Table of Contents Author Guidelines Submit a Manuscript
Oxidative Medicine and Cellular Longevity
Volume 2012, Article ID 541971, 18 pages
http://dx.doi.org/10.1155/2012/541971
Review Article

The Role of Dietary Polyphenols on Adult Hippocampal Neurogenesis: Molecular Mechanisms and Behavioural Effects on Depression and Anxiety

1Institute of Psychiatry, King's College London, 125 Coldharbour Lane, London SE5 9NU, UK
2Program of Neurobiology, Laboratory of Neurobiology of the Retina, Institute of Biophysics, Universidade Federal do Rio de Janeiro (UFRJ), Bloco C, sala 31, Avenida Carlos Chagas Filho 373, 21941-902 Rio de Janeiro, RJ, Brazil
3Laboratory of Panic & Respiration, Institute of Psychiatry, Universidade Federal do Rio de Janeiro (UFRJ), Avenida Venceslau Brás, 71 Fundos, 22290-140 Rio de Janeiro, RJ, Brazil

Received 10 February 2012; Revised 10 April 2012; Accepted 17 April 2012

Academic Editor: Tullia Maraldi

Copyright © 2012 Gisele Pereira Dias et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. P. S. Eriksson, E. Perfilieva, T. Björk-Eriksson et al., “Neurogenesis in the adult human hippocampus,” Nature Medicine, vol. 4, no. 11, pp. 1313–1317, 1998. View at Publisher · View at Google Scholar · View at Scopus
  2. J. Altman, “Are new neurons formed in the brains of adult mammals?” Science, vol. 135, no. 3509, pp. 1127–1128, 1962. View at Google Scholar · View at Scopus
  3. I. Imayoshi, M. Sakamoto, T. Ohtsuka et al., “Roles of continuous neurogenesis in the structural and functional integrity of the adult forebrain,” Nature Neuroscience, vol. 11, no. 10, pp. 1153–1161, 2008. View at Publisher · View at Google Scholar · View at Scopus
  4. C. Zhao, W. Deng, and F. H. Gage, “Mechanisms and functional implications of adult neurogenesis,” Cell, vol. 132, no. 4, pp. 645–660, 2008. View at Publisher · View at Google Scholar · View at Scopus
  5. G. L. Ming and H. Song, “Adult neurogenesis in the mammalian central nervous system,” Annual Review of Neuroscience, vol. 28, pp. 223–250, 2005. View at Publisher · View at Google Scholar · View at Scopus
  6. J. Altman and G. D. Das, “Autoradiographic and histological studies of postnatal neurogenesis. I. A longitudinal investigation of the kinetics, migration and transformation of cells incorporating tritiated thymidine in neonate rats, with special reference to postnatal neurogenesis in some brain regions,” Journal of Comparative Neurology, vol. 126, no. 3, pp. 337–389, 1966. View at Google Scholar · View at Scopus
  7. E. Gould and P. Tanapat, “Lesion-induced proliferation of neuronal progenitors in the dentate gyrus of the adult rat,” Neuroscience, vol. 80, no. 2, pp. 427–436, 1997. View at Publisher · View at Google Scholar · View at Scopus
  8. E. Gould, P. Tanapat, B. S. Mcewen, G. Flügge, and E. Fuchs, “Proliferation of granule cell precursors in the dentate gyrus of adult monkeys is diminished by stress,” Proceedings of the National Academy of Sciences of the United States of America, vol. 95, no. 6, pp. 3168–3171, 1998. View at Publisher · View at Google Scholar · View at Scopus
  9. E. Gould, A. J. Reeves, M. S. A. Graziano, and C. G. Gross, “Neurogenesis in the neocortex of adult primates,” Science, vol. 286, no. 5439, pp. 548–552, 1999. View at Publisher · View at Google Scholar · View at Scopus
  10. M. S. Kaplan and J. W. Hinds, “Neurogenesis in the adult rat: electron microscopic analysis of light radioautographs,” Science, vol. 197, no. 4308, pp. 1092–1094, 1977. View at Google Scholar · View at Scopus
  11. L. A. M. Galea and B. S. McEwen, “Sex and seasonal differences in the rate of cell proliferation in the dentate gyrus of adult wild meadow voles,” Neuroscience, vol. 89, no. 3, pp. 955–964, 1999. View at Publisher · View at Google Scholar · View at Scopus
  12. D. R. Kornack and P. Rakic, “Continuation of neurogenesis in the hippocampus of the adult macaque monkey,” Proceedings of the National Academy of Sciences of the United States of America, vol. 96, no. 10, pp. 5768–5773, 1999. View at Publisher · View at Google Scholar · View at Scopus
  13. A. Alvarez-Buylla and D. A. Lim, “For the long run: maintaining germinal niches in the adult brain,” Neuron, vol. 41, no. 5, pp. 683–686, 2004. View at Publisher · View at Google Scholar · View at Scopus
