Table of Contents Author Guidelines Submit a Manuscript
Oxidative Medicine and Cellular Longevity
Volume 2011 (2011), Article ID 760978, 9 pages
http://dx.doi.org/10.1155/2011/760978
Review Article

Reproductive Benefit of Oxidative Damage: An Oxidative Stress “Malevolence”?

1Laboratory for Oxidative Stress Research, Faculty of Health Sciences, University of Ljubljana, Zdravstvena Pot 5, 1000 Ljubljana, Slovenia
2Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
3Faculty for Maritime Studies and Transportation, University of Ljubljana, 1000 Ljubljana, Slovenia

Received 5 May 2011; Revised 9 June 2011; Accepted 28 July 2011

Academic Editor: José L. Quiles

Copyright © 2011 B. Poljsak et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. B. Halliwel and J. M. C. Gutteridge, Free Radicals in Biology and Medicine, Oxford University Press, Oxford, UK, 4th edition, 2005.
  2. B. Halliwel and J. Gutteridge, Free Radicals in Biology and Medicine, Clarendon Press, Oxford, UK, 3rd edition, 1999.
  3. R. S. Sohal, “Metabolic rate and life span,” in Cellular Aging: Concepts and Metabolism, R. Witler, Ed., pp. 25–40, Karger, Basle, Switzerland, 1976. View at Google Scholar
  4. R. S. Sohal, R. J. Mockett, and W. C. Orr, “Mechanisms of aging: an appraisal of the oxidative stress hypothesis,” Free Radical Biology and Medicine, vol. 33, no. 5, pp. 575–586, 2002. View at Publisher · View at Google Scholar · View at Scopus
  5. K. B. Beckman and B. N. Ames, “The free radical theory of aging matures,” Physiological Reviews, vol. 78, no. 2, pp. 547–581, 1998. View at Google Scholar · View at Scopus
  6. L. Casteilla, M. Rigoulet, and L. Penicaud, “Mitochondrial ROS metabolism: modulation by uncoupling proteins,” IUBMB Life, vol. 52, no. 3–5, pp. 181–188, 2002. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  7. R. G. Hansford, B. A. Hogue, and V. Mildaziene, “Dependence of H2O2 formation by rat heart mitochondria on substrate availability and donor age,” Journal of Bioenergetics and Biomembranes, vol. 29, no. 1, pp. 89–95, 1997. View at Publisher · View at Google Scholar · View at Scopus
  8. K. Staniek and H. Nohl, “H(2)O(2) detection from intact mitochondria as a measure for one-electron reduction of dioxygen requires a non-invasive assay system,” Biochimica et Biophysica Acta, vol. 1413, no. 2, pp. 70–80, 1999. View at Publisher · View at Google Scholar · View at Scopus
  9. J. R. Speakman, C. Selman, J. S. McLaren, and E. J. Harper, “Living fast, dying when? The link between aging and energetics,” Journal of Nutrition, vol. 132, no. 6, pp. 1583S–1597S, 2002. View at Google Scholar · View at Scopus
  10. N. Kaul and H. J. Forman, “Reactive oxygen species in physiology and toxicology: from lipid peroxidation to transcriptional activation,” in Toxicology of the Human Environment: The Critical Role of Free Radicals, C. Rhodes, Ed., pp. 310–335, Taylor and Francis, New York, NY, USA, 2000. View at Google Scholar
  11. A. De Grey and M. Rae, Ending Aging, St. Martin's Griffin, New York, NY, USA, 2007.
  12. S. G. Rhee, “Redox signaling: hydrogen peroxide as intracellular messenger,” Experimental and Molecular Medicine, vol. 31, no. 2, pp. 53–59, 1999. View at Google Scholar · View at Scopus
  13. K. Bedard and K. H. Krause, “The NOX family of ROS-generating NADPH oxidases: physiology and pathophysiology,” Physiological Reviews, vol. 87, no. 1, pp. 245–313, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  14. A. Revelli, D. Ghigo, F. Moffa, M. Massobrio, and I. Tur-Kaspa, “Guanylate cyclase activity and sperm function,” Endocrine Reviews, vol. 23, no. 4, pp. 484–494, 2002. View at Publisher · View at Google Scholar · View at Scopus
