Oxidative Medicine and Cellular Longevity

Oxidative Medicine and Cellular Longevity / 2009 / Article

Open Access

Volume 2 |Article ID 835350 | 6 pages | https://doi.org/10.4161/oxim.2.3.8837

Chenopodium Album Prevents Progression of Cell Growth and Enhances Cell Toxicity in Human Breast Cancer Cell Lines

Received23 Mar 2009
Revised24 Apr 2009
Accepted24 Apr 2009

Abstract

The present study is aimed to investigate the effects of Chenopodium album (leaves) on the growth of estrogen dependent (MCF-7) and estrogen independent (MDA-MB-468) human breast cancer cell lines. The different solvent extracts (petroleum ether, ethyl acetate and methanol) were assessed for their cytotoxicity using TBE (Trypan blue exclusion) and MTT [3-(4, 5-dimethyl thiazol-2-yl)-2, 5-diphenyl tetrazolium] bioassay. These cells were cultured in MEM (minimum essential medium) medium and incubated with the dilution series of extracts (10–100 mg/ml) in CO2 incubator at 37°C for 24 h. Among the various extracts studied for two cell lines, methanolic extract of C. album (leaves) exhibited maximum antibreast cancer activity having IC50 (the concentration of an individual compound leading to 50% inhibition) value 27.31 mg/ml against MCF-7 cell line. Significant percent inhibition (94.06%) in the MeOH extract of C. album (leaves) at 48 h of exposure and concentration 100 mg/ml (p < 0.05) against MCF-7 breast cancer cell line, indicates the presence of some structural moiety responsible for this observed antiproliferative effect. In vivo study and structural elucidation of its bioactive principle are in progress. Our findings highlight the potential of this plant for its possible clinical use to counteract malignancy development as antibreast cancer bioagent.

Copyright © 2009 Hindawi Publishing Corporation. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


More related articles

657 Views | 716 Downloads | 12 Citations
 PDF  Download Citation  Citation
 Order printed copiesOrder

Related articles

We are committed to sharing findings related to COVID-19 as quickly and safely as possible. Any author submitting a COVID-19 paper should notify us at help@hindawi.com to ensure their research is fast-tracked and made available on a preprint server as soon as possible. We will be providing unlimited waivers of publication charges for accepted articles related to COVID-19. Sign up here as a reviewer to help fast-track new submissions.