  14. T. D. Palmer, A. R. Willhoite, and F. H. Gage, “Vascular niche for adult hippocampal neurogenesis,” Journal of Comparative Neurology, vol. 425, no. 4, pp. 479–494, 2000. View at Google Scholar
  15. H. Van Praag, G. Kempermann, and F. H. Gage, “Running increases cell proliferation and neurogenesis in the adult mouse dentate gyrus,” Nature Neuroscience, vol. 2, no. 3, pp. 266–270, 1999. View at Publisher · View at Google Scholar · View at Scopus
  16. G. Kempermann, H. G. Kuhn, and F. H. Gage, “More hippocampal neurons in adult mice living in an enriched environment,” Nature, vol. 386, no. 6624, pp. 493–495, 1997. View at Publisher · View at Google Scholar · View at Scopus
  17. J. Lee, K. B. Seroogy, and M. P. Mattson, “Dietary restriction enhances neurotrophin expression and neurogenesis in the hippocampus of adult mice,” Journal of Neurochemistry, vol. 80, no. 3, pp. 539–547, 2002. View at Publisher · View at Google Scholar · View at Scopus
  18. E. Gould and P. Tanapat, “Stress and hippocampal neurogenesis,” Biological Psychiatry, vol. 46, no. 11, pp. 1472–1479, 1999. View at Publisher · View at Google Scholar · View at Scopus
  19. C. Mirescu and E. Gould, “Stress and adult neurogenesis,” Hippocampus, vol. 16, no. 3, pp. 233–238, 2006. View at Publisher · View at Google Scholar · View at Scopus
  20. P. Tanapat, N. B. Hastings, T. A. Rydel, L. A. M. Galea, and E. Gould, “Exposure to fox odor inhibits cell proliferation in the hippocampus of adult rats via an adrenal hormone-dependent mechanism,” Journal of Comparative Neurology, vol. 437, no. 4, pp. 496–504, 2001. View at Publisher · View at Google Scholar · View at Scopus
  21. E. Gould, B. S. McEwen, P. Tanapat, L. A. M. Galea, and E. Fuchs, “Neurogenesis in the dentate gyrus of the adult tree shrew is regulated by psychosocial stress and NMDA receptor activation,” Journal of Neuroscience, vol. 17, no. 7, pp. 2492–2498, 1997. View at Google Scholar · View at Scopus
  22. J. E. Malberg and R. S. Duman, “Cell proliferation in adult hippocampus is decreased by inescapable stress: reversal by fluoxetine treatment,” Neuropsychopharmacology, vol. 28, no. 9, pp. 1562–1571, 2003. View at Publisher · View at Google Scholar · View at Scopus
  23. D. T. Balu and I. Lucki, “Adult hippocampal neurogenesis: regulation, functional implications, and contribution to disease pathology,” Neuroscience and Biobehavioral Reviews, vol. 33, no. 3, pp. 232–252, 2009. View at Publisher · View at Google Scholar · View at Scopus
  24. R. Jankord and J. P. Herman, “Limbic regulation of hypothalamo-pituitary-adrenocortical function during acute and chronic stress,” Annals of the New York Academy of Sciences, vol. 1148, pp. 64–73, 2008. View at Publisher · View at Google Scholar · View at Scopus
  25. B. S. McEwen and T. Seeman, “Protective and damaging effects of mediators of stress. Elaborating and testing the concepts of allostasis and allostatic load,” Annals of the New York Academy of Sciences, vol. 896, pp. 30–47, 1999. View at Google Scholar · View at Scopus
  26. J. S. Snyder, A. Soumier, M. Brewer, J. Pickel, and H. A. Cameron, “Adult hippocampal neurogenesis buffers stress responses and depressive behaviour,” Nature, vol. 476, no. 7361, pp. 458–461, 2011. View at Publisher · View at Google Scholar · View at Scopus
  27. S. Campbell, M. Marriott, C. Nahmias, and G. M. MacQueen, “Lower hippocampal volume in patients suffering from depression: a meta-analysis,” American Journal of Psychiatry, vol. 161, no. 4, pp. 598–607, 2004. View at Publisher · View at Google Scholar · View at Scopus
  28. A. Dranovsky and R. Hen, “Hippocampal neurogenesis: regulation by stress and antidepressants,” Biological Psychiatry, vol. 59, no. 12, pp. 1136–1143, 2006. View at Publisher · View at Google Scholar · View at Scopus
  29. J. E. Malberg, A. J. Eisch, E. J. Nestler, and R. S. Duman, “Chronic antidepressant treatment increases neurogenesis in adult rat hippocampus,” Journal of Neuroscience, vol. 20, no. 24, pp. 9104–9110, 2000. View at Google Scholar · View at Scopus
  30. L. Santarelli, M. Saxe, C. Gross et al., “Requirement of hippocampal neurogenesis for the behavioral effects of antidepressants,” Science, vol. 301, no. 5634, pp. 805–809, 2003. View at Publisher · View at Google Scholar · View at Scopus
