Table of Contents Author Guidelines Submit a Manuscript
Neurology Research International
Volume 2013, Article ID 639280, 5 pages
http://dx.doi.org/10.1155/2013/639280
Review Article

Autonomic Nervous System in the Control of Energy Balance and Body Weight: Personal Contributions

1Department of Experimental Medicine, Section of Human Physiology and Clinical Dietetic Service, Second University of Naples, Via Costantinopoli 16, 80138 Naples, Italy
2Faculty of Medicine, University of Salerno, Salerno, Italy
3Faculty of Motor Sciences, University of Naples “Parthenope,” Naples, Italy

Received 22 January 2013; Revised 12 March 2013; Accepted 24 March 2013

Academic Editor: Mamede de Carvalho

Copyright © 2013 G. Messina et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. G. A. Bray, “Treatment for obesity: a nutrient balance/nutrition partition approach,” Nutrition Reviews, vol. 49, no. 2, pp. 33–45, 1991. View at Google Scholar · View at Scopus
  2. E. Jéquier and L. Tappy, “Regulation of body weight in humans,” Physiological Reviews, vol. 79, pp. 451–480, 1999. View at Google Scholar
  3. P. Kokkoris and F. X. Pi-Sunyer, “Obesity and endocrine disease,” Endocrinology and Metabolism Clinics of North America, vol. 32, no. 4, pp. 895–914, 2003. View at Publisher · View at Google Scholar · View at Scopus
  4. J. A. Martinez, “Body-weight regulation: causes of obesity,” Proceedings of the Nutrition Society, vol. 59, no. 3, pp. 337–345, 2000. View at Google Scholar · View at Scopus
  5. C. V. Mobbs, F. Isoda, H. Makimura et al., “Impaired glucose signaling as a cause of obesity and the metabolic syndrome: the glucoadipostatic hypothesis,” Physiology and Behavior, vol. 85, no. 1, pp. 3–23, 2005. View at Publisher · View at Google Scholar · View at Scopus
  6. W. G. Haynes, D. A. Morgan, A. Djalali, W. I. Sivitz, and A. L. Mark, “Interactions between the melanocortin system and leptin in control of sympathetic nerve traffic,” Hypertension, vol. 33, no. 1, pp. 542–547, 1999. View at Google Scholar · View at Scopus
  7. B. A. Henry and I. J. Clarke, “Adipose tissue hormones and the regulation of food intake,” Journal of Neuroendocrinology, vol. 20, no. 6, pp. 842–849, 2008. View at Publisher · View at Google Scholar · View at Scopus
  8. O. Chaudhri, C. Small, and S. Bloom, “Gastrointestinal hormones regulating appetite,” Philosophical Transactions of the Royal Society B: Biological Sciences, vol. 29, pp. 1187–1209, 2006. View at Google Scholar
  9. T. H. Moran, “Gut peptides in the control of food intake: 30 years of ideas,” Physiology and Behavior, vol. 82, no. 1, pp. 175–180, 2004. View at Publisher · View at Google Scholar · View at Scopus
  10. M. Monda, S. Amaro, and B. de Luca, “The influence of exercise on energy balance changes induced by ventromedial hypothalamic lesion in the rat,” Physiology and Behavior, vol. 54, no. 6, pp. 1057–1061, 1993. View at Publisher · View at Google Scholar · View at Scopus
  11. M. Monda, A. Viggiano, A. Viggiano, E. Viggiano, A. Lanza, and V. de Luca, “Hyperthermic reactions induced by orexin A: role of the ventromedial hypothalamus,” European Journal of Neuroscience, vol. 22, no. 5, pp. 1169–1175, 2005. View at Publisher · View at Google Scholar · View at Scopus
  12. A. Melnyk, M. E. Harper, and J. Himms-Hagen, “Raising at thermoneutrality prevents obesity and hyperphagia in BAT- ablated transgenic mice,” American Journal of Physiology, vol. 272, no. 4, pp. R1088–R1093, 1997. View at Google Scholar · View at Scopus
  13. M. M. Smith and C. T. Minson, “Obesity and adipokines: effects on sympathetic overactivity,” The Journal of Physiology, vol. 590, pp. 1787–1801, 2012. View at Google Scholar
  14. M. A. van Baak, “Meal-induced activation of the sympathetic nervous system and its cardiovascular and thermogenic effects in man,” Physiology and Behavior, vol. 94, no. 2, pp. 178–186, 2008. View at Publisher · View at Google Scholar · View at Scopus
  15. J. P. Moak, D. S. Goldstein, B. A. Eldadah et al., “Supine low-frequency power of heart rate variability reflects baroreflex function, not cardiac sympathetic innervation,” Heart Rhythm, vol. 4, no. 12, pp. 1523–1529, 2007. View at Publisher · View at Google Scholar · View at Scopus
  16. A. J. Shah, S. Su, E. Veledar et al., “Is heart rate variability related to memory performance in middle-aged men?” Psychosomatic Medicine, vol. 73, no. 6, pp. 475–482, 2011. View at Publisher · View at Google Scholar · View at Scopus
  17. M. Monda, A. Sullo, E. de Luca, and M. P. Pellicano, “Lysine acetylsalicylate modifies aphagia and thermogenic changes induced by lateral hypothalamic lesion,” American Journal of Physiology, vol. 271, no. 6, pp. R1638–R1642, 1996. View at Google Scholar · View at Scopus
  18. L. L. Bernardis and L. L. Bellinger, “The lateral hypothalamic area revisited: neuroanatomy, body weight regulation, neuroendocrinology and metabolism,” Neuroscience and Biobehavioral Reviews, vol. 17, no. 2, pp. 141–193, 1993. View at Google Scholar · View at Scopus