  15. H. Sies, Oxidative Stress II. Oxidants and Antioxidants, Academic Press, London, UK, 1991.
  16. B. N. Ames, M. K. Shigenaga, and T. M. Hagen, “Oxidants, antioxidants, and the degenerative diseases of aging,” Proceedings of the National Academy of Sciences of the United States of America, vol. 90, no. 17, pp. 7915–7922, 1993. View at Google Scholar · View at Scopus
  17. P. B. Medawar, “Old age and natural death,” Modern Quarterly, vol. 1, no. 30, p. 56, 1946. View at Google Scholar
  18. P. B. Medawar, An Unsolved Problem of Biology, H.K. Lewis, London, UK, 1952.
  19. G. C. Williams, “Pleiotropy, natural selection and the evolution of senescence,” Evolution, vol. 11, pp. 398–411, 1957. View at Google Scholar
  20. É Le Bourg, “A mini-review of the evolutionary theories of aging. Is it the time to accept them?” Demographic Research, vol. 4, no. 1, pp. 1–28, 2001. View at Google Scholar
  21. T. B. L. Kirkwood, “Evolution of ageing,” Nature, vol. 270, no. 5635, pp. 301–304, 1977. View at Publisher · View at Google Scholar · View at Scopus
  22. T. B. L. Kirkwood and R. Holliday, “The evolution of ageing and longevity,” Proceedings of the Royal Society of London B, vol. 205, no. 1161, pp. 531–546, 1979. View at Google Scholar · View at Scopus
  23. S. C. Stearns, The Evolution of Life Histories, Oxford University Press, Oxford, UK, 1992.
  24. E. L. Charnov, Life History Invariants: Some Explorations of Symmetry in Evolutionary Ecology, Oxford University Press, Oxford, UK, 1993.
  25. L. A. Gavrilov and N. S. Gavrilova, “Evolutionary theories of aging and longevity,” TheScientificWorldJournal, vol. 2, pp. 339–356, 2002. View at Google Scholar · View at Scopus
  26. N. B. Metcalfe and C. Alonso-Alvarez, “Oxidative stress as a life-history constraint: the role of reactive oxygen species in shaping phenotypes from conception to death,” Functional Ecology, vol. 24, no. 5, pp. 984–996, 2010. View at Publisher · View at Google Scholar · View at Scopus
  27. R. C. Lewontin, “Sociobiology as an adaptationist program,” Behavioral Science, vol. 24, no. 1, pp. 5–14, 1979. View at Google Scholar · View at Scopus
  28. A. J. Cain, “Introduction to general discussion. Evolution of adaptation by natural selection,” Proceedings of the Royal Society of London B, vol. 205, no. 1161, pp. 599–604, 1979. View at Google Scholar
  29. R. Dawkins, The Extended Phenotype: The long Reach of the Gene, Oxford University Press, New York, NY, USA, 1982–1999.
  30. J. Balantine, Pathology of Oxygen Toxicity, Academic Press, New York, NY, USA, 1982.
  31. D. L. Gilbert, Oxygen and Living Processes: An Interdisciplinary Approach, Springer, New York, NY, USA, 1981.
  32. K. Sigler, J. Chaloupka, J. Brozmanova, N. Stadler, and M. Hofer, “Oxidative stress in microorganisms,” Folia Microbiologica, vol. 44, no. 5, pp. 587–624, 1999. View at Google Scholar
  33. J. R. Russel and J. Robinson, Melatonin., Bantam Books, New York, NY, USA, 1995.
  34. A. Kowald and T. B. L. Kirkwood, “Towards a network theory of ageing: a model combining the free radical theory and the protein error theory,” Journal of Theoretical Biology, vol. 168, no. 1, pp. 75–94, 1994. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  35. A. Kowald and T. B. L. Kirkwood, “A network theory of ageing: the interactions of defective mitochondria, aberrant proteins, free radicals and scavengers in the ageing process,” Mutation Research, vol. 316, no. 5-6, pp. 209–236, 1996. View at Publisher · View at Google Scholar · View at Scopus
  36. B. Kirkwood and J. C. Mathers, “The basic biology of aging,” in Healthy Aging—The Role of Nutrition and Lifestyle, S. Stanner, R. Thompson, and J. Buttriss, Eds., Wiley-Blackwell, New York, NY, USA, 2009. View at Google Scholar
  37. S. N. Austad, “Comparative aging and life histories in mammals,” Experimental Gerontology, vol. 32, no. 1-2, pp. 23–38, 1997. View at Publisher · View at Google Scholar · View at Scopus
  38. S. N. Austad, Why We Age: What Science Is Discovering about the Body's Journey through Life, John Wiley & Sons, New York, NY, USA, 1997.