  31. A. Marín-Burgin and A. F. Schinder, “Requirement of adult-born neurons for hippocampus-dependent learning,” Behavioural Brain Research, vol. 227, no. 2, pp. 391–399, 2011. View at Publisher · View at Google Scholar · View at Scopus
  32. B. Vollmayr, C. Simonis, S. Weber, P. Gass, and F. Henn, “Reduced cell proliferation in the dentate gyrus is not correlated with the development of learned helplessness,” Biological Psychiatry, vol. 54, no. 10, pp. 1035–1040, 2003. View at Publisher · View at Google Scholar · View at Scopus
  33. A. Surget, M. Saxe, S. Leman et al., “Drug-dependent requirement of hippocampal neurogenesis in a model of depression and of antidepressant reversal,” Biological Psychiatry, vol. 64, no. 4, pp. 293–301, 2008. View at Publisher · View at Google Scholar · View at Scopus
  34. D. Stangl and S. Thuret, “Impact of diet on adult hippocampal neurogenesis,” Genes and Nutrition, vol. 4, no. 4, pp. 271–282, 2009. View at Publisher · View at Google Scholar · View at Scopus
  35. F. Gómez-Pinilla, “Brain foods: the effects of nutrients on brain function,” Nature Reviews Neuroscience, vol. 9, no. 7, pp. 568–578, 2008. View at Publisher · View at Google Scholar · View at Scopus
  36. J. P. E. Spencer, “Food for thought: the role of dietary flavonoids in enhancing human memory, learning and neuro-cognitive performance,” Proceedings of the Nutrition Society, vol. 67, no. 2, pp. 238–252, 2008. View at Publisher · View at Google Scholar · View at Scopus
  37. T. Valente, J. Hidalgo, I. Bolea et al., “A diet enriched in polyphenols and polyunsaturated fatty acids, LMN diet, induces neurogenesis in the subventricular zone and hippocampus of adult mouse brain,” Journal of Alzheimer's Disease, vol. 18, no. 4, pp. 849–865, 2009. View at Publisher · View at Google Scholar · View at Scopus
  38. J. K. So, G. S. Tae, R. P. Hee et al., “Curcumin stimulates proliferation of embryonic neural progenitor cells and neurogenesis in the adult hippocampus,” The Journal of Biological Chemistry, vol. 283, no. 21, pp. 14497–14505, 2008. View at Publisher · View at Google Scholar · View at Scopus
  39. L. An, Y. Z. Zhang, N. J. Yu et al., “The total flavonoids extracted from Xiaobuxin-Tang up-regulate the decreased hippocampal neurogenesis and neurotrophic molecules expression in chronically stressed rats,” Progress in Neuro-Psychopharmacology and Biological Psychiatry, vol. 32, no. 6, pp. 1484–1490, 2008. View at Publisher · View at Google Scholar · View at Scopus
  40. Y. Xu, B. Ku, L. Cui et al., “Curcumin reverses impaired hippocampal neurogenesis and increases serotonin receptor 1A mRNA and brain-derived neurotrophic factor expression in chronically stressed rats,” Brain Research, vol. 1162, no. 1, pp. 9–18, 2007. View at Publisher · View at Google Scholar · View at Scopus
  41. T. Wang, Y. J. Yang, P. F. Wu et al., “Tetrahydroxystilbene glucoside, a plant-derived cognitive enhancer, promotes hippocampal synaptic plasticity,” European Journal of Pharmacology, vol. 650, no. 1, pp. 206–214, 2011. View at Publisher · View at Google Scholar · View at Scopus
  42. K. B. Duffy, E. L. Spangler, B. D. Devan et al., “A blueberry-enriched diet provides cellular protection against oxidative stress and reduces a kainate-induced learning impairment in rats,” Neurobiology of Aging, vol. 29, no. 11, pp. 1680–1689, 2008. View at Publisher · View at Google Scholar · View at Scopus
  43. H. Van Praag, M. J. Lucero, G. W. Yeo et al., “Plant-derived flavanol (–)epicatechin enhances angiogenesis and retention of spatial memory in mice,” Journal of Neuroscience, vol. 27, no. 22, pp. 5869–5878, 2007. View at Publisher · View at Google Scholar · View at Scopus
  44. S. A. Mandel, T. Amit, O. Weinreb, and M. B. H. Youdim, “Understanding the broad-spectrum neuroprotective action profile of green tea polyphenols in aging and neurodegenerative diseases,” Journal of Alzheimer's Disease, vol. 25, no. 2, pp. 187–208, 2011. View at Publisher · View at Google Scholar · View at Scopus
  45. L. Rossi, S. Mazzitelli, M. Arciello, C. R. Capo, and G. Rotilio, “Benefits from dietary polyphenols for brain aging and Alzheimer's disease,” Neurochemical Research, vol. 33, no. 12, pp. 2390–2400, 2008. View at Publisher · View at Google Scholar · View at Scopus
  46. B. L. Queen and T. O. Tollefsbol, “Polyphenols and aging,” Current Aging Science, vol. 3, no. 1, pp. 34–42, 2010. View at Publisher · View at Google Scholar · View at Scopus