  19. G. A. Bray, “Reciprocal relation of food intake and sympathetic activity: experimental observations and clinical implications,” International Journal of Obesity and Related Metabolic Disorders, vol. 24, no. 2, pp. S8–S17, 2000. View at Google Scholar · View at Scopus
  20. M. Monda, A. Sullo, and B. de Luca, “Lesions of the ventromedial hypothalamus reduce postingestional thermogenesis,” Physiology and Behavior, vol. 61, no. 5, pp. 687–691, 1997. View at Publisher · View at Google Scholar · View at Scopus
  21. M. Monda, A. Viggiano, A. Sullo, and V. de Luca, “Cortical spreading depression reduces paraventricular activation induced by hippocampal neostigmine injection,” Brain Research, vol. 824, no. 1, pp. 119–124, 1999. View at Publisher · View at Google Scholar · View at Scopus
  22. M. Monda, G. Messina, C. Vicidomini, A. Viggiano, C. Mangoni, and B. de Luca, “Activity of autonomic nervous system is related to body weight in pre-menopausal, but not in post-menopausal women,” Nutritional Neuroscience, vol. 9, no. 3-4, pp. 141–145, 2006. View at Publisher · View at Google Scholar · View at Scopus
  23. G. A. Bray and D. A. York, “The Mona Lisa hypothesis in the time of leptin,” Recent Progress in Hormone Research, vol. 53, pp. 95–117, 1998. View at Google Scholar · View at Scopus
  24. I. Tonhajzerova, M. Javorka, Z. Trunkvalterova et al., “Cardio-respiratory interaction and autonomic dysfunction in obesity,” Journal of Physiology and Pharmacology, vol. 59, no. 6, pp. 709–718, 2008. View at Google Scholar · View at Scopus
  25. J. F. Thayer and R. D. Lane, “The role of vagal function in the risk for cardiovascular disease and mortality,” Biological Psychology, vol. 74, no. 2, pp. 224–242, 2007. View at Publisher · View at Google Scholar · View at Scopus
  26. P. Apor, M. Petrekanich, and J. Számadó, “Heart rate variability analysis in sports,” Orvosi Hetilap, vol. 3, pp. 847–853, 2009. View at Google Scholar
  27. A. E. Aubert, B. Seps, and F. Beckers, “Heart rate variability in athletes,” Sports Medicine, vol. 33, no. 12, pp. 889–919, 2003. View at Publisher · View at Google Scholar · View at Scopus
  28. M. V. Højgaard, N. H. Holstein-Rathlou, E. Agner, and J. K. Kanters, “Dynamics of spectral components of heart rate variability during changes in autonomic balance,” American Journal of Physiology, vol. 275, no. 1, pp. H213–H219, 1998. View at Google Scholar · View at Scopus
  29. G. Messina, C. Vicidomini, A. Viggiano et al., “Enhanced parasympathetic activity of sportive women is paradoxically associated to enhanced resting energy expenditure,” Autonomic Neuroscience, vol. 169, no. 2, pp. 102–106, 2012. View at Publisher · View at Google Scholar
  30. A. Kalsbeek, F. Kreier, E. Fliers, H. P. Sauerwein, J. A. Romijn, and R. M. Buijs, “Minireview: circadian control of metabolism by the suprachiasmatic nuclei,” Endocrinology, vol. 148, no. 12, pp. 5635–5639, 2007. View at Publisher · View at Google Scholar · View at Scopus
  31. J. A. Romijn and E. Fliers, “Sympathetic and parasympathetic innervation of adipose tissue: metabolic implications,” Current Opinion in Clinical Nutrition and Metabolic Care, vol. 8, no. 4, pp. 440–444, 2005. View at Google Scholar · View at Scopus
  32. N. E. Straznicky, N. Eikelis, E. A. Lambert, and M. D. Esler, “Mediators of sympathetic activation in metabolic syndrome obesity,” Current Hypertension Reports, vol. 10, no. 6, pp. 440–447, 2008. View at Publisher · View at Google Scholar · View at Scopus
  33. N. Tentolouris, G. Argyrakopoulou, and N. Katsilambros, “Perturbed autonomic nervous system function in metabolic syndrome,” NeuroMolecular Medicine, vol. 10, no. 3, pp. 169–178, 2008. View at Publisher · View at Google Scholar · View at Scopus
  34. G. W. Lambert, N. E. Straznicky, E. A. Lambert, J. B. Dixon, and M. P. Schlaich, “Sympathetic nervous activation in obesity and the metabolic syndrome-Causes, consequences and therapeutic implications,” Pharmacology and Therapeutics, vol. 126, no. 2, pp. 159–172, 2010. View at Publisher · View at Google Scholar · View at Scopus
  35. B. Dubern and K. Clement, “Leptin and leptin receptor-related monogenic obesity,” Biochimie, vol. 94, no. 10, pp. 2111–2115, 2012. View at Publisher · View at Google Scholar
  36. G. A. Bewick, “Bowels control brain: gut hormones and obesity,” Biochemical Medicine (Zagreb), vol. 22, pp. 283–297, 2012. View at Google Scholar
  37. K. Suzuki, C. N. Jayasena, and S. R. Bloom, “Obesity and appetite control,” Experimental Diabetes Research, vol. 2012, Article ID 824305, 19 pages, 2012. View at Publisher · View at Google Scholar
  38. M. Rosenbaum and R. L. Leibel, “Adaptive thermogenesis in humans,” International Journal of Obesity, vol. 34, no. 1, pp. S47–S55, 2010. View at Publisher · View at Google Scholar · View at Scopus