Table of Contents Author Guidelines Submit a Manuscript
Oxidative Medicine and Cellular Longevity
Volume 2012, Article ID 819310, 13 pages
http://dx.doi.org/10.1155/2012/819310
Clinical Study

Characterization of Blood Oxidative Stress in Type 2 Diabetes Mellitus Patients: Increase in Lipid Peroxidation and SOD Activity

1Rede Nordeste de Biotecnologia (RENORBIO), Instituto de Química e Biotecnologia, Universidade Federal de Alagoas (UFAL), Campus A. C. Simões, Avenida Lourival Melo Mota, s/n, Tabuleiro dos Martins, 57072-970 Maceió, AL, Brazil
2Faculdade de Nutrição/Universidade Federal de Alagoas (FANUT/UFAL), Campus A. C. Simões, Avenida Lourival Melo Mota, s/n, Tabuleiro dos Martins, 57072-970 Maceió, AL, Brazil
3Laboratório de Reatividade Cardiovascular, Instituto de Ciências Biológicas e da Saúde, Universidade Federal de Alagoas (LRC/ICBS/UFAL), Pça Afrânio Jorge, s/n, Prado, 57010-020 Maceió, AL, Brazil
4Centro de Estudos em Estresse Oxidativo, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde/Universidade Federal do Rio Grande do Sul (CEEO/ICBS/UFRGS), Rua Ramiro Barcelos 2600 Anexo, Bairro Santana, 90035-003 Porto Alegre, RS, Brazil
5Laboratório de Nutrição em Cardiologia, Faculdade de Nutrição/Universidade Federal de Alagoas (FANUT/UFAL), Campus A. C. Simões, Avenida Lourival Melo Mota, s/n, Tabuleiro dos Martins, 57072-970 Maceió, AL, Brazil

Received 27 June 2012; Revised 14 August 2012; Accepted 15 August 2012

Academic Editor: Felipe Dal-Pizzol

Copyright © 2012 Suziy de M. Bandeira et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. Organização Mundial da Saúde, http://www.who.int/diabetes/en/.
  2. (IDF) International Diabetes Federation, http://www.diabetesatlas.org/.
  3. J. M. Fowler, “Microvascular and macrovascular complications of diabetes,” Clinical Diabetes, vol. 29, pp. 116–122, 2011. View at Google Scholar
  4. A. Ceriello and R. Testa, “Antioxidant anti-inflammatory treatment in type 2 diabetes,” Diabetes Care, vol. 32, supplement 2, pp. S232–S236, 2009. View at Google Scholar
  5. A. Cerielo, E. Motz, A. Cavarape et al., “Hyperglycemia counterbalances the antihypertensive effect of glutathione in diabetic patients: evidence linking hypertension and glycemia through the oxidative stress in diabetes mellitus,” Journal of Diabetes and Its Complications, vol. 11, no. 4, pp. 250–255, 1997. View at Publisher · View at Google Scholar · View at Scopus
  6. E. J. Roccella, “National high blood pressure education program working group report on hypertension in diabetes,” Hypertension, vol. 23, no. 2, pp. 145–158, 1994. View at Google Scholar · View at Scopus
  7. A. Ceriello and E. Motz, “Is oxidative stress the pathogenic mechanism underlying insulin resistance, diabetes, and cardiovascular disease? The common soil hypothesis revisited,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 24, no. 5, pp. 816–823, 2004. View at Publisher · View at Google Scholar · View at Scopus
  8. A. Ceriello, “Possible role of oxidative stress in the pathogenesis of hypertension,” Diabetes Care, vol. 31, supplement 2, pp. S181–184, 2008. View at Google Scholar · View at Scopus
  9. S. M. L. Vasconcelos, M. O. F. Goulart, M. A. M. Silva et al., “Markers of redox imbalance in the blood of hypertensive patients of a community in northeastern Brazil,” Arquivos Brasileiros de Cardiologia, vol. 97, pp. 141–147, 2011. View at Google Scholar
  10. B. Halliwell and J. M. C. Gutteridge, Free Radicals in Biology and Medicine, Oxford University Press, New York, NY, USA, 4th edition, 2007.
  11. A. Negre-Salvayre, R. Salvayre, N. Augé, R. Pamplona, and M. Portero-Otín, “Hyperglycemia and glycation in diabetic complications,” Antioxidants and Redox Signaling, vol. 11, no. 12, pp. 3071–3109, 2009. View at Publisher · View at Google Scholar · View at Scopus
  12. M. Valko, D. Leibfritz, J. Moncol, M. T. D. Cronin, M. Mazur, and J. Telser, “Free radicals and antioxidants in normal physiological functions and human disease,” International Journal of Biochemistry and Cell Biology, vol. 39, no. 1, pp. 44–84, 2007. View at Publisher · View at Google Scholar · View at Scopus
  13. J. L. Evans, B. A. Maddux, and I. D. Goldfine, “The molecular basis for oxidative stress-induced insulin resistance,” Antioxidants and Redox Signaling, vol. 7, no. 7-8, pp. 1040–1052, 2005. View at Publisher · View at Google Scholar · View at Scopus
  14. M. Brownlee, “The pathobiology of diabetic complications: a unifying mechanism,” Diabetes, vol. 54, no. 6, pp. 1615–1625, 2005. View at Publisher · View at Google Scholar · View at Scopus
  15. M. Brownlee, “Biochemistry and molecular cell biology of diabetic complications,” Nature, vol. 414, no. 6865, pp. 813–820, 2001. View at Publisher · View at Google Scholar · View at Scopus
  16. L. Monnier and C. Colette, “Glycemic variability: should we and can we prevent it?” Diabetes Care, vol. 31, supplement 2, pp. S150–154, 2008. View at Google Scholar · View at Scopus
  17. Instituto Brasileiro de Geografia e Estatística and Censo, 2010, http://www.censo2010.ibge.gov.br/.
  18. Centro de Informações Sobre Saúde e Álcool (CISA), 2011, http://www.cisa.org.br.
  19. Expert Panel on Detection, Evaluation and Treatment of High Blood Cholesterol in Adults, “Executive summary of the third report of the National Cholesterol Education Program (NCEP) expert panel on detection, evaluation, and treatment of high blood cholesterol in adults (adult treatment panel III),” Journal of the American Medical Association, vol. 285, no. 19, pp. 2486–2497, 2001. View at Google Scholar · View at Scopus
  20. American Diabetes Association/ADA, “Diagnosis and classification of diabetes mellitus,” Diabetes Care, vol. 34, supplement 1, pp. S62–S69, 2011. View at Publisher · View at Google Scholar · View at Scopus
  21. A. Wendel, “Glutathione peroxidase,” Methods in Enzymology, vol. 77, pp. 325–333, 1981. View at Publisher · View at Google Scholar · View at Scopus
  22. P. Xu, A. C. Costa-Goncalves, M. Todiras et al., “Endothelial dysfunction and elevated blood pressure in Mas gene-deleted mice,” Hypertension, vol. 51, no. 2, pp. 574–580, 2008. View at Publisher · View at Google Scholar · View at Scopus
  23. G. L. Ellman, “Tissue sulphydril groups,” Archives of Biochemistry and Biophysics, vol. 82, pp. 70–77, 1959. View at Google Scholar
  24. R. Wallin, C. Stanton, and S. M. Hutson, “Intracellular maturation of the γ-carboxyglutamic acid (Gla) region in prothrombin coincides with release of the propeptide,” Biochemical Journal, vol. 291, no. 3, pp. 723–727, 1993. View at Google Scholar · View at Scopus
  25. D. R. Matthews, J. P. Hosker, and A. S. Rudenski, “Homeostasis model assessment: insulin resistance and β-cell function from fasting plasma glucose and insulin concentrations in man,” Diabetologia, vol. 28, no. 7, pp. 412–419, 1985. View at Google Scholar · View at Scopus
  26. D. Ziegler, C. G. H. Sohr, and J. Nourooz-Zadeh, “Oxidative stress and antioxidant defense in relation to the severity of diabetic polyneuropathy and cardiovascular autonomic neuropathy,” Diabetes Care, vol. 27, no. 9, pp. 2178–2183, 2004. View at Publisher · View at Google Scholar · View at Scopus
  27. A. Piwowar, M. Knapik-Kordecka, and M. Warwas, “AOPP and its relations with selected markers of oxidative/antioxidative system in type 2 diabetes mellitus,” Diabetes Research and Clinical Practice, vol. 77, no. 2, pp. 188–192, 2007. View at Publisher · View at Google Scholar · View at Scopus
  28. J. Kasznicki, M. Kosmalski, A. Sliwinska et al., “Evaluation of oxidative stress markers in pathogenesis of diabetic neuropathy,” Molecular Biology Reports, vol. 39, no. 9, pp. 8669–8678, 2012. View at Publisher · View at Google Scholar · View at Scopus
  29. S. A. Moussa, “Oxidative stress in diabetes mellitus,” Romanian Journal of Biophysics, vol. 18, pp. 225–236, 2008. View at Google Scholar
  30. O. Savu, C. Ionescu-Tirgoviste, V. Atanasiu et al., “Increase in Total Antioxidant Capacity of Plasma Despite High Levels of Oxidative Stress in Uncomplicated Type 2 Diabetes Mellitus,” The Journal of International Medical Research, vol. 40, pp. 709–716, 2012. View at Google Scholar
  31. F. Kimura, G. Hasegawa, H. Obayashi et al., “Serum extracellular superoxide dismutase in patients with type 2 diabetes: relationship to the development of micro- and macrovascular complications,” Diabetes Care, vol. 26, no. 4, pp. 1246–1250, 2003. View at Publisher · View at Google Scholar · View at Scopus
  32. P. Maechler, L. Jornot, and C. B. Wollheim, “Hydrogen peroxide alters mitochondrial activation and insulin secretion in pancreatic beta cells,” Journal of Biological Chemistry, vol. 274, no. 39, pp. 27905–27913, 1999. View at Publisher · View at Google Scholar · View at Scopus
  33. J. L. Evans, I. D. Goldfine, B. A. Maddux, and G. M. Grodsky, “Oxidative stress and stress-activated signaling pathways: a unifying hypothesis of type 2 diabetes,” Endocrine Reviews, vol. 23, no. 5, pp. 599–622, 2002. View at Publisher · View at Google Scholar · View at Scopus
  34. R. Ramasamy, S. J. Vannucci, S. S. D. Yan, K. Herold, S. F. Yan, and A. M. Schmidt, “Advanced glycation end products and RAGE: a common thread in aging, diabetes, neurodegeneration, and inflammation,” Glycobiology, vol. 15, no. 7, pp. 16R–28R, 2005. View at Publisher · View at Google Scholar · View at Scopus
  35. L. Quagliaro, L. Piconi, R. Assaloni, L. Martinelli, E. Motz, and A. Ceriello, “Intermittent high glucose enhances apoptosis related to oxidative stress in human umbilical vein endothelial cells: the role of protein kinase C and NAD(P)H-oxidase activation,” Diabetes, vol. 52, no. 11, pp. 2795–2804, 2003. View at Publisher · View at Google Scholar · View at Scopus
  36. Z. Yang, V. E. Laubach, B. A. French, and I. L. Kron, “Acute hyperglycemia enhances oxidative stress and exacerbates myocardial infarction by activating nicotinamide adenine dinucleotide phosphate oxidase during reperfusion,” Journal of Thoracic and Cardiovascular Surgery, vol. 137, no. 3, pp. 723–729, 2009. View at Publisher · View at Google Scholar · View at Scopus
  37. R. Marfella, L. Quagliaro, F. Nappo et al., “Acute hyperglycemia induces an oxidative stress in healthy subjects,” Journal of Clinical Investigation, vol. 108, no. 4, pp. 635–636, 2001. View at Publisher · View at Google Scholar · View at Scopus
  38. M. D'Archivio, G. Annuzzi, R. Varì et al., “Predominant role of obesity/insulin resistance in oxidative stress development,” European Journal of Clinical Investigation, vol. 42, no. 1, pp. 70–78, 2012. View at Publisher · View at Google Scholar · View at Scopus
  39. K. Park, M. Gross, D.-H. Lee et al., “Oxidative stress and insulin resistance: the Coronary Artery Risk Development in Young Adults study,” Diabetes Care, vol. 32, no. 7, pp. 1302–1307, 2009. View at Publisher · View at Google Scholar · View at Scopus
  40. R. Memişoǧullari and E. Bakan, “Levels of ceruloplasmin, transferrin, and lipid peroxidation in the serum of patients with Type 2 diabetes mellitus,” Journal of Diabetes and Its Complications, vol. 18, no. 4, pp. 193–197, 2004. View at Publisher · View at Google Scholar · View at Scopus
  41. M. E. Ínal, G. Kanbak, and E. Sunal, “Antioxidant enzyme activities and malondialdehyde levels related to aging,” Clinica Chimica Acta, vol. 305, no. 1-2, pp. 75–80, 2001. View at Publisher · View at Google Scholar · View at Scopus
  42. P. M. Janiszewski, I. Janssen, and R. Ross, “Does waist circumference predict diabetes and cardiovascular disease beyond commonly evaluated cardiometabolic risk factors?” Diabetes Care, vol. 30, pp. 3105–3109, 2007. View at Google Scholar
  43. H. Urakawa, A. Katsuki, Y. Sumida et al., “Oxidative stress is associated with adiposity and insulin resistance in men,” Journal of Clinical Endocrinology and Metabolism, vol. 88, no. 10, pp. 4673–4676, 2003. View at Publisher · View at Google Scholar · View at Scopus
  44. G. Block, M. Dietrich, E. P. Norkus et al., “Factors associated with oxidative stress in human populations,” American Journal of Epidemiology, vol. 156, no. 3, pp. 274–285, 2002. View at Publisher · View at Google Scholar · View at Scopus
  45. H. Khouri, F. Collin, D. Bonnefont-Rousselot, A. Legrand, D. Jore, and M. Gardès-Albert, “Radical-induced oxidation of metformin,” European Journal of Biochemistry, vol. 271, no. 23-24, pp. 4745–4752, 2004. View at Publisher · View at Google Scholar · View at Scopus
  46. G. T. Sáez, C. Tormos, V. Giner et al., “Factors related to the impact of antihypertensive treatment in antioxidant activities and oxidative stress by-products in human hypertension,” American Journal of Hypertension, vol. 17, no. 9, pp. 809–816, 2004. View at Publisher · View at Google Scholar · View at Scopus
  47. L. Ghiadoni, A. Magagna, D. Versari et al., “Different effect of antihypertensive drugs on conduit artery endothelial function,” Hypertension, vol. 41, no. 6, pp. 1281–1286, 2003. View at Publisher · View at Google Scholar · View at Scopus
  48. H.-P. Podhaisky, A. Abate, T. Polte, S. Oberle, and H. Schröder, “Aspirin protects endothelial cells from oxidative stress—possible synergism with vitamin E,” FEBS Letters, vol. 417, no. 3, pp. 349–351, 1997. View at Publisher · View at Google Scholar · View at Scopus
  49. K. Prasad and P. Lee, “Suppression of oxidative stress as a mechanism of reduction of hypercholesterolemic atherosclerosis by aspirin,” Journal of Cardiovascular Pharmacology and Therapeutics, vol. 8, no. 1, pp. 61–69, 2003. View at Google Scholar · View at Scopus
  50. A. Ceriello, R. Assaloni, R. Da Ros et al., “Effect of atorvastatin and irbesartan, alone and in combination, on postprandial endothelial dysfunction, oxidative stress, and inflammation in type 2 diabetic patients,” Circulation, vol. 111, no. 19, pp. 2518–2524, 2005. View at Publisher · View at Google Scholar · View at Scopus
  51. M. Evans, R. A. Anderson, J. C. Smith et al., “Effects of insulin lispro and chronic vitamin C therapy on postprandial lipaemia, oxidative stress and endothelial function in patients with type 2 diabetes mellitus,” European Journal of Clinical Investigation, vol. 33, no. 3, pp. 231–238, 2003. View at Publisher · View at Google Scholar · View at Scopus