  47. D.-Y. Choi, Y.-J. Lee, J. T. Hong, and H.-J. Lee, “Antioxidant properties of natural polyphenols and their therapeutic potentials for Alzheimer's disease,” Brain Research Bulletin, vol. 87, no. 2-3, pp. 144–153, 2012. View at Publisher · View at Google Scholar
  48. M. Messaoudi, J. F. Bisson, A. Nejdi, P. Rozan, and H. Javelot, “Antidepressant-like effects of a cocoa polyphenolic extract in Wistar-Unilever rats,” Nutritional Neuroscience, vol. 11, no. 6, pp. 269–276, 2008. View at Publisher · View at Google Scholar · View at Scopus
  49. T. Sathyapalan, S. Beckett, A. S. Rigby, D. D. Mellor, and S. L. Atkin, “High cocoa polyphenol rich chocolate may reduce the burden of the symptoms in chronic fatigue syndrome,” Nutrition Journal, vol. 9, no. 1, article 55, 2010. View at Publisher · View at Google Scholar · View at Scopus
  50. Y. Xu, B. S. Ku, H. Y. Yao et al., “The effects of curcumin on depressive-like behaviors in mice,” European Journal of Pharmacology, vol. 518, no. 1, pp. 40–46, 2005. View at Publisher · View at Google Scholar · View at Scopus
  51. Y. Xu, Z. Wang, W. You et al., “Antidepressant-like effect of trans-resveratrol: involvement of serotonin and noradrenaline system,” European Neuropsychopharmacology, vol. 20, no. 6, pp. 405–413, 2010. View at Publisher · View at Google Scholar · View at Scopus
  52. W.-L. Zhu, H.-S. Shi, Y.-M. Wei et al., “Green tea polyphenols produce antidepressant-like effects in adult mice,” Pharmacological Research, vol. 65, no. 1, pp. 74–80, 2012. View at Publisher · View at Google Scholar
  53. Y. Xu, D. Lin, S. Li et al., “Curcumin reverses impaired cognition and neuronal plasticity induced by chronic stress,” Neuropharmacology, vol. 57, no. 4, pp. 463–471, 2009. View at Publisher · View at Google Scholar · View at Scopus
  54. L. Fernández-Fernández, G. Comes, I. Bolea et al., “LMN diet, rich in polyphenols and polyunsaturated fatty acids, improves mouse cognitive decline associated with aging and Alzheimer's disease,” Behavioural Brain Research, vol. 228, no. 2, pp. 261–271, 2012. View at Publisher · View at Google Scholar
  55. J. A. Joseph, B. Shukitt-Hale, G. J. Brewer, K. A. Weikel, W. Kalt, and D. R. Fisher, “Differential protection among fractionated blueberry polyphenolic families against DA-, Aβ42- and LPS-Induced decrements in Ca2+ buffering in primary hippocampal cells,” Journal of Agricultural and Food Chemistry, vol. 58, no. 14, pp. 8196–8204, 2010. View at Publisher · View at Google Scholar · View at Scopus
  56. K. Narita, M. Hisamoto, T. Okuda, and S. Takeda, “Differential neuroprotective activity of two different grape seed extracts,” PLoS ONE, vol. 6, no. 1, Article ID e14575, 2011. View at Publisher · View at Google Scholar · View at Scopus
  57. K. Fujishita, T. Ozawa, K. Shibata et al., “Grape seed extract acting on astrocytes reveals neuronal protection against oxidative stress via interleukin-6-mediated mechanisms,” Cellular and Molecular Neurobiology, vol. 29, no. 8, pp. 1121–1129, 2009. View at Publisher · View at Google Scholar · View at Scopus
  58. M. Assunção, M. J. Santos-Marques, F. Carvalho, N. V. Lukoyanov, and J. P. Andrade, “Chronic green tea consumption prevents age-related changes in rat hippocampal formation,” Neurobiology of Aging, vol. 32, no. 4, pp. 707–717, 2011. View at Publisher · View at Google Scholar · View at Scopus
  59. M. Assunção, M. J. Santos-Marques, F. Carvalho, and J. P. Andrade, “Green tea averts age-dependent decline of hippocampal signaling systems related to antioxidant defenses and survival,” Free Radical Biology and Medicine, vol. 48, no. 6, pp. 831–838, 2010. View at Publisher · View at Google Scholar · View at Scopus
  60. S. T. Yin, M. L. Tang, L. Su et al., “Effects of Epigallocatechin-3-gallate on lead-induced oxidative damage,” Toxicology, vol. 249, no. 1, pp. 45–54, 2008. View at Publisher · View at Google Scholar · View at Scopus
  61. Y. Xu, J. J. Zhang, L. Xiong, L. Zhang, D. Sun, and H. Liu, “Green tea polyphenols inhibit cognitive impairment induced by chronic cerebral hypoperfusion via modulating oxidative stress,” Journal of Nutritional Biochemistry, vol. 21, no. 8, pp. 741–748, 2010. View at Publisher · View at Google Scholar · View at Scopus
