Oxidative Medicine and Cellular Longevity
 Journal metrics
Acceptance rate44%
Submission to final decision78 days
Acceptance to publication39 days
CiteScore4.520
Impact Factor4.868
 Submit

Resveratrol Mitigates Sevoflurane-Induced Neurotoxicity by the SIRT1-Dependent Regulation of BDNF Expression in Developing Mice

Read the full article

 Journal profile

Oxidative Medicine and Cellular Longevity publishes research involving cellular and molecular mechanisms of oxidative stress in the nervous system and related organ systems in relation to aging, immune function, vascular biology, metabolism etc.

 Editor spotlight

Chief Editor, Dr Vasquez-Vivar has experience in free radical and redox biology research including the discovery of the role of tetrahydrobiopterin in the regulation of superoxide generation by endothelial and neuronal nitric oxide synthase.

 Special Issues

We currently have a number of Special Issues open for submission. Special Issues highlight emerging areas of research within a field, or provide a venue for a deeper investigation into an existing research area.

Latest Articles

More articles
Research Article

Catharanthus roseus Combined with Ursolic Acid Attenuates Streptozotocin-Induced Diabetes through Insulin Secretion and Glycogen Storage

Catharanthus roseus (C. roseus) and ursolic acid (UA) are ayurvedic medicines with multiple pharmacological activities including antidiabetic activity, but till date, no study is available on their combination. This study documented the antidiabetic efficacy of the combination of C. roseus and UA in rats. Rats were divided into six groups. All groups were given a single dose of Streptozotocin (STZ) at a dose of 50 mg/kg by intraperitoneal route for induction of diabetes, except the normal control group. Group 1 was treated as a normal control (NC) group and fed with saline water, Group 2 as a Diabetes Control group, Group 3 as a STZ+C. roseus ethanolic extract (CREE) group at 50 mg/kg p.o., Group 4 as a STZ+UA group orally at 50 mg/kg, Group 5 as a STZ+CREE (25 mg/kg p.o.)+UA (25 mg/kg p.o.) group, and Group 6 as a STZ+Glimepiride (0.1 mg/kg) group. Diabetes was confirmed after 72 hours by estimation of blood glucose level, and then treatment was given for the next 28 days. During the course of treatment, plasma insulin and blood glucose were measured regularly at the interval of 7 days. At the end of the protocol, blood was collected and animals were sacrificed. The glucose level, insulin level, liver glycogen storage level, and antioxidant enzymes (LPO, CAT, SOD, GPx, GST) were measured. The blood glucose level in Group 5 significantly () reduced to  mg/dl in comparison with that in Group 2 ( mg/dl). The level of plasma insulin in Group 5 increased (μU/ml) significantly () as compared with that in Group 2 (μU/ml). In Group 5, the level of glycogen in liver was significantly () increased as compared with that in Group 2 rats. The level of antioxidant enzymes in Group 5 restored toward normal values significantly (; ) as compared with that in Group 2 animals. These findings suggest that low-dose combination of CREE and UA is effective in the treatment of diabetes.

Research Article

The Association of Paraoxonase-1 Polymorphism with Carotid Artery Stenosis among Elderly Chinese Population

Elderly population is in high risk of carotid atherosclerosis and artery stenosis (CAS). It has been proved that PON1 polymorphism is associated with low-density lipoprotein (LDL) oxidation, which plays an important role in artery atherosclerosis. CAS is an important cause of ischemic stroke. This study is aimed at investigating the association of PON1 (rs662) polymorphism with the risk of CAS among elderly Chinese population. Consecutive elderly patients with CAS were enrolled into the study. Genotyping for PON1 (rs662) polymorphism was performed on all participants. There were 310 CAS patients in this study, with 88 symptomatic CAS and 222 asymptomatic CAS. G allele had a frequency of 59.66% in symptomatic CAS (sCAS); and A allele had an incidence of 36.93% in asymptomatic CAS (aCAS) (). In all CAS patients with and without symptom, no associations were found in any genotype comparison. However, among aCAS subjects, based on GA phenotype, the odds ratio (OR) of the mutant GG with stenosis severity was 0.20 (). The OR of GG+GA mutation was 0.28 for moderate/severe severity, compared with GA type (). This study indicates that PON1 (rs662) polymorphism is not associated with the presence of symptom among CAS patients. Moreover, PON1 (rs662) polymorphism correlates with stenosis severity among aCAS.

Review Article

NLRP3 Inflammasome and Inflammatory Diseases

Almost all human diseases are strongly associated with inflammation, and a deep understanding of the exact mechanism is helpful for treatment. The NLRP3 inflammasome composed of the NLRP3 protein, procaspase-1, and ASC plays a vital role in regulating inflammation. In this review, NLRP3 regulation and activation, its proinflammatory role in inflammatory diseases, interactions with autophagy, and targeted therapeutic approaches in inflammatory diseases will be summarized.