  39. R. J. Berry and F. H. Bronson, “Life-history and bioeconomy of the house mouse,” Biological Reviews of the Cambridge Philosophical Society, vol. 67, no. 4, pp. 519–550, 1992. View at Google Scholar · View at Scopus
  40. M. P. Mattson, W. Duan, R. Wan, and Z. Guo, “Cellular and molecular mechanisms whereby dietary restriction extends healthspan: a beneficial type of stress,” in Energy Metabolism and Lifespan Determination, M. P. Mattson, Ed., Elsevier, New York, NY, USA, 2003. View at Google Scholar
  41. M. P. Mattson, W. Duan, R. Wan, and Z. Guo, “Cellular and molecular mechanisms whereby dietary restriction extends healthspan: a beneficial type of stress,” Advances in Cell Aging and Gerontology, vol. 14, pp. 87–103, 2003. View at Publisher · View at Google Scholar
  42. B. Best, “Mechanisms of aging,” http://www.benbest.com/lifeext/aging.html.
  43. C. Smelick , 2003, http://www.biologicalgerontology.com.
  44. J. Parsonnet, “Bacterial infection as a cause of cancer,” Environmental Health Perspectives, vol. 103, no. 8, pp. 263–268, 1995. View at Google Scholar · View at Scopus
  45. H. Ohshima, M. Tatemichi, and T. Sawa, “Chemical basis of inflammation-induced carcinogenesis,” Archives of Biochemistry and Biophysics, vol. 417, no. 1, pp. 3–11, 2003. View at Publisher · View at Google Scholar · View at Scopus
  46. M. Macarthur, G. L. Hold, and E. M. El-Omar, “Inflammation and Cancer II. Role of chronic inflammation and cytokine gene polymorphisms in the pathogenesis of gastrointestinal malignancy,” American Journal of Physiology, vol. 286, no. 4, pp. G515–G520, 2004. View at Google Scholar · View at Scopus
  47. A. Federico, F. Morgillo, C. Tuccillo, F. Ciardiello, and C. Loguercio, “Chronic inflammation and oxidative stress in human carcinogenesis,” International Journal of Cancer, vol. 121, no. 11, pp. 2381–2386, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  48. J. K. Kundu and Y. J. Surh, “Inflammation: gearing the journey to cancer,” Mutation Research, vol. 659, no. 1-2, pp. 15–30, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  49. G. Sorci and B. Faivre, “Inflammation and oxidative stress in vertebrate host-parasite systems,” Philosophical Transactions of the Royal Society B, vol. 364, no. 1513, pp. 71–83, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  50. R. Dawkins, The Selfish Gene/ Sebični Gen, Mladinska knjiga, Ljubljana, Slovenia, 1976.
  51. B. Bryson, A Short History of Nearly Everything, Mladinska knjiga, Ljubljana, Slovenia, 2003.
  52. M. Ridley, “Genome: the autobiography of a species,” in Genom: Biografija človeške vrste, chapter 23, Učila International, Tržič, Slovenia, 1999. View at Google Scholar
  53. I. Ostan, B. Poljšak, M. Simčič, and L. M. M. Tijskens, “Appetite for the selfish gene,” Appetite, vol. 54, no. 3, pp. 442–449, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  54. I. Ostan, B. Poljšak, M. Simčič, and L. M. M. Tijskens, “Nutrition for the selfish gene,” Trends in Food Science & Technology, vol. 20, no. 8, pp. 355–365, 2009. View at Publisher · View at Google Scholar · View at Scopus
  55. B. Poljsak, Decreasing Oxidative Stress and Retarding the Aging Process, Nova Science Publishers, New York, NY, USA, 2010.