  62. G. Casadesus, B. Shukitt-Hale, H. M. Stellwagen et al., “Modulation of hippocampal plasticity and cognitive behavior by short-term blueberry supplementation in aged rats,” Nutritional Neuroscience, vol. 7, no. 5-6, pp. 309–316, 2004. View at Publisher · View at Google Scholar · View at Scopus
  63. A. Scalbert and G. Williamson, “Dietary intake and bioavailability of polyphenols,” Journal of Nutrition, vol. 130, no. 8, 2000. View at Google Scholar · View at Scopus
  64. J. P. E. Spencer, K. Vafeiadou, R. J. Williams, and D. Vauzour, “Neuroinflammation: modulation by flavonoids and mechanisms of action,” Molecular Aspects of Medicine, vol. 33, no. 1, pp. 83–97, 2012. View at Publisher · View at Google Scholar
  65. S. Acosta, J. Jernberg, C. D. Sanberg et al., “NT-020, a natural therapeutic approach to optimize spatial memory performance and increase neural progenitor cell proliferation and decrease inflammation in the aged rat,” Rejuvenation Research, vol. 13, no. 5, pp. 581–588, 2010. View at Publisher · View at Google Scholar · View at Scopus
  66. H. Ito, X. L. Sun, M. Watanabe, M. Okamoto, and T. Hatano, “Chlorogenic acid and its metabolite m-coumaric acid evoke neurite outgrowth in hippocampal neuronal cells,” Bioscience, Biotechnology and Biochemistry, vol. 72, no. 3, pp. 885–888, 2008. View at Publisher · View at Google Scholar · View at Scopus
  67. J. Bouayed, H. Rammal, A. Dicko, C. Younos, and R. Soulimani, “Chlorogenic acid, a polyphenol from Prunus domestica (Mirabelle), with coupled anxiolytic and antioxidant effects,” Journal of the Neurological Sciences, vol. 262, no. 1-2, pp. 77–84, 2007. View at Publisher · View at Google Scholar · View at Scopus
  68. M. Vignes, T. Maurice, F. Lanté et al., “Anxiolytic properties of green tea polyphenol (-)-epigallocatechin gallate (EGCG),” Brain Research, vol. 1110, no. 1, pp. 102–115, 2006. View at Publisher · View at Google Scholar · View at Scopus
  69. D. Barros, O. B. Amaral, I. Izquierdo et al., “Behavioral and genoprotective effects of Vaccinium berries intake in mice,” Pharmacology Biochemistry and Behavior, vol. 84, no. 2, pp. 229–234, 2006. View at Publisher · View at Google Scholar · View at Scopus
  70. Y. Hou, M. A. Aboukhatwa, D. L. Lei, K. Manaye, I. Khan, and Y. Luo, “Anti-depressant natural flavonols modulate BDNF and beta amyloid in neurons and hippocampus of double TgAD mice,” Neuropharmacology, vol. 58, no. 6, pp. 911–920, 2010. View at Publisher · View at Google Scholar · View at Scopus
  71. W. Q. Chen, X. L. Zhao, D. L. Wang et al., “Effects of epigallocatechin-3-gallate on behavioral impairments induced by psychological stress in rats,” Experimental Biology and Medicine, vol. 235, no. 5, pp. 577–583, 2010. View at Publisher · View at Google Scholar · View at Scopus
  72. A. Singal, N. Tirkey, and K. Chopra, “Reversal of LPS-induced immobility in mice by green tea polyphenols: possible COX-2 mechanism,” Phytotherapy Research, vol. 18, no. 9, pp. 723–728, 2004. View at Publisher · View at Google Scholar · View at Scopus
  73. J. Sanmukhani, A. Anovadiya, and C. B. Tripathi, “Evaluation of antidepressant like activity of curcumin and its combination with fluoxetine and imipramine: an acute and chronic study,” Acta poloniae pharmaceutica, vol. 68, no. 5, pp. 769–775, 2011. View at Google Scholar
  74. Y. Xu, B. Ku, L. Tie et al., “Curcumin reverses the effects of chronic stress on behavior, the HPA axis, BDNF expression and phosphorylation of CREB,” Brain Research, vol. 1122, no. 1, pp. 56–64, 2006. View at Publisher · View at Google Scholar · View at Scopus
  75. A. Wu, Z. Ying, and F. Gomez-Pinilla, “Dietary curcumin counteracts the outcome of traumatic brain injury on oxidative stress, synaptic plasticity, and cognition,” Experimental Neurology, vol. 197, no. 2, pp. 309–317, 2006. View at Publisher · View at Google Scholar · View at Scopus
  76. C. Manach, A. Scalbert, C. Morand, C. Rémésy, and L. Jiménez, “Polyphenols: food sources and bioavailability,” American Journal of Clinical Nutrition, vol. 79, no. 5, pp. 727–747, 2004. View at Google Scholar · View at Scopus
  77. A. Dreiseitel, G. Korte, P. Schreier et al., “Berry anthocyanins and their aglycons inhibit monoamine oxidases A and B,” Pharmacological Research, vol. 59, no. 5, pp. 306–311, 2009. View at Publisher · View at Google Scholar · View at Scopus