Research Article

Autophagy Triggered by Oxidative Stress Appears to Be Mediated by the AKT/mTOR Signaling Pathway in the Liver of Sleep-Deprived Rats

Sleep deprivation adversely affects the digestive system. Multiple studies have suggested sleep deprivation and oxidative stress are closely related. Autophagy can be triggered by oxidative stress as a self-defense strategy to promote survival. In this study, we investigated the effects of sleep deprivation on liver functions, oxidative stress, and concomitant hepatocyte autophagy, as well as the associated pathways. Enzymatic and nonenzymatic biochemical markers in the serum were used to assess hepatic function and damage. To evaluate the occurrence of autophagy, expression of autophagy-related proteins was tested and autophagosomes were labeled. Additionally, methane dicarboxylic aldehyde (MDA), antioxidant enzymes, and the protein kinase B (AKT)/mammalian target of rapamycin (mTOR) signaling pathway were analyzed using chemical methods and a Western blot. Serum alanine transaminase, aspartate aminotransferase, and alkaline phosphatase increased in sleep-deprived rats. Total protein and albumin abundance was also abnormal. Sleep deprivation induced histopathological changes in the liver. The superoxide dismutase level decreased significantly in the liver of sleep-deprived rats. In contrast, the MDA content increased in the sleep deprivation group. Moreover, the microtubule-associated protein 1 light chain 3 beta (LC3B) II/I ratio and Beclin I content increased considerably in the sleep-deprived rats, while p62 levels decreased. Sleep deprivation apparently inhibited the AKT/mTOR signaling pathway. We conclude that sleep deprivation can induce oxidative stress and ultimately cause liver injury. Autophagy triggered by oxidative stress appears to be mediated by the AKT/mTOR pathway and plays a role in relieving oxidative stress caused by sleep deprivation.

Research Article

Water-Soluble Pristine C60 Fullerenes Inhibit Liver Fibrotic Alteration and Prevent Liver Cirrhosis in Rats

Liver cirrhosis is an outcome of a wide range of liver chronic diseases. It is attributed to oxidative stress; therefore, antioxidant usage could be a promising treatment of that. So, exploring the impact of effective free radical scavenger pristine C60 fullerenes on liver fibrosis and cirrhosis and their ability to interact with main growth factor receptors involved in liver fibrogenesis was aimed to be discovered. We used N-diethylnitrosamine/carbon tetrachloride-induced simulations of rat liver fibrosis (10 weeks) and cirrhosis (15 weeks). Pristine C60 fullerene aqueous colloid solution (C60FAS) was injected daily at a dose of 0.25 mg/kg throughout the experiment. Liver morphology and functional and redox states were assessed. C60 fullerenes’ ability to interact with epidermal, vasoendothelial, platelet-derived, and fibroblast growth factor receptors (EGFR, VEGFR, PDGFR, and FGFR, respectively) was estimated by computational modeling. We observed that C60FAS reduced the severity of fibrosis in fibrotic rats (0.75 vs. 3.0 points according to Ishak score), attenuated the hepatocyte injury, normalized elevated blood serum alkaline phosphatase (ALP) and lactate dehydrogenase (LDH), and mitigated oxidative stress manifestation in liver tissue restoring its redox balance. When applied to cirrhotic animals, C60FAS reduced connective tissue deposition as well (2.4 vs. 5.4 points according to Ishak score), diminished ALP and LDH (by 16% and 61%), and normalized conjugated and nonconjugated bilirubin, restoring the liver function. Altered liver lipid and protein peroxides and glutathione peroxidase activity were also leveled. Within a computer simulation, it was shown that C60 fullerenes can block hinge prohibiting ATP binding for EGFR and FGFR and thus blocking associated signal pathways. This ability in addition to their antioxidant properties may contribute to C60 fullerene’s antifibrotic action. Thus, C60FAS may have a substantial therapeutic potential as an inhibitor of liver fibrosis and cirrhosis.

Review Article

Application of Acupuncture to Attenuate Immune Responses and Oxidative Stress in Postoperative Cognitive Dysfunction: What Do We Know So Far?

Postoperative cognitive dysfunction (POCD) is a common sequela following surgery and hospitalization. The prevention and management of POCD are important during clinical practice. POCD more commonly affects elderly patients who have undergone major surgery and can result in major decline in quality of life for both patients and their families. Acupuncture has been suggested as an effective intervention for many neurological disorders. In recent years, there are increasing interest in the use of acupuncture to prevent and treat POCD. In this review, we summarized the clinical and preclinical evidence of acupuncture on POCD using a narrative approach and discussed the potential mechanisms involved. The experimental details and findings of studies were summarized in tables and analyzed. Most of the clinical studies suggested that acupuncture before surgery could reduce the incidence of POCD and reduce the levels of systematic inflammatory markers. However, their reliability is limited by methodological flaws. Animal studies showed that acupuncture reduced cognitive impairment and the associated pathology after various types of surgery. It is possible that acupuncture modulates inflammation, oxidative stress, synaptic changes, and other cellular events to mitigate POCD. In conclusion, acupuncture is a potential intervention for POCD. More clinical studies with good research design are required to confirm its effectiveness. At the same time, findings from animal studies will help reveal the protective mechanisms, in which systematic inflammation is likely to play a major role.

Oxidative Medicine and Cellular Longevity
 Journal metrics
Acceptance rate44%
Submission to final decision78 days
Acceptance to publication39 days
CiteScore4.520
Impact Factor4.868
 Submit