  56. R. Gredilla and G. Barja, “Mitochondrial oxidative stress and caloric restriction,” in Energy Metabolism and Lifespan Determination, M. P. Mattson, Ed., Elsevier, New York, NY, USA, 2003. View at Google Scholar
  57. R. Gredilla and G. Barja, “Mitochondrial oxidative stress and caloric restriction,” Advances in Cell Aging and Gerontology, vol. 14, pp. 105–122, 2003. View at Google Scholar
  58. K. M. Humphries, P. A. Szweda, and L. I. Szweda, “Aging: a shift from redox regulation to oxidative damage,” Free Radical Research, vol. 40, no. 12, pp. 1239–1243, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  59. R. D. Lipman, D. E. Smith, R. T. Bronson, and J. Blumberg, “Is late-life caloric restriction beneficial?” Aging (Milano), vol. 7, no. 2, pp. 136–139, 1995. View at Google Scholar · View at Scopus
  60. J. Wooten, S. Chouchane, and T. E. McGrath, “Tobacco smoke constituents affecting oxidative stress,” in Cigarette Smoke and Oxidative Stress, B. B. Haliwell and H. E. Poulsen, Eds., Springer, New York, NY, USA, 2006. View at Google Scholar
  61. C. Loguercio, C. Tuccillo, A. Federico, V. Fogliano, C. Del Vecchio Blanco, and M. Romano, “Alcoholic beverages and gastric epithelial cell viability: effect on oxidative stress-induced damage,” Journal of physiology and pharmacology, vol. 60, no. 7, pp. 87–92, 2009. View at Google Scholar · View at Scopus
  62. P. Holford, Patrick Holford's New Optimum Nutrition Bible, Piatkus Books, Londone, UK, 2004.
  63. O. Ichazo, “The African,” in Patrick Holford's New Optimum Nutrition Bible, P. Holford, Ed., Piatkus Books, Londone, UK, 2004. View at Google Scholar
  64. C. Engel, Wild Health: How Animals Keep Themselves Well and What We Can Learn from Them, Weidenfeld & Nicholson, New York, NY, USA, 2002.
  65. J. Rafert and E. O. Vineberg, “Bonobo nutrition—relation of captive diet to wild diet,” in Bonobo Husbandry Manual, American Association of Zoos and Aquariums, Silver Spring, Md, USA, 1997. View at Google Scholar
  66. V. Wobber, B. Hare, and R. Wrangham, “Great apes prefer cooked food,” Journal of Human Evolution, vol. 55, no. 2, pp. 340–348, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  67. S. J. Olshansky and B. A. Carnes, Science at the Frontiers of Aging. The Guest for Immortality, W. W. Norton & Company, New York, NY, USA, 2001.
  68. L. Migliore, R. Colognato, A. Naccarati, and E. Bergamaschi, “Relationship between genotoxicity biomarkers in somatic and germ cells: findings from a biomonitoring study,” Mutagenesis, vol. 21, no. 2, pp. 149–152, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  69. A. N. Carmichael, A. K. Fridolfsson, J. Halverson, and H. Ellegren, “Male-biased mutation rates revealed from Z and W chromosome-linked ATP synthase alpha-subunit (ATP5A1) sequences in birds,” Journal of Molecular Evolution, vol. 50, no. 5, pp. 443–447, 2000. View at Google Scholar · View at Scopus
  70. J. Zhang, “Evolution of DMY, a newly emergent male sexdetermination gene of medaka fish,” Genetics, vol. 166, no. 4, pp. 1887–1895, 2004. View at Publisher · View at Google Scholar · View at Scopus
  71. J. Taylor, S. Tyekucheva, M. Zody, F. Chiaromonte, and K. D. Makova, “Strong and weak male mutation bias at different sites in the primate genomes: insights from the human-chimpanzee comparison,” Molecular Biology and Evolution, vol. 23, no. 3, pp. 565–573, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  72. A. Velando, R. Torres, and C. Alonso-Alvarez, “Avoiding bad genes: oxidatively damaged DNA in germ line and mate choice,” BioEssays, vol. 30, no. 11-12, pp. 1212–1219, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  73. A. J. Hulbert, “Explaining longevity of different animals: is membrane fatty acid composition the missing link?” Age, vol. 30, no. 2-3, pp. 89–97, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  74. A. J. Hulbert, R. Pamplona, R. Buffenstein, and W. A. Buttemer, “Life and death: metabolic rate, membrane composition, and life span of animals,” Physiological Reviews, vol. 87, no. 4, pp. 1175–1213, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  75. J. D. Congdon, R. D. Nagle, O. M. Kinney, and R. C. van Loben Sels, “Hypotheses of aging in a long-lived vertebrate, Blanding's turtle (Emydoidea blandingii),” Experimental Gerontology, vol. 36, no. 4–6, pp. 813–827, 2001. View at Publisher · View at Google Scholar · View at Scopus
  76. J. D. Congdon, R. D. Nagle, O. M. Kinney, R. C. van Loben Sels, T. Quinter, and D. W. Tinkle, “Testing hypotheses of aging in long-lived painted turtles (Chrysemys picta),” Experimental Gerontology, vol. 38, no. 7, pp. 765–772, 2003. View at Publisher · View at Google Scholar · View at Scopus
  77. M. Girondot and J. Garcia, “Senescence and longevity in turtles: what telomeres tell us,” in Proceedings of the 9th Extraordinary Meeting of the Europea Societas Herpetologica, C. Miaud and R. Guyétant, Eds., pp. 25–29, Chambéry, France, 1999.