  78. B. Shukitt-Hale, F. C. Lau, A. N. Carey et al., “Blueberry polyphenols attenuate kainic acid-induced decrements in cognition and alter inflammatory gene expression in rat hippocampus,” Nutritional Neuroscience, vol. 11, no. 4, pp. 172–182, 2008. View at Publisher · View at Google Scholar · View at Scopus
  79. R. Dantzer, “Cytokine, sickness behavior, and depression,” Immunology and Allergy Clinics of North America, vol. 29, no. 2, pp. 247–264, 2009. View at Publisher · View at Google Scholar · View at Scopus
  80. J. K. Kiecolt-Glaser, “Stress, food, and inflammation: psychoneuroimmunology and nutrition at the cutting edge,” Psychosomatic Medicine, vol. 72, no. 4, pp. 365–369, 2010. View at Publisher · View at Google Scholar · View at Scopus
  81. S. M. O'Brien, L. V. Scott, and T. G. Dinan, “Cytokines: abnormalities in major depression and implications for pharmacological treatment,” Human Psychopharmacology, vol. 19, no. 6, pp. 397–403, 2004. View at Publisher · View at Google Scholar · View at Scopus
  82. C. L. Raison, L. Capuron, and A. H. Miller, “Cytokines sing the blues: inflammation and the pathogenesis of depression,” Trends in Immunology, vol. 27, no. 1, pp. 24–31, 2006. View at Publisher · View at Google Scholar · View at Scopus
  83. T. Mao, J. Van De Water, C. L. Keen, H. H. Schmitz, and M. E. Gershwin, “Cocoa procyanidins and human cytokine transcription and secretion,” Journal of Nutrition, vol. 130, no. 8, pp. 2093S–2099S, 2000. View at Google Scholar · View at Scopus
  84. L. Ferrara, D. Montesano, and A. Senatore, “The distribution of minerals and flavonoids in the tea plant (Camellia sinensis),” Farmaco, vol. 56, no. 5–7, pp. 397–401, 2001. View at Publisher · View at Google Scholar · View at Scopus
  85. Q. Deng, J. Xu, B. Yu et al., “Effect of dietary tea polyphenols on growth performance and cell-mediated immune response of post-weaning piglets under oxidative stress,” Archives of Animal Nutrition, vol. 64, no. 1, pp. 12–21, 2010. View at Publisher · View at Google Scholar · View at Scopus
  86. R. D. Porsolt, A. Bertin, and M. Jalfre, “‘Behavioral despair’ in rats and mice: strain differences and the effects of imipramine,” European Journal of Pharmacology, vol. 51, no. 3, pp. 291–294, 1978. View at Google Scholar · View at Scopus
  87. L. Steru, R. Chermat, B. Thierry, and P. Simon, “The tail suspension test: a new method for screening antidepressants in mice,” Psychopharmacology, vol. 85, no. 3, pp. 367–370, 1985. View at Google Scholar · View at Scopus
  88. B. E. Leonard, “The HPA and immune axes in stress: the involvement of the serotonergic system,” European Psychiatry, vol. 20, supplement 3, pp. S302–S306, 2005. View at Publisher · View at Google Scholar · View at Scopus
  89. C. Song and H. Wang, “Cytokines mediated inflammation and decreased neurogenesis in animal models of depression,” Progress in Neuro-Psychopharmacology and Biological Psychiatry, vol. 35, no. 3, pp. 760–768, 2011. View at Publisher · View at Google Scholar · View at Scopus
  90. C. Anacker, P. A. Zunszain, A. Cattaneo et al., “Antidepressants increase human hippocampal neurogenesis by activating the glucocorticoid receptor,” Molecular Psychiatry, vol. 16, no. 7, pp. 738–750, 2011. View at Publisher · View at Google Scholar · View at Scopus
  91. N. Barden, J. M. H. M. Reul, and F. Holsboer, “Do antidepressants stabilize mood through actions on the hypothalamic-pituitary-adrenocortical system?” Trends in Neurosciences, vol. 18, no. 1, pp. 6–11, 1995. View at Publisher · View at Google Scholar · View at Scopus
  92. R. Garcia, “Stress, metaplasticity, and antidepressants,” Current Molecular Medicine, vol. 2, no. 7, pp. 629–638, 2002. View at Publisher · View at Google Scholar · View at Scopus
  93. F. A. Antoni, “Vasopressinergic control of pituitary adrenocorticotropin secretion comes of age,” Frontiers in Neuroendocrinology, vol. 14, no. 2, pp. 76–122, 1993. View at Publisher · View at Google Scholar · View at Scopus
  94. T. W. W. Pace, F. Hu, and A. H. Miller, “Cytokine-effects on glucocorticoid receptor function: relevance to glucocorticoid resistance and the pathophysiology and treatment of major depression,” Brain, Behavior, and Immunity, vol. 21, no. 1, pp. 9–19, 2007. View at Publisher · View at Google Scholar · View at Scopus
  95. E. E. L. Beckham, Handbook of Depression, Guilford Press, London, UK, 1995.
  96. M. Maes, S. Scharpe, H. Y. Meltzer et al., “Relationships between interleukin-6 activity, acute phase proteins, and function of the hypothalamic-pituitary-adrenal axis in severe depression,” Psychiatry Research, vol. 49, no. 1, pp. 11–27, 1993. View at Publisher · View at Google Scholar · View at Scopus
  97. A. H. Miller, C. M. Pariante, and B. D. Pearce, “Effects of cytokines on glucocorticoid receptor expression and function: glucocorticoid resistance and relevance to depression,” Advances in Experimental Medicine and Biology, vol. 461, pp. 107–116, 1999. View at Google Scholar · View at Scopus
  98. P. A. Zunszain, C. Anacker, A. Cattaneo, L. A. Carvalho, and C. M. Pariante, “Glucocorticoids, cytokines and brain abnormalities in depression,” Progress in Neuro-Psychopharmacology and Biological Psychiatry, vol. 35, no. 3, pp. 722–729, 2011. View at Publisher · View at Google Scholar · View at Scopus
  99. Y. G. Lin, A. B. Kunnumakkara, A. Nair et al., “Curcumin inhibits tumor growth and angiogenesis in ovarian carcinoma by targeting the nuclear factor-κB pathway,” Clinical Cancer Research, vol. 13, no. 11, pp. 3423–3430, 2007. View at Publisher · View at Google Scholar · View at Scopus
  100. S. Singh and B. B. Aggarwal, “Activation of transcription factor NF-κb is suppressed by curcumin (diferuloylmethane),” The Journal of Biological Chemistry, vol. 270, no. 50, p. 30235, 1995. View at Publisher · View at Google Scholar · View at Scopus
  101. L. I. McKay and J. A. Cidlowski, “Molecular control of immune/inflammatory responses: interactions between nuclear factor-κB and steroid receptor-signaling pathways,” Endocrine Reviews, vol. 20, no. 4, pp. 435–459, 1999. View at Google Scholar · View at Scopus
  102. Y. Mu, S. W. Lee, and F. H. Gage, “Signaling in adult neurogenesis,” Current Opinion in Neurobiology, vol. 20, no. 4, pp. 416–423, 2010. View at Publisher · View at Google Scholar · View at Scopus
  103. M. Nibuya, S. Morinobu, and R. S. Duman, “Regulation of BDNF and trkB mRNA in rat brain by chronic electroconvulsive seizure and antidepressant drug treatments,” Journal of Neuroscience, vol. 15, no. 11, pp. 7539–7547, 1995. View at Google Scholar · View at Scopus
  104. R. Wang, Y. Xu, H. L. Wu et al., “The antidepressant effects of curcumin in the forced swimming test involve 5-HT1 and 5-HT2 receptors,” European Journal of Pharmacology, vol. 578, no. 1, pp. 43–50, 2008. View at Publisher · View at Google Scholar · View at Scopus
  105. M. Banasr, M. Hery, R. Printemps, and A. Daszuta, “Serotonin-induced increases in adult cell proliferation and neurogenesis are mediated through different and common 5-HT receptor subtypes in the dentate gyrus and the subventricular zone,” Neuropsychopharmacology, vol. 29, no. 3, pp. 450–460, 2004. View at Publisher · View at Google Scholar · View at Scopus
  106. J. J. Radley and B. L. Jacobs, “5-HT1A receptor antagonist administration decreases cell proliferation in the dentate gyrus,” Brain Research, vol. 955, no. 1-2, pp. 264–267, 2002. View at Publisher · View at Google Scholar · View at Scopus
  107. M. Saxena, S. Williams, K. Taskén, and T. Mustelin, “Crosstalk between cAMP-dependent kinase and MAP kinase through a protein tyrosine phosphatase,” Nature Cell Biology, vol. 1, no. 5, pp. 305–311, 1999. View at Google Scholar · View at Scopus
  108. N. Takahashi, T. Tetsuka, H. Uranishi, and T. Okamoto, “Inhibition of the NF-κB transcriptional activity by protein kinase A,” European Journal of Biochemistry, vol. 269, no. 18, pp. 4559–4565, 2002. View at Publisher · View at Google Scholar · View at Scopus
  109. D. J. David, J. Wang, B. A. Samuels et al., “Implications of the functional integration of adult-born hippocampal neurons in anxiety-depression disorders,” Neuroscientist, vol. 16, no. 5, pp. 578–591, 2010. View at Publisher · View at Google Scholar · View at Scopus
  110. D. Petrik, D. C. Lagace, and A. J. Eisch, “The neurogenesis hypothesis of affective and anxiety disorders: are we mistaking the scaffolding for the building?” Neuropharmacology, vol. 62, no. 1, pp. 21–34, 2012. View at Publisher · View at Google Scholar
  111. A. Sahay and R. Hen, “Adult hippocampal neurogenesis in depression,” Nature Neuroscience, vol. 10, no. 9, pp. 1110–1115, 2007. View at Publisher · View at Google Scholar · View at Scopus
  112. J. P. E. Spencer, D. Vauzour, and C. Rendeiro, “Flavonoids and cognition: the molecular mechanisms underlying their behavioural effects,” Archives of Biochemistry and Biophysics, vol. 492, no. 1-2, pp. 1–9, 2009. View at Publisher · View at Google Scholar · View at Scopus
  113. B. Shukitt-Hale, A. N. Carey, D. Jenkins, B. M. Rabin, and J. A. Joseph, “Beneficial effects of fruit extracts on neuronal function and behavior in a rodent model of accelerated aging,” Neurobiology of Aging, vol. 28, no. 8, pp. 1187–1194, 2007. View at Publisher · View at Google Scholar · View at Scopus
  114. M. Miyake, K. Sasaki, K. Ide, Y. Matsukura, K. Shijima, and D. Fujiwara, “Highly oligomeric procyanidins ameliorate experimental autoimmune encephalomyelitis via suppression of Th1 immunity,” Journal of Immunology, vol. 176, no. 10, pp. 5797–5804, 2006. View at Google Scholar · View at Scopus
  115. H. Ageta, A. Murayama, R. Migishima et al., “Activin in the brain modulates anxiety-related behavior and adult neurogenesis,” PLoS ONE, vol. 3, no. 4, Article ID e1869, 2008. View at Publisher · View at Google Scholar · View at Scopus
  116. M. Bergami, R. Rimondini, S. Santi, R. Blum, M. Götz, and M. Canossa, “Deletion of TrkB in adult progenitors alters newborn neuron integration into hippocampal circuits and increases anxiety-like behavior,” Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 40, pp. 15570–15575, 2008. View at Publisher · View at Google Scholar · View at Scopus
  117. J. L. Trejo, M. V. LLorens-Martín, and I. Torres-Alemán, “The effects of exercise on spatial learning and anxiety-like behavior are mediated by an IGF-I-dependent mechanism related to hippocampal neurogenesis,” Molecular and Cellular Neuroscience, vol. 37, no. 2, pp. 402–411, 2008. View at Publisher · View at Google Scholar · View at Scopus
  118. J. N. Salam, J. H. Fox, E. M. DeTroy, M. H. Guignon, D. F. Wohl, and W. A. Falls, “Voluntary exercise in C57 mice is anxiolytic across several measures of anxiety,” Behavioural Brain Research, vol. 197, no. 1, pp. 31–40, 2009. View at Publisher · View at Google Scholar · View at Scopus
  119. K. Pham, B. S. McEwen, J. E. Ledoux, and K. Nader, “Fear learning transiently impairs hippocampal cell proliferation,” Neuroscience, vol. 130, no. 1, pp. 17–24, 2005. View at Publisher · View at Google Scholar · View at Scopus
  120. J. L. Warner-Schmidt, T. M. Madsen, and R. S. Duman, “Electroconvulsive seizure restores neurogenesis and hippocampus-dependent fear memory after disruption by irradiation,” European Journal of Neuroscience, vol. 27, no. 6, pp. 1485–1493, 2008. View at Publisher · View at Google Scholar · View at Scopus
  121. M. D. Saxe, F. Battaglia, J. W. Wang et al., “Ablation of hippocampal neurogenesis impairs contextual fear conditioning and synaptic plasticity in the dentate gyrus,” Proceedings of the National Academy of Sciences of the United States of America, vol. 103, no. 46, pp. 17501–17506, 2006. View at Publisher · View at Google Scholar · View at Scopus
  122. N. N. Karpova, A. Pickenhagen, J. Lindholm et al., “Fear erasure in mice requires synergy between antidepressant drugs and extinction training,” Science, vol. 334, no. 6063, pp. 1731–1734, 2011. View at Publisher · View at Google Scholar