Pfau, and F. S. Silverstein, “Impact of indolent inflammation on neonatal hypoxic-ischemic brain injury in mice,” International Journal of Developmental Neuroscience, vol. 26, no. 1, pp. 57–65, 2008. View at Publisher · View at Google Scholar · View at Scopus
  117. V. C. Pimentel, F. V. Pinheiro, K. S. De Bona et al., “Hypoxic-ischemic brain injury stimulates inflammatory response and enzymatic activities in the hippocampus of neonatal rats,” Brain Research, vol. 1388, pp. 134–140, 2011. View at Publisher · View at Google Scholar
  118. J. A. Wixey, H. E. Reinebrant, and K. M. Buller, “Inhibition of neuroinflammation prevents injury to the serotonergic network after hypoxia-ischemia in the immature rat brain,” Journal of Neuropathology and Experimental Neurology, vol. 70, no. 1, pp. 23–35, 2011. View at Publisher · View at Google Scholar
  119. M. A. Kelliher, S. Grimm, Y. Ishida, F. Kuo, B. Z. Stanger, and P. Leder, “The death domain kinase RIP mediates the TNF-induced NF-κB signal,” Immunity, vol. 8, no. 3, pp. 297–303, 1998. View at Publisher · View at Google Scholar · View at Scopus
  120. C. H. Nijboer, C. J. Heijnen, F. Groenendaal, M. J. May, F. Van Bel, and A. Kavelaars, “A dual role of the nf-kappa b pathway in neonatal hypoxic-ischemic brain damage,” Stroke, vol. 39, no. 9, pp. 2578–2586, 2008. View at Publisher · View at Google Scholar · View at Scopus
  121. Y. Okada, M. Kato, H. Minakami et al., “Reduced expression of flice-inhibitory protein (FLIP) and NFκB is associated with death receptor-induced cell death in human aortic endothelial cells (HAECs),” Cytokine, vol. 15, no. 2, pp. 66–74, 2001. View at Publisher · View at Google Scholar · View at Scopus
  122. J. Kucharczak, M. J. Simmons, Y. Fan, and C. Gélinas, “To be, or not to be: NF-κB is the answer—role of Rel/NF-κB in the regulation of apoptosis,” Oncogene, vol. 22, no. 56, pp. 8961–8982, 2003. View at Publisher · View at Google Scholar · View at Scopus
  123. F. Martinon, K. Burns, and J. Tschopp, “The Inflammasome: a molecular platform triggering activation of inflammatory caspases and processing of proIL-β,” Molecular Cell, vol. 10, no. 2, pp. 417–426, 2002. View at Publisher · View at Google Scholar · View at Scopus
  124. J. L. Poyet, S. M. Srinivasula, M. Tnani, M. Razmara, T. Fernandes-Alnemri, and E. S. Alnemri, “Identification of Ipaf, a human caspase-1-activating protein related to Apaf-1,” Journal of Biological Chemistry, vol. 276, no. 30, pp. 28309–28313, 2001. View at Publisher · View at Google Scholar · View at Scopus
  125. N. J. Yoo, W. S. Park, S. Y. Kim et al., “Nod1, a CARD protein, enhances pro-interleukin-1β processing through the interaction with pro-caspase-1,” Biochemical and Biophysical Research Communications, vol. 299, no. 4, pp. 652–658, 2002. View at Publisher · View at Google Scholar
  126. M. R. Freeman, “Specification and morphogenesis of astrocytes,” Science, vol. 330, no. 6005, pp. 774–778, 2010. View at Publisher · View at Google Scholar · View at Scopus
  127. L. Stridh, P. L.P. Smith, A. S. Naylor, X. Wang, and C. Mallard, “Regulation of Toll-like receptor 1 and -2 in neonatal mice brains after hypoxia-ischemia,” Journal of Neuroinflammation, vol. 8, article 45, 2011. View at Publisher · View at Google Scholar
  128. M. D. Laird, C. Wakade, C. H. Alleyne, and K. M. Dhandapani, “Hemin-induced necroptosis involves glutathione depletion in mouse astrocytes,” Free Radical Biology and Medicine, vol. 45, no. 8, pp. 1103–1114, 2008. View at Publisher · View at Google Scholar · View at Scopus
  129. P. S. Shah, A. Ohlsson, and M. Perlman, “Hypothermia to treat neonatal hypoxic ischemic encephalopathy: systematic review,” Archives of Pediatrics and Adolescent Medicine, vol. 161, no. 10, pp. 951–958, 2007. View at Publisher · View at Google Scholar · View at Scopus
  130. S. Shankaran, A. R. Laptook, R. A. Ehrenkranz et al., “Whole-body hypothermia for neonates with hypoxic-ischemic encephalopathy,” New England Journal of Medicine, vol. 353, no. 15, pp. 1574–1584, 2005. View at Publisher · View at Google Scholar · View at Scopus
  131. C. Portera-Cailliau, D. L. Price, and L. J. Martin, “Excitotoxic neuronal death in the immature brain is an apoptosis- necrosis morphological continuum,” Journal of Comparative Neurology, vol. 378, no. 1, pp. 70–87, 1997. View at Google Scholar · View at Scopus