  78. P. L. Lutz, H. M. Prentice, and S. L. Milton, “Is turtle longevity linked to enhanced mechanisms for surviving brain anoxia and reoxygenation?” Experimental Gerontology, vol. 38, no. 7, pp. 797–800, 2003. View at Publisher · View at Google Scholar · View at Scopus
  79. A. Krivoruchko and K. B. Storey, “Forever young: mechanisms of natural anoxia tolerance and potential links to longevity,” Oxidative Medicine and Cellular Longevity, vol. 3, no. 3, pp. 186–198, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  80. A. Comfort, http://www.senescence.info/evolution.html.
  81. L. Hayflick, How and Why We Age, Ballantine Books, New York, NY, USA, 1994.
  82. J. Hawks, E. T. Wang, G. M. Cochran, H. C. Harpending, and R. K. Moyzis, “Recent acceleration of human adaptive evolution,” Proceedings of the National Academy of Sciences of the United States of America, vol. 104, no. 52, pp. 20753–20758, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  83. R. M. J. Palmer, A. G. Ferrige, and S. Moncada, “Nitric oxide release accounts for the biological activity of endothelium-derived relaxing factor,” Nature, vol. 327, no. 6122, pp. 524–526, 1987. View at Google Scholar · View at Scopus
  84. H. Kamata and H. Hirata, “Redox regulation of cellular signalling,” Cellular Signalling, vol. 11, no. 1, pp. 1–14, 1999. View at Publisher · View at Google Scholar · View at Scopus
  85. T. P. Dalton, H. G. Shertzer, and A. Puga, “Regulation of gene expression by reactive oxygen,” Annual Review of Pharmacology and Toxicology, vol. 39, pp. 67–101, 1999. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  86. J. Nordberg and E. S. J. Arner, “Reactive oxygen species, antioxidants, and the mammalian thioredoxin system,” Free Radical Biology and Medicine, vol. 31, no. 11, pp. 1287–1312, 2001. View at Publisher · View at Google Scholar · View at Scopus
  87. M. Gilca, I. Stoian, V. Atanasiu, and B. Virgolici, “The oxidative hypothesis of senescence,” Journal of Postgraduate Medicine, vol. 53, no. 3, pp. 207–213, 2007. View at Publisher · View at Google Scholar
  88. M. Valko, D. Leibfritz, J. Moncol, M. T. D. Cronin, M. Mazur, and J. Telser, “Free radicals and antioxidants in normal physiological functions and human disease,” International Journal of Biochemistry and Cell Biology, vol. 39, no. 1, pp. 44–84, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  89. D. K. Dowling and L. W. Simmons, “Reactive oxygen species as universal constraints in life-history evolution,” Proceedings of the Royal Society B: Biological Sciences, vol. 276, no. 1663, pp. 1737–1745, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  90. P. Monaghan, N. B. Metcalfe, and R. Torres, “Oxidative stress as a mediator of life history trade-offs: mechanisms, measurements and interpretation,” Ecology Letters, vol. 12, no. 1, pp. 75–92, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  91. A. B. Salmon, D. B. Marx, and L. G. Harshman, “A cost of reproduction in Drosophila melanogaster: stress susceptibility,” Evolution, vol. 55, no. 8, pp. 1600–1608, 2001. View at Google Scholar · View at Scopus
  92. C. Alonso-Alvarez, S. Bertrand, G. Devevey et al., “An experimental test of the dose-dependent effect of carotenoids and immune activation on sexual signals and antioxidant activity,” American Naturalist, vol. 164, no. 5, pp. 651–659, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  93. C. Alonso-Alvarez, S. Bertrand, G. Devevey et al., “An experimental manipulation of life-history trajectories and resistance to oxidative stress,” Evolution, vol. 60, no. 9, pp. 1913–1924, 2006. View at Publisher · View at Google Scholar · View at Scopus
  94. C. Alonso-Alvarez, S. Bertrand, B. Faivre, O. Chastel, and G. Sorci, “Testosterone and oxidative stress: the oxidation handicap hypothesis,” Proceedings of the Royal Society B, vol. 274, no. 1611, pp. 819–825, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus